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Abstract: Power analysis attacks focus on recovering the secret key ofa cryptographic core from measurements of its consumed power
when the cryptographic core is in encryption or decryption process. This paper designs a complementary AES decryption algorithm
which is implemented in hardware as a complementary counterpart of AES decryption engine to resist power analysis attack. The
algorithm which is complementary to AES is denoted as CAES. CAES decryption engine can provide complementary power to AES
decryption engine by emulating the ideal of wave dynamic differential logic (WDDL), a power balanced hardware gate style. CAES
decryption algorithm is an algorithm level countermeasurewhich can be easily implemented by hardware description language. This
enables designers to design a security IC in a traditional design flow, while WDDL logic circuits employ a customer designflow.
This paper specifies the detailed description of the CAES decryption algorithm and its hardware implementation. Correspondingly, we
carried out power analysis attacks to AES decryption engines without CAES counterpart and with CAES counterpart. We usevery
accurate power traces through simulation and FPGA experiment to exhaustively examine our proposed countermeasure. The results
show that CAES counterpart can thwart power analysis attacks and it is a promising approach to implement resistant crypto core.
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1 Introduction

With the massive spreading out of inexpensive integrated
circuits which are able to store and process confidential
data, the phenomena that more and more research on
information security issues has been sprung up [1].
Side-channel attacks (SCA) exploit the leaked physical
information from chips to analyze the cryptographic
devices and recovery the secret key stored in
cryptographic devices [2]. Recently, SCA, especially
power analysis attacks, have been extensively shown to be
a major threat to the security of data that processed and
stored in cryptographic devices, such as smart card.
Simple power analysis (SPA), differential power analysis
(DPA) [2] and correlation power analysis (CPA) [3] are
three types of power analysis attacks. Correspondingly, a
lot of countermeasures have been proposed in the last few
years [4,5,6,7,8,9].

Masking is a very prevalent countermeasure, which
randomizes intermediate values that are processed by the
cryptographic device [10,11]. The goal of masking is to
make the power consumption of a cryptographic device
independent of the intermediate values of the

cryptographic algorithm. An advantage of this approach
is that it can be implemented at the algorithm level
without changing the traditional integrated circuit (IC)
design flow. Masking, as a countermeasure to power
analysis attack, has been extensively discussed in the
scientific community [9,12,13].

On the other hand, more generic countermeasures are
also under discussion. These countermeasures are all on
circuit level. We call them more generic in that they are
not constrained to a certain cryptographic algorithm.
Once a practical method is found, designers need not to
care about the security of implementations for a specific
algorithm. This makes possible the automatic design.
These countermeasures fall into two categories:
complementary circuits and gate level mask circuits.

Kris Tiri and Ingrid Verbauwhede [14] proposed a
complementary logic style called sense amplifier based
logic (SABL), in which dual-rail and pre-charge
technology are employed. Considering SABL requires a
new customer design cell library, simple dynamic
differential logic (SDDL) and its improvement wave
dynamic differential (WDDL) came into being afterward
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also under efforts of Kris Tiri [15]. Compared with
SABL, WDDL only makes use of common cells. The
complementary cell of WDDL is opposite to its original
cell. In contrast, Kazuyuki et al. proposed homogeneous
dual-rail logic (HDRL) in [16], which has the same
complementary cell as original cell.

Besides complementary circuits, masking on gate level
is analyzed in [17]. It is a masked and dual-rail pre-charge
logic style and can be implemented using common CMOS
standard cell libraries. The implementation of masked gate
circuits in logic level has been presented by Thomas Popp
and Stefan Mangard in [18].

Though the above methods, in both algorithm level
and circuit level, aim at preventing DPA completely, they
still leak side channel information. For masking methods,
outputs? transitions of logic gates are dependent on the
input signal when glitches exist [19]. What?s more, in
[20], Stefan Mangard et al. did a successful attack on
masked AES hardware implementations with glitches.
For complementary circuits, loading capacitance is hard
to control for deep submicron. process technologies
where the transistor sizes and wiring widths continuously
shrink [18].

Place and route of WDDL logic is different from
traditional IC design flow, and no EDA tool is suitable for
it. In this paper, we proposed a complementary AES
(CAES) decryption algorithm, as an opposite counterpart
of AES decryption algorithm to balance consumed power
in algorithm level. The concept of CAES is the same as
WDDL. WDDL aims to balance consumed power in gate
level, while our proposed CAES decryption algorithm is
to balance power in algorithm level. The functions of
CAES decryption algorithm are always opposite to the
function of AES decryption in algorithm, which leads to
the balanced consumed power.

For example, original logic operation of AES
decryption algorithm is bitwise AND, then
complementary logic operation of CAES decryption
algorithm is bitwise OR. That is the basic ideal which we
used to design CAES decryption algorithm.

The level of achieving resistance to DPA of CAES is
higher than WDDL logic, so our proposed
countermeasure can be easily implemented in hardware
description language (HDL). The traditional IC design
flow can be adopted in security circuit with the help of
our proposed countermeasure.

This paper serves for the purpose of summarizing all
the work on CAES decryption algorithm done by authors.
The structure is as follows. In Section 2, power analysis
attack and WDDL technology are introduced. In Section
3, we give the detail decryption algorithm of CAES, and
simulate power analysis attacks to transformations of
AES decryption engine without counterpart CAES and
with counterpart CAES. The effects of our proposed
countermeasure to power analysis attack are also shown
in this section. In Section 4, we use PFGA experiment to
validate our proposed countermeasure. And Section 5
concludes all of our work.

Fig. 1: The basic idea of power analysis attacks:to reveal secret
information from a cryptographic device.

2 Preliminaries

This section introduces some preliminary knowledge on
power analysis attacks and a typical hiding technique,
WDDL logic. The ideal of our proposed countermeasure
is just from the WDDL logic.

2.1 Power Analysis Attacks

Fig.1 shows the basic ideal of power analysis attacks. The
cryptographic device implements a cryptographic
algorithm, represented byf . Algorithm f takes the
plaintext (PT) and the key (K) as inputs, and generates
the encryption result called cipher text (CT)
(CT = f (PT,K)). The internal secret keyK is not directly
observable through the ports of the device. The objective
of power analysis attack is to reveal the value ofK.

Power analysis attacks recover the whole key part by
part in the following way. There are always intermediate
values that are only related to a small part ofK. Assume
that an intermediate data X depends on a single key byte
K[7 : 0] and the plaintextPT. Then, K[7 : 0] can be
discovered with only 28 guesses.

To check which guessed key is correct, ideal power
consumed is calculated according to intermediate value
X. The variable,X, is indirectly observed through its
power dissipation, which is a part of the power dissipated
by the entire device. Through proper correlation
techniques, the overall power dissipation from the device
can be used in place of the power dissipation from
intermediate dataX. Power dissipated by unrelated
components can be treated as noise. In such way, power
analysis attack successfully obtains the information of the
internal states and finally attacks the device.

The remainder of this part, we will give procedures of
power analysis attacks in Fig.1. In the first step, the
attacker chooses an intermediatem bit data X that is
physically generated within the cryptographic circuit
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under attack. In most attack scenarios, signalX depends
on both the inputPT and the secret keyK of the
cryptographic algorithm according to a well-defined
functiong in cryptographic algorithm

X = g(PT,K) (1)

whereg is set by the algorithm and, hence is known by the
adversary.

In the second step, the attacker inputsM different
input values pti (with i = 1,2...M) and measures the
corresponding powerpi of the cryptographic device while
it encrypts or decrypts different data blocks. We write
input known data values as vectorPT = (pt1, ..., ptM)T .
Measured powerpi hasT sample points, sopi is also a
vector denoted aspi = (pi,1, ..., pi,T). The attacker
measures a trace for each of input data, and hence, the
traces can be written as matrixP of sizeM x T.

In the third step, hypothetical intermediated data is
calculated according to equation (1). Since the generic
input pti is applied by the adversary, the only unknown
variable in equation(1) is the secret keyK. We write these
possible choices as vectorK = (k1, ...,kN), where N
denotes the total number of possible choices. This
calculation equation (2) results in a matrixX of sizeM x
N, which stands for intermediate value.

Xi, j = f (pti ,k j) i = 1, ...,M j = 1, ...,N (2)

In the fourth step, intermediate values are mapped to
power consumption values. In this step, attacker map the
hypothetical intermediate valuesX to a matrix H of
hypothetical power consumption values.H is a matrix
with size ofM x N.

In the fifth step, the measured powerP and the
estimated powerH are compared. Each columnhi of the
matrix H is compared with each columnp j of the matrix
P. This means that the attacker compares the hypothetical
power consumption values of each key hypothesis with
the recorded traces at every position. The result of this
comparison is a matrixR of size N x T, which each
elementr i, j contains the result of the comparison between
the columnsp j andhi. The comparison is done base on
correlation efficient calculated according to equation (3).

r i, j =
∑M

i=1(hd, j −hi).(pd, j − p j)
√

∑M
i=1(hd, j −hi)2

.(pd, j − p j)2
(3)

The highest correlation coefficient of the matrixR reveal
the positions at which the chosen intermediate data has
been processed and the key that is used by the device. In
equation (3) hi andp j is calculated as following equations
(4) and (5).

hi =
1

M−1

M

∑
i=1

hd,i (4)

p j =
1

M−1

M

∑
i=1

pd, j (5)

Fig. 2: CMOS standard NAND has data-dependent power
dissipation.

Fig. 3: WDDL NAND gate has data-independent power
dissipation.

2.2 The WDDL Technique

WDDL logic is a typical logic of differential and
pre-charge technique which is used for cryptographic
devices to make the power consumption of the logic cells
in the device constant in each clock cycle. It is an
effective countermeasure against SCA. Its basic idea is to
reduce the dependency of power consumption and
intermediate value. Hardware circuits implemented as
WDDL have a constant power dissipation and
electromagnetic emanation.

Fig. 2 illustrates the operations of a standard NAND
gate and WDDL NAND gate. This example approximates
static and dynamic power dissipation of a logic gate
through the hamming weight and hamming distance of its
output, respectively. In the case of a single NAND gate in
Fig. 2, the static and dynamic power dissipation depend
on the input values of the gate. For example, if the static
power is 0, both inputs must be 1. This side-channel
leakage is critical to SCA.

Fig. 3 shows the same test case on a WDDL NAND
gate. In this case, the circuit encodes each logic value
with a complementary pair. Furthermore, each pair is
pre-charged to (0,0) in each clock cycle before evaluation.
As a result, each clock cycle, every WDDL signal pair
shows exactly one transition from 0 to 1 and another one
from 1 to 0. The resulting static and dynamic power
dissipation are independent of the input values of the
WDDL gate.

So far, WDDL technique has been broadly used to
protect hardware circuits. But WDDL logic is
implemented in transistor level. No commercial EDA tool
is available for integrated circuit design. So we proposed
CAES decryption algorithm as a complementary
counterpart circuit to AES decryption circuit to resist
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Fig. 4: Architecture of the AES decryption engine.

Fig. 5: Our proposed countermeasure based on commentary
CAES decryption engine.

power analysis attack by emulating the ideal of WDDL.
CASE decryption engine always execute opposite
operations to AES decryption engine. This characteristic
can make power consumption constant in every clock
cycle.

3 Using CAES decryption algorithm to resist
power analysis attack

This section discusses the concept of our proposed
countermeasure CAES decryption algorithm, and then we
build a model to evaluate how resistant to power analysis
attack the hardware circuit is. And then, we give the detail
CAES decryption algorithm and analyze its resistance to
power analysis attack.

3.1 Concept

While CAES decryption engine protects AES decryption
engine, its ultimate objective is to reduce the side-channel
leakage originating from AES decryption engine.

The implementation of AES decryption engine in
hardware has different parts which are potential sources
of side-channel leakage. Fig.4 shows the architecture of
AES decryption engine implemented in hardware. There
are four transformations: InvSubBytes, InvShiftRows,
InvMixColumns and AddRoundKey. These

transformations lead to data-dependent power dissipation
which must be avoided. InvSubBytes transformation in
AES is most vulnerable to power analysis attack, because
power consumed by InvSubByes transformation attributes
to the most part of the whole power consumed by AES
decrypiton engine. So InvSubBytes is a main
transformation that should be carefully considered.

The concept of CAES is to protect all of these four
transformations with complementary transformation. Fig.
5 is our proposed countermeasure to power analysis
attack. CAES decryption engine, as a counterpart of AES
decryption engine, provides complementary power which
makes the whole power consumed by AES and CAES
constant at any time.

To implement the above concept, this work proposes
CAES decryption algorithm which has four
complementary transformations accordingly to AES
decryption algorithm transformations. For example, when
output of AES S-Box is 0x5a, the output of CAES S-box
must be 0xa5 at the same time. It promises the same
hamming weight at all the time. From Fig.4 and Fig.5,
initial data of CAES is bitwise complementary to the
initial data of AES. And even more, very intermediate
value of CAES is bitwise complementary to the
intermediate value of AES accordingly, because very
transformations of CAES is complementary to the AES.
This can guarantee the same hamming weight of all
intermediate value. This is the basic ideal of our proposed
countermeasure.

CAES decryption algorithm can guarantee that very
transformation of AES decryption algorithm has a
complementary transformation in CAES decryption
algorithm. Equation (6) to equation (9) can easily be get.

AESInvSubBytes(x) =CAESInvSubBytes(x) (6)

AESInvShi f tRows(x) =CAESInvShi f tRows(x) (7)

AESInvMixColumns(x) =CAESInvMixColumns(x)
(8)

AESAddRoundKey(x) =CAESAddRoundKey(x) (9)

Theorem 1.Let symbol∧ denote as bitwise exclusive OR,
and∼ ∧ as bitwise exclusive NOR. Symbol∧ and∼ ∧
are complementary logic operation. The complementary
operation is given by

a∧b= a∼ ∧b (10)

This can easily be proved. Left part of equation (10) can
be written

a∧b= (a&b)|(a&b) (11)

where symbol & is represented as bitwise AND, and
symbol | as bitwise OR. Right part of equation (10) can
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Fig. 6: Model to evaluate resistance to power analysis attack.

be rewritten in the following

a∼ ∧b= (a&b)|(a&b)

= a&b & a&b

= (a | b) & (a | b)

= (a & b) | (a & b)

(12)

From equation (11) and equation (12), we can easily
get that equation (10) is true. Then, bitwise XOR
operation and bitwise XNOR operation are
complementary logic operations.

Theorem 2. Bitwise AND operation and bitwise OR
operation are complementary logic operations. The
equation (13) is given

a & b= a | b (13)

Equation (13) is very easily to prove.

3.2 Model to Evaluate Resistance to Power
Analysis Attack

Fig. (6) shows a way to evaluate resistance to power
analysis attack.M bit input data, exclusive OR withm bit
secret key, are input to hardware module which is just
being evaluated. For the sake of illustration, we tie secret
key to 0x2b. Attacker applies all possible input data
patters to circuit in Fig. (6). If the attacker can recover the
secret key, we can assert that the hardware module in Fig.
(6) cannot thwart power analysis attack. And if the
attacker cannot retrieve the secret key, it is apparent that
the hardware module can resist power analysis attack. In
this work, we just used this model to evaluate the
resistance of our proposed countermeasure to power
analysis attack.

3.3 CAES Decryption Algorithm

3.3.1 InvSubBytes

AES InvSubBytes transformation is a non-linear byte
substitution that operates independently on each byte of

Fig. 7: Multiplicative inversion in GF ((24)2)

the input data using AES inverse S-Box. AES inverse
S-Box is constructed by composing two transformations:

1. Apply the following affine transformation which
is expressed in matrix form:
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(14)

wherebi is theith bit of the input byte,b‘
i is theith bit

of the output byte.

2. Take the multiplicative inverse in the finite field
GF (28), the element 00 is mapped to itself.

Calculating the multiplicative inverse of a byte in the
finite field GF (28) is much more difficult. Related work
in [21] provided an efficient approach which is used to
calculate the inverse of a byte in the finite field GF (28).
The approach in work [21] is shown In Fig.7, calculating
the multiplicative inverse in the finite field (28) is
converted to compute in a composite fields GF ((24)2).
There are three steps needed to calculate the
multiplicative inverse.

Step 2.1. Convert a data from the finite field GF (28)
to composite fields GF ((24)2).

To implement this, an isomorphism functionT is
needed. According to the work in [21], the isomorphism
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functionT is given in the following:

{ah,al} =























al0
al1
al2
al3
ah0
ah1
ah2
ah3























= TX =























1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1













































x0
x1
x2
x3
x4
x5
x6
x7























=























x0 ∧ x4 ∧ x5 ∧ x6
x1 ∧ x2
x1 ∧ x7
x2 ∧ x4
x4 ∧ x5 ∧ x6
x1 ∧ x4 ∧ x6 ∧ x7
x2 ∧ x3 ∧ x5 ∧ x7
x5 ∧ x7























(15)

whereahandal are four bit element in GF ((24)2), ahi
is the ith bit of ah,ali is ith bit of al; X is an element in
(28), xi is theith bit of X.

Step 2.2. Calculate in composite fields GF ((24)2). In
Fig. 7, computations are expressed in the following
equations.

ahxe= ah2•λ (16)

alxe= (ahΛ al)•al (17)

gama= ahxeΛ alxe (18)

theta= gama−1 (19)

aph= theta•ah (20)

apl = theta• (ahΛal) (21)

whereλ is a constant element in GF((24)2), the value ofλ
is 0xe. Symbol• denoted as multiplication in GF ((24)2).

From equation (16) to equation (21), it is clear that
there are four operations:x2 (squaring), ×λ
(multiplication by a constant),× (multiplication) andX−1

(multiplicative inverse) in GF (24). We denote two
polynomials,a(x) andb(x) in GF (24) as following.

a(x) = a3
3x3

3+a2
2x

2
2+a1x1+a0

b(x) = b3
3x3

3+b2
2x

2
2+b1x1+b0

(22)

The multiplication of two-term polynomials involves
multiplication of elements in GF (24) which requires an
irreducible polynomial of degree 4 which is given by

m(x) = x4+ x+1 (23)

Multiplication in GF (24) is given by

c(x) = a(x)×b(x)modm(x)

aA = a0∧a3,aB = a2∧a3,aC = a1∧a2

c0 = (a0 & b0)∧ (a3 & b1)∧ (a2 & b2)∧ (a1 & b3)

c1 = (a1 & b0)∧ (aA & b1)∧ (aB & b2)∧ (aC & b3)

c2 = (a2 & b0)∧ (a1 & b1)∧ (aA & b2)∧ (aB & b3)

c3 = (a3 & b0)∧ (a2 & b1)∧ (a1 & b2)∧ (aA & b3)

(24)

Squaring in GF (24) is a special case of multiplication and
is given by

c(x) = a(x)2modm(x)

c0 = a0∧a2

c1 = a2

c2 = a1∧a2

c3 = a3

(25)

The inverse of an elementa(x) in GF (24) is given by

c(x) = a(x)−1modm(x)

aA = a0∧a1,aB = a2∧a3

c0 = aA∧aB∧ (a0 & a2 & a3)∧a2 & (a0|a1)

c1 = (aA & a2)∧a3∧a1 & (a0|a3)

c2 = a0 & a1∧aB∧a0 & (a2|a3)

c3 = a1∧aB∧ (a0 & a3)∧a3 & (a1|a2)

(26)

Multiplication by∧ in GF (24) is given by

c(x) = λa(x)modm(x)

c0 = a1∧a2∧a3

c1 = a0∧a1

c2 = a0∧a1∧a2

c3 = a0∧a1∧a2∧a3

(27)

Step 2.3. Apply isomorphism functionT−1 to convert
an element from GF ((24)2) to GF (28).

To implement this, an isomorphism functionT−1

which is the inverse isomorphism functionT is given in
the following:
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

















(28)

The transformation of CAES InvSubBytes is
complementary to AES InvSubBytes absolutely. Input
and output of CAES inverse S-Box must be bitwise
complementary to AES inverse S-Box. To accomplish
this goal, every basic logic unit of CAES and AES must
be bitwise complementary to each other. CAES inverse
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S-Box is constructed by composing two transformations
in the following.

1. Apply CAES affine transformation which is
expressed in the following equation:

























b‘
0

b‘
1

b‘
2

b‘
3

b‘
4

b‘
5

b‘
6

b‘
7

























=























0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0













































b0
b1
b2
b3
b4
b5
b6
b7























+























1
0
1
0
0
0
0
0























=























b2 ∼ ∧b5 ∼ ∧b7 ∼ ∧1
b0 ∼ ∧b3 ∼ ∧b6 ∼ ∧0
b1 ∼ ∧b4 ∼ ∧b7 ∼ ∧1
b0 ∼ ∧b2 ∼ ∧b5 ∼ ∧0
b1 ∼ ∧b3 ∼ ∧b6 ∼ ∧0
b2 ∼ ∧b4 ∼ ∧b7 ∼ ∧0
b0 ∼ ∧b3 ∼ ∧b5 ∼ ∧0
b1 ∼ ∧b4 ∼ ∧b6 ∼ ∧0























(29)

wherebi is the ith bit of the input byte,b‘
i is the ith bit of

the output byte. Basic operation unit of affine
transformation of AES is bitwise XOR in equation (14).
According to Lemma 1, it is apparent that outputs of
equation (14) and equation 29) are bitwise
complementary to each other when inputs of them are
bitwise complementary to each other.

2. Take the multiplicative inverse in the finite field
GF (28), the element FF is mapped to itself.

Calculating multiplicative inverse of CAES also has
three steps which are complementary to multiplicative
inverse of AES.

Step 2.1.Convert a data from the finite field GF (28)
to composite fields GF ((24)2). The transformation is given
by:

{ah,al}=























al0
al1
al2
al3
ah0
ah1
ah2
ah3























= TX =























1 0 0 0 1 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0
0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1













































x0
x1
x2
x3
x4
x5
x6
x7























=























x0 ∼∧ x4 ∼ ∧ x5 ∼ ∧ x6
x1 ∼∧ x2
x1 ∼∧ x7
x2 ∼∧ x4
x4 ∼∧ x5 ∼ ∧ x6
x1 ∼∧ x4 ∼ ∧ x6 ∼ ∧ x7
x2 ∼∧ x3 ∼ ∧ x5 ∼ ∧ x7
x5 ∼∧ x7























(30)

According to Lemma 1, it is apparent that outputs of
equation (15) and equation (30) are bitwise

complementary to each other when inputs of them are
bitwise complementary to each other.

Step 2.2.Calculate in composite fields GF ((24)2).
Computations of CAES in GF ((24)2) have the same
structure as AES. Computations of CAES in GF ((24)2) is
also according to equation (16) to equation (20). But main
operation: squaring, multiplication by a constant,
multiplication and multiplicative inverse, are
complementary to AES.

Multiplication of CAES in GF (24) is given by

c(x) = a(x)×b(x)modm(x)

aA = a0 ∼ ∧a3,aB = a2 ∼ ∧a3,aC = a1 ∼ ∧a2

c0 = (a0|b0)∼ ∧(a3|b1)∼ ∧(a2|b2)∼ ∧(a1|b3)

c1 = (a1|b0)∼ ∧(aA|b1)∼ ∧(aB|b2)∼∧(aC|b3)

c2 = (a2|b0)∼ ∧(a1|b1)∼ ∧(aA|b2)∼ ∧(aB|b3)

c3 = (a3|b0)∼ ∧(a2|b1)∼ ∧(a1|b2)∼ ∧(aA|b3)

(31)

Equation (31) is modified from equation (24), we
modified XOR to XNOR, and AND to OR. According to
Lemma 1 and Lemma 2, it is apparent that outputs of
equation (24) and equation (31) are bitwise
complementary to each other when inputs of them are
bitwise complementary to each other.

Squaring of CAES in GF (24) is a special case of
multiplication and is given by

c(x) = a(x)2modm(x)

c0 = a0 ∼ ∧a2

c1 = a2

c2 = a1 ∼ ∧a2

c3 = a3

(32)

Equation (32) is modified from equation (25), we
modified XOR to XNOR. According to Lemma 1, it is
apparent that outputs of equation (25) and equation (32)
are bitwise complementary to each other when inputs of
them are bitwise complementary to each other.

The multiplicative inverse of CAES in GF (24) is given
by

c(x) = a(x)−1modm(x)

aA = a0 ∼∧a1,aB = a2 ∼ ∧a3

c0 = aA ∼ ∧aB ∼ ∧(a0|a2|a3)∼ ∧(a2|(a0&a1))

c1 = (aA|a2)∼ ∧a3 ∼ ∧(a1|(a0&a3))

c2 = (a0|a1)∼ ∧aB ∼ ∧(a0|(a2&a3))

c3 = a1 ∼∧aB ∼ ∧(a0|a3)∼ ∧(a3|(a1&a2))

(33)

Equation (33) is modified from equation (26), we modified
XOR to XNOR, and AND to OR. According to Lemma 1
and Lemma 2, it is apparent that outputs of equation (26)
and equation (33) are bitwise complementary to each other
when inputs of them are bitwise complementary to each
other.
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Multiplication by λ of CAES in GF (24) is given by

c(x) = λa(x)modm(x)

c0 = a1 ∼ ∧a2 ∼ ∧a3

c1 = a0 ∼ ∧a1

c2 = a0 ∼ ∧a1 ∼ ∧a2

c3 = a0 ∼ ∧a1 ∼ ∧a2 ∼ ∧a3

(34)

Equation (34) is modified from equation (27), we
modified XOR to XNOR. According to Lemma 1, it is
apparent that outputs of equation (27) and equation (34)
are bitwise complementary to each other when inputs of
them are bitwise complementary to each other.

Step 2.3. Apply isomorphism functionT−1 to convert
an element from GF ((24)2) to GF (28).The transformation
is expressed by

Y = T−1{aph,apl}=























1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
0 1 0 0 1 1 0 1
0 1 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 1 0 0
0 1 1 1 1 0 0 1
0 0 1 0 1 1 0 1













































apl0
apl1
apl2
apl3
aph0
aph1
aph2
aph3























=























apl0 ∼∧aph0
aph0 ∼ ∧aph1∼ ∧aph3
apl1 ∼∧aph0∼ ∧aph1 ∼∧aph3
apl1 ∼∧aph0∼ ∧aph1 ∼∧aph2
apl1 ∼∧aph0∼ ∧aph1 ∼∧aph3
apl2 ∼∧aph0∼ ∧aph1
apl1 ∼∧apl2∼ ∧apl3 ∼ ∧aph0 ∼ ∧aph3
apl2 ∼∧aph0∼ ∧aph1 ∼∧aph3























(35)

Equation (35) is modified from equation (28), we
modified XOR to XNOR. According to Lemma 1, it is
apparent that outputs of equation (28) and equation (35)
are bitwise complementary to each other when inputs of
them are bitwise complementary to each other.

Inverse S-Box of CAES is constructed in the same
way with Inverse S-Box of AES according the equations
above. Regarding every logic operation units are always
the complementary between CAES and AES, hamming
weight of every intermediate value are always in a
constant value.

3.3.2 InvShiftRows

Intermediate cipher result can be pictured as a rectangular
array of bytes having four rows and four columns called
state. In the AES InvShiftRows transformation, the bytes
in the last three rows of the state are cyclically shifted
over different number of bytes. The AES InvShiftRows
transformation is very simply hardwired as no logic
involved.

CAES InvShiftRows has the same transformation with
AES InvShiftRows. Inputs and outputs of CASE and AES

InvShiftRows are always complementary with each other
when inputs of them are bitwise complementary to each
other, because the transformation is just cyclically shifted.

3.3.3 InvMixColumns

AES InvMixColumns operates on the state column by
column, treating each column as a four-term polynomial.
The transformation can described in the matrix which is
given by









S‘
0,c

S‘
1,c

S‘
2,c

S‘
3,c









=







0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e













S0,c
S1,c
S2,c
S3,c






(36)

In order to simplify the calculation, equation (36) can
be rewritten as











S‘
0,c

S‘
1,c

S‘
2,c

S‘
3,c











=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









×









05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

















S0,c
S1,c
S2,c
S3,c









(37)

We denote
[

T0,c T1,c T2,c T3,c
]T as







T0,c
T1,c
T2,c
T3,c






=







05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05













S0,c
S1,c
S2,c
S3,c






(38)

Equation (37) can be rewritten in the following











S‘
0,c

S‘
1,c

S‘
2,c

S‘
3,c











=









({02} • (T0,c∧T1,c))∧ (T2,c∧T3,c)∧T0,c
({02} • (T1,c∧T2,c))∧ (T3,c∧T0,c)∧T2,c
({02} • (T2,c∧T3,c))∧ (T0,c∧T1,c)∧T3,c
({02} • (T3,c∧T1,c))∧ (T1,c∧T2,c)∧T0,c









(39)

Where 02•Ti,c is a multiplication
{

b‘
7b‘

6b‘
5b‘

4b‘
3b‘

2b‘
1b‘

0

}

=

02• {b7b6b5b4b3b2b1b0} in GF (28). This multiplication
which is denoted XTIME in GF (28), can be represent in
the following equation

























b‘
0

b‘
1

b‘
2

b‘
3

b‘
4

b‘
5

b‘
6

b‘
7

























=























b7
b7∧b0

b1
b7∧b2
b7∧b3

b4
b5
b6























(40)
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In order to get the result of equation (39), equation (38)
must be simplified in the following









T0,c
T1,c
T2,c
T3,c









=









04 00 04 00
00 04 00 04
04 00 04 00
00 04 00 04

















S0,c
S1,c
S2,c
S3,c









+









01 00 01 00
00 01 00 01
01 00 01 00
00 01 00 01

















S0,c
S1,c
S2,c
S3,c









=









({02}• ({02} • (S0,c∧S2,c)))∧S0,c
({02}• ({02} • (S1,c∧S3,c)))∧S1,c
({02}• ({02} • (S0,c∧S2,c)))∧S3,c
({02}• ({02} • (S1,c∧S3,c)))∧S0,c









(41)

Through the equation (39), equation (40) and equation
(41), we can easily get the result of equation (36) by the
way mentioned above.

The transformation of CAES InvMixColumns is
complementary to AES InvMixColumns absolutely. Input
and output of CAES InvMixColumns must be bitwise
complementary to AES InvMixColumns. To accomplish
this goal, every basic logic unit of CAES and AES must
be bitwise complementary to each other. CAES
InvMixColumns transformation is designed by modified
equation (39), equation (40) and equation (41).

CASE InvMixColumns can be described in the matrix
which is given by











S‘
0,c

S‘
1,c

S‘
2,c

S‘
3,c











=









({02}⊗ (T0,c ∼ ∧T1,c))∼ ∧(T2,c ∼ ∧T3,c)∼ ∧T0,c
({02}⊗ (T1,c ∼ ∧T2,c))∼ ∧(T3,c ∼ ∧T0,c)∼ ∧T2,c
({02}⊗ (T2,c ∼ ∧T3,c))∼ ∧(T0,c ∼ ∧T1,c)∼ ∧T3,c
({02}⊗ (T3,c ∼ ∧T1,c))∼ ∧(T1,c ∼ ∧T2,c)∼ ∧T0,c









(42)
Where ⊗ denotes a transformation which is

complementary to XTIME operation. This transformation
is defined by

























b‘
0

b‘
1

b‘
2

b‘
3

b‘
4

b‘
5

b‘
6

b‘
7

























=























b7
b7 ∼ ∧b0
b1
b7 ∼ ∧b2
b7 ∼ ∧b3
b4
b5
b6























(43)

From equation (40) and equation (43), outputs AES
XTIME and CAES XTIME are absolutely bitwise
complementary to each other when inputs of them are
bitwise complementary to each other. And in equation
(42) and equation (39), XOR and XNOR are
complementary logic operation according to lemma 2. If
Ti,c in equation (42) and Ti,c in equation (39) are
complementary to each other, outputs of equation (42)
and equation (39) are absolutely bitwise complementary
to each other.

To achieve this goal, we modified equation (41) in the
following way








T0,c
T1,c
T2,c
T3,c









=









({02}⊗ ({02}⊗ (S0,c ∼ ∧S2,c)))∼ ∧S0,c
({02}⊗ ({02}⊗ (S1,c ∼ ∧S3,c)))∼ ∧S1,c
({02}⊗ ({02}⊗ (S0,c ∼ ∧S2,c)))∼ ∧S3,c
({02}⊗ ({02}⊗ (S1,c ∼ ∧S3,c)))∼ ∧S0,c









(44)

It is apparent that outputs of equation (41) and
equation (44) are complementary to each other. So
outputs of equation (42) and equation (39) are
complementary to each other. That is to say, CAES
InvMixColumns and AES InvMixColumns are
complementary transformations.

3.3.4 AddRoundKey

In the AddRoundKey transformation of AES, a Round key
is added to the state by a simple bitwise XOR operation.
AES AddRounKey can be given by























c0
c1
c2
c3
c4
c5
c6
c7























=























b0∧k0
b1∧k1
b2∧k2
b3∧k3
b4∧k4
b5∧k5
b6∧k6
b7∧k7























(45)

whereci is theith bit of the output byte of AddRoundKey,
bi is the ith bit of the input byte,ki is the ith bit of the
round key byte. The only logic operation in AES
AddRoundKey is bitwise XOR, the complementary
operation to bitwise XOR is bitwise XNOR. So
AddRoundkey transformation of CAES is just simple
bitwise XNOR operation by a roudkey.

The transformation of CAES is as follows






















c0
c1
c2
c3
c4
c5
c6
c7























=























b0 ∼ ∧k0
b1 ∼ ∧k1
b2 ∼ ∧k2
b3 ∼ ∧k3
b4 ∼ ∧k4
b5 ∼ ∧k5
b6 ∼ ∧k6
b7 ∼ ∧k7























(46)

4 Experiment Results

To verify function of CAES decryption algorithm and its
resistance to power analysis attack, this section presents
the experiment results, including logic function
verification, simulation of power analysis attack and
real-world attack in FPGA.
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Fig. 8: Power analysis attack to AES InvSubBytes.

Fig. 9: Power analysis attack to AES InvSubBytes with CAES
InvSubBytes

4.1 Logic Function Verification

In this subpart, we verify the logic function of our
proposed CASE decryption algorithm. To verify whether
the outputs of very round of AES and CAES decryption
are absolutely bitwise complementary is called logic
function verification.

We implemented AES decryption engine and CAES
decryption engine in register transfer level (RTL)
respectively. The simulation results of two hardware
validate that outputs of two engines are always bitwise
complementary to each other, when the inputs of them are
bitwise complementary to each other.

4.2 Simulation Power Analysis Attack

We use the model in Fig. (6) to evaluate power leakage of
InvSubBytes transformation. In Fig. (8) and Fig. (8),
black line means correlation coefficient of correct key,
gray line means that of wrong keys. From Fig. (8), it is
apparent that power analysis attack can easily recover the

Fig. 10: Power analysis attack to AES decryption engine.

Fig. 11: Power analysis attack to AES decryption engine with
counterpart CAES

correct key when the power analysis attack applied to
AES InvSubBytes operation without any countermeasure.
While Fig. (9) illustrates that power analysis attack cannot
retrieve the correct key when InvSubBytes transformation
are implemented with our proposed CAES InvSubBytes.

4.3 Real-world Attack in FPGA

To verify our proposed countermeasure for power
analysis attack, this subpart presents the results of
real-word attacks in FPGA. We implemented the AES
decryption engine without counterpart CAES circuit and
AES decryption engine with our proposed CAES circuit
in FPGA. The power analysis attack attacks are carried
out in these two circuits to evaluate our scheme.

We choose inverse S-Box as the attacking target,
because attacker often chooses it as attacking target. We
applied all possible values of input data to inverse S-Box,
the power is recorded and analyzed. In Fig. (10) and Fig.
(11), black line represent correct 0x2b, gray lines
represents other possible keys. It is apparent that power
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analysis attack to FPGA with our countermeasure cannot
retrieve the correct key.

From the above analysis results, our proposed
countermeasure circuit can resist power analysis attacks
by emulating the ideal of WDDL. Thus, the correlation
between power traces and hamming weights can be
effectively broken to hide the correct key.

5 Conclusion

This paper proposes CAES decryption algorithm as a
solution to protect AES decryption engine from power
analysis with the ideal of WDDL technique. This concept
can be easily implemented by hardware description
language.

The analysis results of our proposed countermeasure
circuit showed that countermeasure using the CAES can
resist power analysis attack. Our proposed countermeasure
is a promising way to thwart power analysis attack.
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