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Department of Mathematics,İnönü University, Malatya, 44280, Turkey

Received: 26 Jan. 2013, Revised: 27 May. 2013, Accepted: 28 May. 2013
Published online: 1 Sep. 2013

Abstract: The aim of the present paper is to obtain the approximate analytical solutionsof time-fractional damped burger and Cahn-
Allen equations by means of the homotopy analysis method (HAM). In the HAM solution, there exists an auxiliary parameterh̄ which
provides a convenient way to adjust and check the convergence region of the solution series. In the model problems, an appropriate
choice of the auxiliary parameter has been examined for increasing values of time.
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1 Introduction

In recent years, it has been increasingly noticed that most
of the mathematical modelings of many physical
phenomena in diverse fields of physics and engineering
generally result in nonlinear ordinary or partial
differential equations. It is also found out that these kinds
of equations model natural phenomena better than those
involving only integer order equations. Thus, it has
become very important in applied mathematics to
investigate and construct exact and numerical solutions of
these equations. For example, the HAM which was first
proposed by Liao [1, 2] is one of the most powerful tool
to search the approximate solutions of nonlinear evolution
equations (NLEEs). Moreover, the HAM, unlike
perturbation techniques, fortunately is not limited to any
small physical parameters in the considered equation.
Thanks to this useful property, the HAM can tackle with
the foregoing restrictions and limitations of perturbation
techniques so that it provides us with a more robust tool
for analyzing strongly nonlinear problems [3]. This
method has been successfully applied for solving several
nonlinear problems arising in science and engineering by
many authors [1–16] and the references therein. In the
present paper, we will apply the HAM to the
time-fractional damped Burger and Cahn-Allen
equations.

In the literature, one can come across many definitions
of the terms fractional integration and differentiation, such
as Riemann-Liouville’s definition, Caputo’s definition and
generalized function approach. For instance, the Riemann-
Liouville integral operator [17] of orderα is defined by

Jα f (x) = 1
Γ (α)

x
∫

0
(x− t)α−1 f (t)dt (α > 0),

J0 f (x) = f (x)
(1)

and its fractional derivative of orderα (α ≥ 0) is normally
characterized by

Dα f (x) =
dn

dxn Jn−α f (x) (α > 0,n−1< α < n),

where n is an integer. The Riemann-Liouville integral
operator has had a great importance in the development of
the theory of fractional derivatives and integrals.
Nevertheless, it also has the same disadvantages for
fractional differantial equations with initial and boundary
conditions. Because of this fact, here we have adopted
Caputo’s definition[17], which is a modification of
Riemann-Liouville definition:

Dα f (x) = Jn−α Dn f (x) = 1
Γ (n−α)

x
∫

0
(x− t)n−α−1 f (n)(t)dt (α > 0)
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wheren is an integer. Caputo’s integral operator has the
following useful characteristic[17]:

Jα Dα f (x) = f (x)−
n−1

∑
k=0

f (k)(0+)
xk

k!
(n−1< α < n).

For the Caputo derivative, we have

Dα c = 0 (c is a constant),

Dα xβ =

{

0, β ≤ α −1,
Γ (β+1)

Γ (β−α+1)x
β−α , β > α −1.

(2)

In a similar way to integer-order differentiations, Caputo’s
fractional differentiation is also a linear operation

Dα(λ f (x)+µg(x)) = λDα f (x)+µDαg(x),

where λ and µ are constants. Moreover Caputo’s
fractional differentiation also satisfy the so-called
Leibnitz rule:

Dα(g(t) f (x)) =
∞

∑
k=0

(

α
k

)

g(k)(t)Dα−k f (x).

For n to be the smallest integer that exceedsα,
Caputo space-fractional derivative operator of order
α > 0 is described as

Dα
t (x, t) =

∂ α u(x,t)
∂ tα =

{

0, for n−1< α < n,
Γ (β+1)

Γ (β−α+1)x
β−α , for α = n ∈ N.

(3)
In the solution process of the present paper, the Caputo’s
definition of fractional differentiation is going to be used.

2 HAM Solutions of the Time-Fractional
Damped Burger Equation

We consider the time-fractional damped burger equation

Dα
t u+uux −uxx +λu = 0 (4)

with the initial condition

u(x,0) = λx. (5)

To investigate the series solution of Eq. (4) with the initial
condition (5), we select the linear operator

L [φ(x, t; p)] = Dα
t [φ(x, t; p)],

having the property

L [c] = 0

wherec is a constant. From Eq. (4), we can now describe
a nonlinear operator as follows

N [φ(x, t; p)] = ∂ α φ(x,t;p)
∂ tα +φ(x, t; p) ∂φ(x,t;p)

∂x − ∂ 2φ(x,t;p)
∂x2 +λφ(x, t; p)

Therefore, we construct the zero-order deformation
equation as

(1− p)L [φ(x, t; p)−u0(x, t)] = ph̄N [φ(x, t; p)] . (6)

Clearly, if we setp = 0 andp = 1, then we obtain

φ(x, t;0) = u0(x, t) = u(x,0),φ(x, t;1) = u(x, t)

respectively. Thus, as the embedding parameterp
increases from 0 to 1, the solutions alsoφ(x, t; p) vary
from the initial valueu0(x, t) to the solutionu(x, t) . If we
expand φ(x, t; p) in Taylor series with respect to the
embedding parameterp, we get

φ(x, t; p) = u0(x, t)+
∞

∑
m=1

um(x, t)pm
, (7)

where

um(x, t) =
1

m!
∂ mφ(x, t; p)

∂ pm

∣

∣

∣

∣

p=0
. (8)

If we choose the auxiliary linear operator, the initial
guess and the auxiliary parameterh̄ properly, then the
above series converges atp = 1, and one can easily have

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t)

which should be one of the solutions of the initially given
nonlinear equation, as proved by Liao [2, 5]. If we
differentiate Eq. (6) m times with respect to the
embedding parameterp, we can obtain themth-order
deformation equation

L [um(x, t)− χmum−1(x, t)] = h̄Rm (−→u m−1) , (9)

where

Rm (−→u m−1) =
∂ α um−1

∂ tα − ∂ 2um−1
∂x2 +λum−1+∑m−1

n=0 un(x, t)
∂um−1−n

∂x

The solution of themth-order deformation Eq. (9) for m ≥
1 leads to

um(x, t) = χmum−1(x, t)+ h̄Jα
t [Rm (−→u m−1)] . (10)

Using Eq.(10) together with the initial condition given
by (5), we successively obtain

u0(x, t) = λx

u1(x, t) =
2h̄λ 2tα x
Γ (1+α)

u2(x, t) =
2h̄λ 2tα x
Γ (1+α)

+
2h̄2λ 2tα x
Γ (1+α)

+
6h̄2λ 3t2α x
Γ (1+2α)

... (11)
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etc. As a result, the series solutions expressed by HAM can
be written in the following form

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ . . . . (12)

To demonstrate the efficiency of the present method, we
compare the HAM solutions of time-fractional damped
burger equation given by Eq. (4) for α = 1 with the exact
solutions [18]

u(x, t) =
λx

2exp(λ t)−1
. (13)

From now on, for all the computations the value ofλ will
be taken as 1. Remember that our HAM solution series
contains the auxiliary parameterh̄ which provides us with
a simple tool to adjust and check the convergence of the
solution series. To obtain an appropriate range forh̄, we
consider the so-called̄h-curve to select a suitable value of
h̄ which ensures the convergence of the solution series, as
pointed by Liao [2], by discovering the valid region of̄h
corresponding to the line segments nearly parallel to the
horizontal axis. In Fig.1, we demonstrate theh̄-curves of
u(0.5,1) given by 10th-order HAM solution (12)and for
various values ofα parametres. It can be seen from the
figure that the valid range of̄h is approximately−0.5 ≤
h̄ ≤−0.1.
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Fig. 1: The h̄-curves of 10th-order approximate solution
obtained by the HAM

Fig. 2 shows the numerical solutions ofu(x, t) at the
point x = 0.5 for the time interval 0≤ t ≤ 1 for h̄ = −1,
h̄ =−0.75 andh̄ =−0.4 obtained by the HAM forα = 1
and analytical solutions. Between the timest = 0 andt = 1,
it can be seen from Fig. 2 that the choice ofh̄ =−0.4 is a
suitable value atx = 0.5.

In Table 1, the results obtained by the HAM for
various values ofα by the 10th-order approximate
solution ofu(x, t) for h̄ =−0.4 have been presented.
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Fig. 2: A comparison of the results obtained by the
HAM for various values ofh̄ and α = 1 by 10th-order
approximate solution ofu(x, t) with the exact solutions at
x = 0.5

Table 1: The results obtained by the HAM for various
values ofα by 10th-order approximate solution ofu(x, t)
for h̄ =−0.4

t x
α = 0.5 α = 0.75 α = 1.0

Numerical Numerical Numerical Exact
0.25 0.2 0.099490 0.110974 0.127574 0.127547

0.4 0.198979 0.221948 0.255148 0.255094
0.6 0.298468 0.332922 0.382722 0.382641
0.8 0.397958 0.443896 0.510296 0.510188
1.0 0.497447 0.554870 0.637870 0.637734

0.50 0.2 0.083409 0.083660 0.086991 0.087053
0.4 0.166819 0.167320 0.173982 0.174107
0.6 0.250228 0.250979 0.260973 0.261160
0.8 0.333637 0.334639 0.347964 0.348213
1.0 0.417046 0.418299 0.434954 0.435267

0.75 0.2 0.074103 0.068179 0.061762 0.061843
0.4 0.148207 0.136358 0.123524 0.123686
0.6 0.222310 0.204537 0.185287 0.185529
0.8 0.296414 0.272716 0.247049 0.247372
1.0 0.370517 0.340895 0.308811 0.309215

1.00 0.2 0.065038 0.057924 0.044999 0.045078
0.4 0.130075 0.115849 0.089999 0.090160
0.6 0.195112 0.173773 0.134998 0.135240
0.8 0.260150 0.231697 0.179997 0.180320
1.0 0.325187 0.289621 0.224997 0.225400

3 HAM Solutions of the Time-Fractional
Cahn-Allen Equation

We consider the fractional Cahn-Allen equation

Dα
t u−uxx +u3−u = 0 (14)

with the initial condition

u(x,0) =
1

1+exp(−
√

2
2 x)

. (15)

To investigate the series solution of Eq. (14) with the initial
condition (15), we choose the linear operator

L [φ(x, t; p)] = Dα
t [φ(x, t; p)],
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having the property

L [c] = 0

wherec is constant. From Eq. (14), we can now describe a
nonlinear operator as

N [φ(x, t; p)] = ∂ α φ(x,t;p)
∂ tα − ∂ 2φ(x,t;p)

∂x2 +φ(x, t; p)3−φ(x, t; p)

As a result, we establish the zero-order deformation
equation as follows

(1− p)L [φ(x, t; p)−u0(x, t)] = ph̄N [φ(x, t; p)] . (16)

Clearly, by settingp = 0 andp = 1, we obtain

φ(x, t;0) = u0(x, t) = u(x,0),φ(x, t;1) = u(x, t)

respectively. Thus, as the embedding parameterp
increases from 0 to 1, the solutionsφ(x, t; p) vary from
the initial valueu0(x, t) to the solutionu(x, t) . Expanding
φ(x, t; p) in Taylor series with respect to the embedding
parameterp, we obtain

φ(x, t; p) = u0(x, t)+
∞

∑
m=1

um(x, t)pm
, (17)

where

um(x, t) =
1

m!
∂ mφ(x, t; p)

∂ pm

∣

∣

∣

∣

p=0
. (18)

If the auxiliary linear operator, the initial guess and the
auxiliary parameter̄h are properly chosen, then the above
series converges atp = 1, and one has

u(x, t) = u0(x, t)+
∞

∑
m=1

um(x, t)

which should be one of the solutions of the initially given
nonlinear equation, as proved by Liao [2, 5].
Differentiating Eq.(16) m times with respect to the
embedding parameterp, we obtain the mth-order
deformation equation

L [um(x, t)− χmum−1(x, t)] = h̄Rm (−→u m−1) , (19)

where

Rm (−→u m−1) =
∂ α um−1

∂ tα − ∂ 2um−1
∂x2 −um−1+

m−1
∑

n=0

(

n
∑

k=0
uk(x, t)un−k(x, t)

)

um−1−n(x, t).

The solution of themth-order deformation Eq. (19) for
m ≥ 1 leads to

um(x, t) = χmum−1(x, t)+ h̄Jα
t [Rm (−→u m−1)] . (20)

Using Eq.(20) with the initial condition given by (14),
we successively obtain

u0(x, t) =
1

1+exp(−
√

2
2 x)

u1(x, t) =−
3h̄tα

4(1+cosh( x√
2
))Γ (1+α)

u2(x, t) =− 3h̄tα

4(1+cosh( x√
2
))Γ (1+α) −

3h̄2tα

4(1+cosh( x√
2
))Γ (1+α) −

9h̄2t2α tanh( x
2
√

2
)

8(1+cosh( x√
2
))Γ (1+2α)

(21)
...

etc. Therefore, the series solutions expressed by HAM
can be written in the form

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ . . . . (22)

To demonstrate the efficiency of the method, we
compare the HAM solutions of time-fractional damped
burger equation by Eq. (14) for α = 1 with exact
solutions [19]

u(x, t) =
1

1+exp
(

−
√

2
2 (x+ 3

√
2

2 t)
) . (23)

In Fig.3, we demonstrate thēh-curves of u(0.5,1)
given by 5th-order HAM solution (22) for various α
parametres. It can be seen from the figure that the valid
range ofh̄ is approximately−1.0≤ h̄ ≤−0.3.
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Fig. 3: The h̄-curves of 5th-order approximate solution
obtained by the HAM

Fig. 4 shows the numerical solutions ofu(x, t) at
x = 0.5 for the time interval 0≤ t ≤ 1 for h̄ = −1.2,
h̄ =−0.75 andh̄ =−0.1 obtained by the HAM forα = 1
and analytical solutions. Between the timest = 0 and
t = 1, it can be seen from Fig. 4 that the choice of
h̄ =−0.75 is a suitable value atx = 0.5.

Table 2 tabulates the results obtained by the HAM for
various values ofα by 5th-order approximate solution of
u(x, t) for h̄ =−0.75.
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Fig. 4: The results obtained by the HAM for various̄h by
5th-order approximate solution ofu(x, t), in comparison
with the exact solutions atx = 0.5

Table 2: The results obtained by the HAM for variousα
by 5th-order approximate solution ofu(x, t) for h̄ =−0.75

t x
α = 0.5 α = 0.75 α = 1.0

Numerical Numerical Numerical Exact
0.25 0.2 0.720644 0.670868 0.626257 0.626311

0.4 0.746049 0.700739 0.658755 0.658776
0.6 0.770000 0.728997 0.689823 0.689817
0.8 0.792442 0.755527 0.719263 0.719238
1.0 0.813346 0.780257 0.746931 0.746892

0.50 0.2 0.773627 0.747948 0.710231 0.709183
0.4 0.794027 0.772052 0.738428 0.737467
0.6 0.813440 0.794543 0.764769 0.763915
0.8 0.831778 0.815424 0.789202 0.788463
1.0 0.848957 0.834708 .811714 0.811090

0.75 0.2 0.801911 0.799847 0.782775 0.780130
0.4 0.819719 0.818642 0.805400 0.803425
0.6 0.837095 0.836326 0.826175 0.824807
0.8 0.853776 0.852895 0.845168 0.844314
1.0 0.869519 0.868329 0.862458 0.862013

1.00 0.2 0.817043 0.831645 0.839665 0.837728
0.4 0.834311 0.846460 0.856228 0.856048
0.6 0.851631 0.861016 0.871456 0.872613
0.8 0.868449 0.875147 0.885455 0.887523
1.0 0.884298 0.888655 0.898291 0.900886

4 Conclusion

In this paper, approximate analytical solutions of
time-fractional damped burger and Cahn-Allen equations
have been obtained by a successful application of the
HAM. It has been also seen that the HAM solution of the
problem converges very rapidly to the exact one by
selecting an appropriate auxiliary parameterh̄. In
conclusion, this study shows that the HAM is a robust and
efficient technique in finding the approximate analytical
solutions of fractional damped burger equation and also
many other nonlinear evolution equations arising in
science and engineering. The authors are grateful to the
anonymous referees for their careful checking of the
details and for their helpful comments that contributed to
the improvement of this paper.
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