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Abstract: The aim of the present paper is to obtain the approximate analytical solofitinge-fractional damped burger and Cahn-
Allen equations by means of the homotopy analysis method (HAM). In thild@lution, there exists an auxiliary paramehbexhich
provides a convenient way to adjust and check the convergencenrefjtbe solution series. In the model problems, an appropriate
choice of the auxiliary parameter has been examined for increasingsvaftime.
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1 Introduction In the literature, one can come across many definitions

of the terms fractional integration and differentiationcls

as Riemann-Liouville’s definition, Caputo’s definition and
eneralized function approach. For instance, the Riemann-

In recent years, it has been increasingly noticed that mo iouville integral operator17] of ordera is defined by

of the mathematical modelings of many physical
phenomena in diverse fields of physics and engineering §
generally result in nonlinear ordinary or partial a _ 1 a-1

differential equations. It is also found out that these kind I = Woﬂx Hfa (a>0), Q)
of equations model natural phenomena better than those J0f (x) = f(x)

involving only integer order equations. Thus, it has
become very important in applied mathematics to
investigate and construct exact and numerical solutions o
these equations. For example, the HAM which was first
proposed by Liaol, 2] is one of the most powerful tool
to search the approximate solutions of nonlinear evolution o ¢ (x) = ian-a f(x)
equations (NLEEs). Moreover, the HAM, unlike dxn
perturbation techniques, fortunately is not limited to any

small physical parameters in the considered equationwhere n is an integer. The Riemann-Liouville integral
Thanks to this useful property, the HAM can tackle with operator has had a great importance in the development of
the foregoing restrictions and limitations of perturbatio the theory of fractional derivatives and integrals.
techniques so that it provides us with a more robust toolNevertheless, it also has the same disadvantages for
for analyzing strongly nonlinear problems3][ This  fractional differantial equations with initial and boumga
method has been successfully applied for solving severatonditions. Because of this fact, here we have adopted
nonlinear problems arising in science and engineering byCaputo’s definition]7], which is a modification of
many authors I-16] and the references therein. In the Riemann-Liouville definition:

present paper, we will apply the HAM to the
time-fractional damped Burger and Cahn-Allen
equations.

f;md its fractional derivative of order (a > 0) is normally
characterized by

(a>0,n—1<a<n),

Df(x) =J" D" f(X) = ~=

roe (x—t)" a1 (t)dt  (a > 0)

O — x
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wheren is an integer. Caputo’s integral operator has thewherec is a constant. From Eg4), we can now describe
following useful characteristid[7]: a nonlinear operator as follows

= § N [p(xt; p)] = L1UXERL | g ; p) 28XER) _ OOKED) | ) gy t; p)
X X X
J"D"f(x):f(x)—zf<'<>(o+)ﬁ (h—1<a<n). - ’ -
k=0 : Therefore, we construct the zero-order deformation

equation as

(1-p)Z[@(x.t;p) —Uo(x,t)] = pht” [@(x,t; p)]. (6)

Clearly, if we setp = 0 andp = 1, then we obtain

For the Caputo derivative, we have

D% =0 (cis a constant

0, B<a-1, @(x,t;0) = uo(x,t) = u(x,0), p(x,t; 1) = u(x,t)
DU = rg1) pa 1 @ . .
FeapX B>a-1 respectively. Thus, as the embedding parameger

- . , - increases from 0 to 1, the solutions alg(x,t; p) vary
In a similar way to integer-order differentiations, Capsito .o the initial valueup(x,t) to the solutioru(x,t) . If we
fractional differentiation is also a linear operation expand @(x,t;p) in Taylor series with respect to the
embedding parametgr, we get
DY(Af(x) + Hg(x)) = AD® f (x) + uDg(x), 9 paramete we g

[ee]

where A and p are constants. Moreover Caputo’s Pt p) =Uo(X,t) + 3 um(xt)p™, @)
fractional differentiation also satisfy the so-called m=1
Leibnitz rule: where
1 9Mp(xt;p)
) t) = — . 8
Da(g(t)f(x)) = ;(z) g(k)(t)Dafkf(X). Um(Xa ) m apm p—0 ®)
k=

If we choose the auxiliary linear operator, the initial
guess and the auxiliary parameterproperly, then the

For n to be the smallest integer that exceeds above series convergespat 1, and one can easily have

Caputo space-fractional derivative operator of order

a > 0is described as u(x,t) = up(x,t) + z Um(X,t)
m=1
a 0, for n—1<a<n, . . .
D¢ (x,t) = 2 ;t(;,t) - { FB+Y) o for a—neN which should be one of the solutions of the initially given
r(B-a+1) ’ - ' nonlinear equation, as proved by Lia@, [5]. If we

. (3)  differentiate Eq. § m times with respect to the
In the solution process of the present paper, the Caputo’smbedding parametep, we can obtain themth-order

definition of fractional differentiation is going to be used  deformation equation

2L [Um(X,t) = XmUm-1(X,1)] = AR (T m-1),  (9)

2 HAM Solutions of the Time-Fractional where

Damped Burger Equation

0% U, 2Up, - U1
Rn(Um-1) = S5 — 55 + AUm-1+ 315 Un(X ) S5=n

We consider the time-fractional damped burger equation The solution of thenth-order deformation Eqgf for m >

(4) 1leads to
Un(X,t) = XmUm-1(%,t) + A3 [Rn(Um-1)].  (10)
Using Eq.(0) together with the initial condition given

DU+ Uy — U +Au=0

with the initial condition

u(x,0) = Ax. () by (5), we successively obtain
To investigate the series solution of E4) with the initial Uo(X,t) = Ax
condition 6), we select the linear operator 0= 2hA2tox
W= )

Z[e(xt;p)]l = D [p(x.t; )],

having the property

(X 1) = 2hA2toX N 252A2t“x+ 6RZA 320
2 T FA+a)  T(1+a) T(1+2a)

Z[J=0 ; (11)
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etc. As aresult, the series solutions expressed by HAM can u
be written in the following form '

u(x,t) = ug(X,t) +ur(X,t) +uz(X,t) + us(x,t) +.... (12)

To demonstrate the efficiency of the present method, we
compare the HAM solutions of time-fractional damped
burger equation given by Eg4)for a = 1 with the exact

solutions [L8] oaoshes N
—=—h=-04

— Ax “02) ¢ he-075

From now on, for all the computations the valueowill
be taken as 1. Remember that our HAM solution series
contains the auxiliary parametiewhich provides us with

a simple tool to adjust and check the convergence of th‘?—|AM for various values of and a — 1 by 10th-order

solution series. To obtain an appropriate rangefiowe approximate solution afi(x,t) with the exact solutions at
consider the so-callela-curve to select a suitable value of =05

R which ensures the convergence of the solution series, as

pointed by Liao £], by discovering the valid region df 1op0 1. The results obtained by the HAM for various

corresponding to th? line segments nearly parallel to th‘?/alues ofa by 10th-order approximate solution ofx,t)
horizontal axis. In Fig.1, we demonstrate fieurves of ¢ = "4 ’

u(0.5,1) given by 10th-order HAM solutioni@)and for

Fig. 22 A comparison of the results obtained by the

various values ofr parametres. It can be seen from the ; N 4=0%5 a=075 G =10
figure that the valid range df is approximately—0.5 < Numerical Numerical Numerical  Exact
h< 01 025 02  0.099490 0.110974 0127574 0.127547
=YL 04  0.198979 0.221948 0.255148  0.255094
0.6 0.298468 0.332922 0.382722 0.382641
0.8 0.397958 0.443896 0.510296 0.510188
1.0 0.497447 0.554870 0.637870 0.637734
10 ‘ ‘ ‘ 050 02 0083409 0.083660 0.086991  0.087053
f 0.4 0.166819 0.167320 0.173982 0.174107
o8] — a=1 3 0.6  0.250228 0.250979 0.260973  0.261160
0.8  0.333637 0.334639 0.347964  0.348213
081 - =0.75 ] 1.0 0.417046 0.418299 0.434954 0.435267
0.75 0.2 0.074103 0.068179 0.061762 0.061843
g o4 05 ] 0.4  0.148207 0.136358 0.123524 0.123686
9, =0 B 0.6  0.222310 0.204537 0.185287  0.185529
E —_— === 0.8  0.296414 0.272716 0.247049  0.247372
0.0 ; 1.0  0.370517 0.340895 0.308811  0.309215
100 02  0.65038 0.057924 0.044999  0.045078
0.2} / I 1 04  0.130075 0.115849 0.089999  0.090160
o0al | ] 0.6 0.195112 0.173773 0.134998 0.135240
-0 ‘ [ ‘ 0.8  0.260150 0.231697 0.179997  0.180320
08 06 04 02 0.0 1.0  0.325187 0.289621 0.224997  0.225400

3 HAM Solutions of the Time-Fractional

Fig. 1. The h-curves of 10th-order approximate solution Cahn-Allen Equation

obtained by the HAM We consider the fractional Cahn-Allen equation

DiU—Uy+u—u=0 (14)
Fig. 2 shows the numerical solutions wfx,t) at the _ o N
pointx = 0.5 for the time interval 6<t < 1 forh= —1,  With the initial condition

h= —0.75 andh = —0.4 obtained by the HAM foo =1 1
and analytical solutions. Between the times0 andt = 1, ux,0) = ——————>5—. (15)
it can be seen from Fig. 2 that the choicehot —0.4 is a 1+exp(—5X)

suitable value at = 0.5. _ To investigate the series solution of E@i) with the initial
_In Table 1, the results obtained by the HA_M for condition (L5), we choose the linear operator
various values ofa by the 10th-order approximate

solution ofu(x,t) for h = —0.4 have been presented. Zo(x.t;p)] =D [@(xt; p)],
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having the property
ZIc=0

wherec is constant. From Eq14), we can now describe a
nonlinear operator as

a . 2 .
= PRI SO 1 g(x,t; p)° — @(x L)

ox2

A o(x.t;p)]

OR2t2a tanh( ;%)
8(1+cosl‘(ﬁ))l'(1+2a)

(21)

o 3R
4(1+coshﬁ)jr(1+a)

o 3ht?
4(1+cost{ﬁ))r(l+a)

up(X,t) =

etc. Therefore, the series solutions expressed by HAM

As a result, we establish the zero-order deformationsan pe written in the form

equation as follows
(1-p)Z[p(xt;p) —Uo(x,t)] = ph.t [@(x,t; p)]. (16)
Clearly, by settingp = 0 andp = 1, we obtain
P(x1;0) = Up(X,t) = u(x,0), @(x,t; 1) = u(x.t)

respectively. Thus, as the embedding parameger
increases from 0 to 1, the solutioggx,t; p) vary from
the initial valueup(x,t) to the solutionu(x,t) . Expanding
@(x,t;p) in Taylor series with respect to the embedding
parametep, we obtain

[

Pt p) =uo(x,t) + 3 um(x.t)p™, an
m=1
where 1 a™p(x.t:p)
_ 1 9Mp(xt;p
Un(x,1) = — | (18)

If the auxiliary linear operator, the initial guess and the
auxiliary parameteh are properly chosen, then the above
series converges at= 1, and one has

UK = (X 1) + 3 Un(x1)
m=1

which should be one of the solutions of the initially given
nonlinear equation, as proved by Liao2, [ 5].
Differentiating Eq.L6) m times with respect to the
embedding parametep, we obtain the mth-order
deformation equation

2 [Um(Xt) = XmUm-1(X )] =R (Tm-1),  (19)
where
0% U, 02U, m-1/n
Ro(-2) = 2582 = 23—t 1+ (3 We0U 00 ) ()

The solution of thenth-order deformation Eq1) for
m> 1 leads to

Um(xat) = Xmumfl(xat) + IfT‘]’[a [Rm(ﬁm—l)] .

Using Eq.20) with the initial condition given by14),
we successively obtain

(20)

u(x,t) = Ug(X,t) +ur(X,t) +up(X,t) + us(x,t) +.... (22)

To demonstrate the efficiency of the method, we
compare the HAM solutions of time-fractional damped
burger equation by Eq.18) for a = 1 with exact
solutions [L9]

1
1+exp<—§(x+ 3—‘Zﬁt))

u(x,t) = (23)

In Fig.3, we demonstrate thb-curves ofu(0.5,1)
given by 5th-order HAM solution 22) for various o
parametres. It can be seen from the figure that the valid
range offh is approximately-1.0 <h < —0.3.

[ a=1 |
15} F

-~ a=0.7%

\k_/‘_\“% i

0.5

u(0.5,1)

0.0

I
-1.0 0.0

Fig. 3: The h-curves of 5th-order approximate solution
obtained by the HAM

Fig. 4 shows the numerical solutions afx,t) at
x = 0.5 for the time interval <t < 1 forh = -1.2,
h= —0.75 andh = —0.1 obtained by the HAM foo = 1
and analytical solutions. Between the timies- 0 and
t =1, it can be seen from Fig. 4 that the choice of

1 h= —0.75 is a suitable value at= 0.5.
Uo(X,t) = Lt exn 2y
+exp(—5) . Table 2 tabulates the results obtained by the HAM for
Up(x,t) = — 3nt various values ofr by 5th-order approximate solution of
’ 4(1+cosr(%))l'(1+ a) u(x,t) forh=—0.75.
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