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Abstract. We study the field entropy squeezing as a measure of the entanglement in
a three-level system interacting with a cavity field. Numerical calculations under cur-
rent experimental conditions are performed and it is found that the initial state setting
and atom-field coupling present changes of the general features of the field entropy
squeezing dramatically.
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1 Introduction

Great progress has recently been made in quantum information theory [1]. Also, entropy
becomes a fundamental quantity to describe not only uncertainty or chaos of a system
but also information carried by the system [2]. Compared to the long history of the theo-
retical understanding of entropy and entanglement of atom-field systems extending over
many decades [3], intensive experimental investigations started only recently involving
different systems [4].

To identify the fundamentally inequivalent ways quantum systems can be entangled
is a major goal of quantum information theory [4]. It might be thought that there is
nothing new to be said about bipartite entanglement if the shared state is pure, but in a
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recent paper [5] it has been shown that exact coherence of the atom is in general never
regained for a two-level model with a general initial pure quantum state of the radiation
field. Also, it has been shown that the purification of the atomic state is actually inde-
pendent of the nature of the initial pure state of the radiation field. An analysis of both
analytical and numerical investigations of the process of atomic information entropy in
the three-level systems has been presented [6].

Our motivation is to discuss the entropy squeezing from another point of view by
considering the entropy squeezing for the field instead of the atom. Using an appropriate
representation, an explicit expression for entropy squeezing when the system starts from
a mixed state is derived. The physical situation which we shall refer to, belongs to the
experimental domains of cavity quantum electrodynamics.

2 The model and its solution

We start by devoting this section to a brief discussion on the 3-level atom [7, 8] being it
the model describing the interaction between a single multi-level atom and a quantized
cavity field. To set the stage, we first begin by describing the multilevel-atom model.
Therefore, the physical system on which we focus is an 3-level. The atom interacts with
a high Q-cavity which sustain a single cavity field with frequencies Ω. We denote by â
and â† the annihilation and creation operators for the field mode, and ωj is the frequency
associated with the level of the atom. Therefore in the rotating wave approximation we
can cast the Hamiltonian of the system in the form [8] (h̄=1)

Ĥ = Ĥ0+ Ĥ1, (1)

where the Hamiltonian for the interacting system Ĥ0 is given by

Ĥ0 =Ωâ† â+ ∑
i=1,2,3

ωi |i〉〈i|.

The interaction Hamiltonian between the atomic system and the cavity field is given by

Ĥ1 =
2

∑
j=1

λj(Ŝ1,j+1 â+h.c.).

The transition in the 3-level atom is characterized by the coupling λj. The operator Ŝii
describes the atomic population of level |i〉A with energy ωi,(i =1,2,3) and the operator
Ŝij = |i〉〈j|,(i 6= j) describes the transition from level |i〉A to level |j〉A.

We have applied the rotating wave approximation discarding the rapidly oscillating
terms and selecting the terms that oscillate with minimum frequency [9]. The resulting
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effective Hamiltonian may be written as

Ĥ0 =(ω1−∆) I+
2

∑
j=1

Ωj

(
â† â−Ŝj+1,j+1

)
,

Ĥ1 =∆Ŝ11+
2

∑
j=1

λj

(
Ŝ1,j+1 â+Ŝj+1,1 â†

)
. (2)

Here we assume that the detuning parameter ∆ is given by ∆ = ω1−ωj+1−Ω, j = 1,2. It
can be shown that Ĥ0 and Ĥ1 are constants of motion,

[Ĥ0,Ĥ1]= [Ĥ,Ĥ0]=0.

We assume that, before entering the cavity, the atom is prepared in a mixed state. Mixed
states arise when there is some ignorance with respect to the system, so that consideration
has to be given to the possibility that the system is in any one of several possible states,
Sii, each with some probability, γi, of being realized. To this end, the initial state of the
atom can be written in the following form

ρ=
(

γ1Ŝ11+γ2Ŝ22+γ3Ŝ33

)
∈SA, (3)

where γi≥0, and ∑3
i=1 γi =1. In terms of quantum information processes, an understand-

ing of mixed states is essential, as it is almost inevitable that the ideal pure states will
interact with the environment at some stage.

Also we suppose that the initial state of the field is given by

|v1〉=
∞

∑
n=0

bn|n〉∈SF, (4)

where bn = 〈v1|n〉, b2
n being the probability distribution of photon number for the initial

state. The continuous map E∗t describing the time evolution between the atom and the
field is defined by the unitary operator generated by Ĥ such that

E∗t : SA−→SA⊗ SF,
E∗t ρ= Ût (ρ⊗v)Û∗

t , (5)

Ût≡exp
(
− i

h̄

∫
Ĥ(t)dt

)
.

where v = |v1〉〈v1|. Bearing these facts in mind we find that the evolution operator Ût
takes the next from

Ût≡exp(−(ω1−∆)t)

[
2

∏
j=1

exp
(
−iΩN̂jt

)]
exp

(
−i

∫ t

0
Ĥ1dt

)
, (6)
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where N̂j= â† â−Sj+1,j+1. The first two factors in equation (6) produce phases that will not
affect the results that follow, while calculations of the third factor show that it takes the
following compact matrix form

exp
(−iĤ1t

)
=exp

(
− i

2
∆t

)[
Û0

−Û∗
1

Û1

Û2

]
, (7)

where Û0 is the single element matrix {Û11} which takes the following form

Û11 =cosµ̂nt− i∆
2

sinµ̂nt
µ̂n

. (8)

The matrix Û1 is the 1×2 row matrix {Û1k}, where

Û1k =−i
sinµ̂nt

µ̂n
λk âk, k=1,2 (9)

and Û∗
1 its Hermitian conjugate. Finally the matrix Û2 is the (2)×(2) square matrix {Ûij}

of which the elements can be written as

Ûij =δij exp
(
− i

2
∆t

)
−λi â†v−1

(
cosµ̂nt−exp

(
− i

2
∆t

)
+

i∆
2

sinµ̂nt
µ̂n

)
λj â, (10)

with i, j=1,2 and

µ̂n =

(
∆2

4
+

2

∑
i=1

λ2
i ââ†

) 1
2

, v−1 =
2

∑
i=1

λ2
i ââ†. (11)

Having obtained the explicit form of the unitary operator Ut, we are therefore able to
discuss the total correlations of the system.

3 Derivation of the field entropy squeezing

There has recently been interesting developments of the information entropies [11] and
particularly for the position and momentum for the single-slit and double-slit diffraction
experiments [12, 13]. It is well known that [14, 15] position and momentum components
along one direction are a pair of complementary observables, satisfying the commutation
rule [x,p]= ih̄. Considering various experiments to determine the position and momen-
tum of an electron, Heisenberg found that [x1,p1]= h̄, where x1 and p1 are the “impreci-
sions” with which the values of x and p are determined. Heisenberg estimated x1 and p1
by some plausible measure in each case separately, but did not gave an exact definition
for the “imprecisions” x1 and p1. The inequality ∆X∆Y > h̄

2 has been presented by [16],
where ∆A denotes the standard deviation of observable A.This equation was adopted
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by Heisenberg as the true mathematical expression of the uncertainty principle for the
position-momentum pair. An alternative mathematical formulation of the uncertainty
principle is provided by the inequality [17, 18],

δXδY>πeh̄,

where δA is defined as the exponential of the differential entropy corresponding to the
observable A.

Here, we apply the results obtained previously to derive the general form of the en-
tropy squeezing for a single 3-level atom interacting with a cavity field. With a certain
unitary operator, the final state after the interaction between the atom and the field is
given by

E∗t ρ=Ut (ρ⊗v)U∗
t . (12)

Taking the partial trace over the atomic system, we obtain

ρF
t = trAE∗t ρ. (13)

We define the position entropy and momentum entropy of the field as

Sx(t)=−
∫
〈x|ρF

t |x〉ln〈x|ρF
t |x〉dx,

Sp(t)=−
∫
〈p|ρF

t |p〉ln〈p|ρF
t |p〉dp.

The density matrix elements can be obtained using equations (13). The entropy uncer-
tainty relation of position and momentum is given by

exp[Sx(t)]exp
[
Sp(t)

]
=πe, (14)

where δx =exp[Sx(t)]−√πe, and δp =exp
[
Sp(t)

]−√πe. When δx,p <0, the position (mo-
mentum) of the field is squeezed.

Figures 1-3 depict the behavior of the entropy squeezing of the the position and mo-
mentum, δx and δp, as a function of the scaled time λt as it evolves under different
coupling parameters. It can be clearly seen that the comparison between δx and δp, as the
λt increases, the oscillation amplitude broadens thereby indicating increasing squeezing
with time development. The entropy squeezing of the the position increases further than
the entropy squeezing of momentum with increasing the scaled time (see Fig. 1), as is
evident from a comparison of the solid and the dotted curves. The entropy squeezing
factor δx exhibits larger squeezing properties than entropy squeezing factor δp.

Also by comparing Fig. 1 with Fig. 2 indicating that, in a strong coupling regime
the squeezing doesn’t occur for the momentum while small squeezing is observed for
the position component, it can be seen that an increase in the interaction time causes a
corresponding decrease in entropy squeezing of the position in this case (see Fig. 2). The
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Figure 1: The time evolution of the entropy squeezing factors for position δx(t), and momentum δp(t) (solid
and dashed curves), respectively. The parameters are γ1 =0.9, γ2 =0, λi =0.01λ. The detuning parameter is a
∆/λ=0.5 and the initial mean photon number of the coherent state is n̄=20.

Figure 2: The same as Fig. 1, but λi =0.1λ.

broadening of the curves in all cases takes place in such a fashion that the exchange of
the squeezing between position and momentum is preserved. One can see clearly from
Fig. 2 that there exists a situation at the first period of time where entropy squeezing of
the momentum occurs but very small and then the effect disappear. Furthermore, when
we consider the long-time evolution behaviors of the squeezing factor δx shown in Fig. 2,
one can see that the squeezing getting smaller and can not eventually approach a stable
value.
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Figure 3: The same as figure 1, but λi =λ and n̄=1.

As a comparison, in Fig. 3, the time evolution of the entropy squeezing factors are
plotted for the cases of strong coupling regime λ2/λ1 =1 and for small value of the mean
photon number n=1. One can see that the entropy squeezing of the position is oscillating
with time and has positive values only. However the entropy squeezing for the momen-
tum shows squeezing for a short period of time. This squeezing reappears again but its
amplitude is smaller than the first one and the squeezing disappears completely once
the time goes on further. What means that, in the weak coupling regime, both entropy
squeezing of the position and momentum occur. However, when the strong regime is
considered, we find that the momentum shows squeezing only and the entropy squeez-
ing has an apparently decay in the short time range and only occurs at the first period of
time.

4 Conclusion

In this paper we have analyzed the field entropy squeezing of physically interesting sys-
tems interacting with the cavity field. We have explicitly evaluated the entropy squeezing
factors and worked out the effects of different values of the coupling parameter on the
dynamics of the system starting with atomic mixed state and coherent state of the field.
It is shown that both position and momentum show entropy squeezing in the weak cou-
pling regime. However, in a strong coupling regime, we have considered two different
values of initial mean photon number of the the initial state of the system. The entropy
squeezing corresponding to the dynamics evolution in the second case is more tilted than
that in the first case, which is a signature of the squeezing inherent in the momentum. For
small values of the initial mean photon number the entropy squeezing occurs only for the
position component. In the strong coupling regimes a broadening of the entropy squeez-
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ing curve, indicating a decrease in squeezing, results with an increase in the interaction
time.
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