
Appl. Math. Inf. Sci.9, No. 1, 377-385 (2015) 377

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090144

Nonlinear Lattice Solitons in Saturable Media
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Abstract: Using computational methods, the numerical existence and nonlinear stability of fundamental solitons in saturable media on
crystal and certain type of quasicrystal lattices are investigated. In a certain parameter regime of the lattice depth and the propagation
constant, the first nonlinear band-gap structures are obtained and the effect of the DC bias field (external electric field) and the lattice
depth to the gap width are analyzed.
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1 Introduction

In the last few years, optical solitons have become the
main area for studying solitons’ interactions and they are
responsible for most of the progress on soliton
phenomena because of the ease with which sophisticated
experiments can be conducted in a laboratory
environment that offers precise control over almost every
parameter. Furthermore, the ability to sample the waves
directly as they propagate and the availability of
numerous material systems that are fully characterized by
a set of simple equations result in a field in which theory
and experiments make rapid progress.

Recently, there has been considerable interest in
studying solitons in systems with periodic potentials or
lattices, in particular, those which can be generated in
nonlinear optical materials [1,2]. In periodic lattices,
solitons can typically form when their propagation
constants (or eigenvalues) are within a certain region, so
called gap; a concept that is borrowed from the
Floquet-Bloch theory for linear propagation. However,
the external potential of complex systems can be much
more general and physically richer than a periodic lattice.
For example, atomic crystals can have various
irregularities such as defects and edge dislocations or
quasicrystal structures which have long-range
orientational order but no translational symmetry [3,4]. In
general, when the lattice periodicity is slightly perturbed,
the band-gap structure and soliton properties also become
slightly perturbed and solitons are expected to exist in
much the same way as in the perfectly periodic case [5,6].

On one hand, little is known about the spectrum with
quasi-periodic potentials [7]. On the other hand, recently
in [8], Nonlinear Schrödinger (NLS) equation with
external potentials (lattices) possessing crystal and
quasicrystal structures are studied and the numerical
existence of fundamental solitons is shown. In the same
study, the first nonlinear band-gap structure of the
fundamental lattice solitons are computed and their
stability properties are investigated by numerical
methods. (1+1)D nonlinear Schrödinger equation with
saturable nonlinearity is studied both analytically and
numerically in the current literature [9]-[11].

In this paper, the numerical existence and nonlinear
stability of solitons in crystal and certain quasicrystal
potentials (lattices) are investigated. The model is
following saturable (2+1)D nonlinear Schrödinger
equation with an external potential

iuz(x,y,z)+∆u−
E0u(x,y,z)

1+V(x,y)+ |u(x,y,z)|2
= 0 (1)

In optics,u(x,y,z) corresponds to the complex-valued,
slowly varying amplitude of the electric field in the
xy-plane propagating in thez direction, ∆u = uxx + uyy
corresponds to diffraction,E0 is the applied DC bias field
which induces the saturable nonlinearity andV(x,y) is an
external optical potential that can be written as the
intensity of a sum ofN phase-modulated plane waves, i.e.
(see [12]),

VN(x,y) =
V0

N2
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The potentials forN = 2,3,4,6 yield periodic lattices
which correspond to standard 2D crystal structures
whereas N = 5,7 correspond to quasicrystals. In
particular, the quasicrystal withN = 5 is often called the
Penrose tiling.

Recently, Freedman et al. observed solitons in
Penrose and other quasicrystal lattices generated by the
optical induction method [15].

For the solution of this equation, a fixed-point spectral
computational method (spectral renormalization method
[8]) is employed which uses the ansatz
u(x,y,z) = f (x,y)e−iµz where f (x,y) is a real valued
function andµ is the propagation constant (eigenvalue)
and solves it iteratively in the Fourier space.

In this paper, the numerical existence of fundamental
solitons on the periodic and quasicrystal lattices is shown
and the band-gap structures are found for periodic and
Penrose type potentials. The effects of the potential depth
and applied bias field on the gap width are investigated.

Next, the nonlinear stability of the fundamental
solitons is investigated. For this reason, the change of the
soliton power with respect to the eigenvalue (soliton
powerP versusµ) is analyzed in order to predict collapse
according to the slope condition. The long time (distance)
behaviors of the fundamental solitons are also observed
by direct simulations of saturable NLS equation, i.e.
whether they conserve their shapes, locations and
maximum amplitudes or not. To study the nonlinear
stability, Eq. (1) is directly computed over a long distance
(Finite difference method is used on derivativesuxx and
uyy; fourth-order Runge-Kutta method is used to advance
in z.) for both periodic and Penrose type potentials. The
initial conditions were fundamental solitons with %1
random noise in the amplitude and phase.

2 Spectral Renormalization Method

Spectral renormalization method is essentially a Fourier
iteration method. The idea of this method was proposed
by Petviashvili in [26]. The idea behind the Petviashvili’s
method is to transform the underlying governing equation
to Fourier space and determine a convergence factor
based upon the degree (homogeneity) of a single
nonlinear term. This method has been extensively used to
find localized solutions in a wide range of nonlinear
systems. This method can be successfully applied to
nonlinear systems only if the degree of the nonlinearity is
fixed in the associated evolution equation. In fact, in
nonlinear optics, many equations involve nonlinearities
with different homogeneities, such as cubic-quintic, or
even lack of homogeneity, as in saturable nonlinearity.

Ablowitz and Musslimani [27] proposed a generalized
numerical scheme for computing solitons in nonlinear
waveguides called spectral renormalization. The essence
of the method is to transform the governing equation into
Fourier space and find a nonlinear nonlocal integral
equation coupled to an algebraic equation. The coupling

prevents the numerical scheme from diverging. The
optical mode is then obtained from an iteration scheme,
which converges rapidly. This method can efficiently be
applied to a large class of problems including higher
order nonlinear terms with different homogeneities.

In this section, we consider the saturable (2+1)D
nonlinear Schrödinger equation with a potential:

iuz(x,y,z)+∆u−
E0u(x,y,z)

1+V(x,y)+ |u(x,y,z)|2
= 0 (3)

Using the ansatzu(x,y,z) = f (x,y)e−iµz gives

µ f e−iµz+( fxx+ fyy)e
−iµz−

E0 f e−iµz

1+V+ | f |2
= 0 . (4)

Multiplying both sides of this equation byeiµz results
in

µ f + fxx+ fyy−
E0 f

1+V+ | f |2
= 0 . (5)

By applying Fourier transformation, one obtains

µ f̂ − (k2
x + k2

y) f̂ −F

(

E0 f
1+V+ | f |2

)

= 0 . (6)

To prevent singularities in the denominator in future
calculations, the termr f̂ is added to and subtracted from
(6):

(µ + r) f̂ − (k2
x +k2

y + r) f̂ −F

(

E0 f
1+V+ | f |2

)

= 0 . (7)

Solving for the f̂ in the second term above yields

f̂ =
(µ + r) f̂ −F

(

E0 f
1+V+| f |2

)

k2
x + k2

y + r
. (8)

In order to get a solution that its amplitude does not
grow nor tends to zero with each iteration we introduce a
new variablew(x,y) such thatf (x,y) = λw(x,y). Making
the substitutionf̂ (x,y) = λ ŵ(x,y) gives

ŵ=
(µ + r)ŵ−F

(

E0w
1+V+|λ |2|w|2

)

k2
x + k2

y + r
. (9)

whereλ is a non-zero constant to be determined. We use
the fixed point iteration method in order to findw. For this
purpose, ˆw can be calculated using the following iteration
scheme:

ŵn =
(µ + r)ŵn−1−F

(

E0wn−1
1+V+|λ |2|wn−1|2

)

k2
x + k2

y + r
, n∈ Z+

(10)
with the initial condition taken as a Gaussian

w0 = e−((x−x0)
2+(y−y0)

2) (11)

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 1, 377-385 (2015) /www.naturalspublishing.com/Journals.asp 379

Here, x0 and y0 define the location of the initial
condition. In order to center the initial condition on the
lattice maximum (the one that appears at the center of the
lattice), one should takex0 = y0 = 0.

The iteration continues until|ŵn− ŵn−1| < 10−12 and
that the obtained ˆw satisfies (9) with an absolute error less
than 10−6. Convergence is obtained quickly when the
mode is strongly localized in the band gap. This occurs
when the linearized spectrum is in the semi-infinite band
gap.

However,λ is unknown and hence must be calculated
for each iteration.

Multiplying (9) by k2
x + k2

y + r leads to

(k2
x + k2

y + r)ŵ= (µ + r)ŵ−F

(

E0w
1+V+ |λ |2|w|2

)

.

(12)
After moving all terms to the left side, one has

(k2
x + k2

y − µ)ŵ+F

(

E0w
1+V+ |λ |2|w|2

)

= 0 . (13)

Multiplying by the conjugate of ˆw, i.e. byŵ∗ results in

(k2
x+k2

y−µ)|ŵ|2+F

(

E0w
1+V+ |λ |2|w|2

)

ŵ∗ = 0 . (14)

Finally, by integrating this equation, one gets
∫∫ ∞

−∞
(k2

x + k2
y − µ)|ŵ|2dk+

∫∫ ∞

−∞
F

(

E0w
1+V+ |λ |2|w|2

)

ŵ∗dk= 0 .

(15)

The equation (15) can not be solved analytically forλ .
We need a numerical method such as the Newton-Raphson
method for finding roots of the equation (15). Employing
the Newton-Raphson Method to the equation (15) gives
following iteration scheme:

λn = λn−1−
F(λn−1)

F ′(λn−1)
, n∈ Z+ (16)

HereF(λ ) andF ′ = dF
dλ are given as follows:

F(λ ) =
∫∫ ∞

−∞
(k2

x + k2
y − µ)|ŵ|2dk+

∫∫ ∞

−∞
F

(

E0w
1+V+λ 2|w|2

)

ŵ∗dk ,
(17)

F ′(λ ) =
∫∫ ∞

−∞
(−2λ )F

(

E0w|w|2

(1+V+λ 2|w|2)2

)

ŵ∗dk .

(18)
When n = 1 an initial quess forλ0 is required. We

chose λ0 to be 1 and the stopping criterions are
|λn−λn−1| < 10−12 and that the obtainedλ satisfies (15)
with an absolute error less than 10−6.

Once ŵ is obtained from (10) by means of (16) to
calculate λ for each iteration, the desired soliton is
f (x,y) = λw(x,y) = λF−1(ŵ).

The first nonlinear gap is the edge of the parameter
regime of the potential depthV0 and eigenvalueµ for
which the numerical method converges to a localized
mode. For Kerr nonlinearity, one can observe that, in the
band region, beyond a certain threshold value of the
eigenvalue, the numerical method yields an extended state
which is called theBloch waveregion. This phenomenon
doesn’t occur for saturable nonlinearity. Presence of
saturation helps the modes to stay localized but the
convergence is not achieved beyond a threshold value of
µ .

3 Numerical Existence of Fundamental
Solitons

In this section, fundamental lattice solitons obtained by
means of the spectral renormalization method will be
demonstrated. A comparison of the amplitudes and the
profiles of the solitons obtained on each lattice maxima
and an observation of the effect of the increment of
potential depthV0 on the periodic lattice are also analyzed
in this section.

In Fig. 1, 3D view of the soliton obtained on the
lattice maximum with the parametersE0 = 8, potential
depthV0 = 1 and the eigenvalueµ = 4 is depicted. In the
same figure, contour plot of the soliton superimposed on
the initial condition and underlying periodic lattice
(N = 4) is shown. Fig.2 and Fig. 3 display the same
outcomes for Penrose-5 and Penrose-7 potentials
respectively. Note that for each case, the initial condition
is taken on the lattice maximum and after the iteration, a
localized mode is obtained at the same location.

Fig. 1: (Color online) (a) 3D view of the soliton on the periodic
lattice (N = 4) maximum withE0 = 8, V0 = 1 andµ = 4; and
(b) its contour plot (blue) superimposed on the initial condition
(green) and underlying lattice (red).

In order to compare the maximum amplitudes and the
profiles of the fundamental solitons obtained on the
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Fig. 2: (Color online) (a) 3D view of the soliton on the Penrose-5
lattice (N = 5) maximum withE0 = 8, V0 = 1 andµ = 4; and
(b) its contour plot (blue) superimposed on the initial condition
(green) and underlying lattice (red).

Fig. 3: (Color online) (a) 3D view of the soliton on the Penrose-7
lattice (N = 7) maximum withE0 = 8, V0 = 1 andµ = 4; and
(b) its contour plot (blue) superimposed on the initial condition
(green) and underlying lattice (red).

periodic, Penrose-5 and Penrose-7 lattices, on axis mode
profiles are depicted in Fig.4.

It can be observed from Fig.4 that the amplitudes of
the fundamental solitons slightly increase as the
numerical value ofN increases. On the other hand, the
shapes of the fundamental solitons do not exhibit any
difference as N increases despite the fact that the
fundamental lattice solitons in Kerr medium show
changes in shape. For example, Penrose-5 solitons are
shown to have dimples when their eigenvalues are close
to gap edge [8].

In order to investigate the effect of the potential depth
(V0) on the fundamental solitons, the periodic lattice case
is considered and it is shown that the amplitude of the
fundamental soliton located on the lattice maximum
decreases as the potential depth increases. An example for
this fact is illustrated in Fig.5 where N = 4 (periodic
lattice) andV0 is increased from 1 to 4. This also holds
true for Penrose-5 and Penrose-7 solitons.
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Fig. 4: (Color online) On axis profiles of the solitons obtained
with E0 = 8,V0 = 1 andµ = 4 at the maximum of the potentials:
(a)N = 4, (b)N= 5, (c)N= 7 along x-axis; (d)N= 4, (e)N = 5,
(f) N = 7 along y-axis.
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Fig. 5: (Color online) On axis profiles of the solitons at the
maximum of the periodic potential (N = 4) along x-axis obtained
with E0 = 8, µ = 2.2 and (a)V0 = 1; (b)V0 = 2; (c)V0 = 3; (d)
V0 = 4.

4 Band-gap Structures of Fundamental
Lattice Solitons

Band-gap structure is a linear concept that first appeared
in Floquet theory as well as condensed matter theory (i.e.
diffraction of X-rays through atomic crystals).
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In nonlinear optics, the propagation of the soliton on a
lattice depends on the depth of the lattice and the
propagation constant (or the eigenvalue). In the spectrum
of the propagation, there are strips (or regions), where a
localized structure is obtained (calledgaps) and strips
where the solution is not a localized structure but an
extended state (calledbands). The whole spectrum is
calledband-gap structureof the lattice or the potential.

The first nonlinear gap of a lattice is the region where
localized solutions (solitons) exist. In a certain parameter
regime of the potential depthV0 and the propagation
constantµ , spectral renormalization method converges to
a localized bound state, i.e. to the solution of (1) that is
bounded and decays to zero. By fixing the potential depth
and increasing the eigenvalue, both the convergence and
the localization of the solution are checked. In this way,
the first nonlinear gap edge of the lattices considered in
this work is obtained. In this case, although the mode
stays localized during the iteration (due to the saturation
term) but the convergence is not achieved beyond a
certain threshold value of the eigenvalueµ which is
considered as the gap edge.
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Fig. 6: (Color online) Band-gap structure of the solitons obtained
at the lattice maximum withE0 = 8 and the potentials: (a)N = 4;
(b) N = 5; (c) N = 7.

In Fig. 6, the band-gap structures are depicted for
periodic, Penrose-5 and Penrose-7 solitons in separate
graphs, located on the (absolute) lattice maxima for the
fixed value ofE0 = 8. For a more clear comparison of the
band-gap structures, those obtained band-gap structures
are depicted on top of each other in Fig.7.

It is observed, especially from the Fig.7, that
increasingN expands the gap region. This shows the fact
that the gap regions are wider for quasicrystal type
lattices than that of the periodic type lattice.

In order to observe the effect of the bias fieldE0 to the
band-gap structure, the potential depthV0 = 1 is fixed and
by the use of the SR method, the existence of fundamental
solitons for increasing values ofE0 for the periodic,
Penrose-5 and Penrose-7 lattices are investigated.

For smallE0 values, no soliton could be obtained. As
E0 gets greater, the number of eigenvalues for which a
soliton exists increases. In other words, the gap width
increases asE0 increases.

Above mentioned facts are demonstrated in Fig.8.
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Fig. 7: (Color online) Band-gap structure of the solitons obtained
with E0 = 8 and the potentialsN = 4, N = 5 andN = 7 at the
lattice maximum (superimposed)
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Fig. 8: (Color online) Gap width versusE0 graph of the solitons
obtained at the lattice maximum withV0 = 1 and the potentials:
(a) N = 4; (b) N = 5; (c) N = 7; (d) N = 4, N = 5, N = 7
(superimposed).

In order to explore the effect of the potential depth on
the gap width, the potential depthV0 versus gap width
graphs for the periodic potentialN = 4 is plotted. Those
graphs for fundamental solitons on lattice maximum are
shown in Fig. 9. It can be seen that the gap width
decreases asV0 increases. Same phenomenon occurs for
quasicrystals as well.

When Fig.6 and Fig.7 are considered, it is observed
that the Penrose-7 type potential brings out a bigger gap
region than the Penrose-5 type potential and the Penrose-5
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Fig. 9: (Color online) Gap width versusV0 graph of the solitons
obtained at the lattice maximum withE0 = 8 and the potentials:
(a) N = 4; (b) N = 5; (c) N = 7; (d) N = 4, N = 5, N = 7
(superimposed).

type potential brings out a bigger gap region than periodic
N = 4 type potential. This holds also true for other cases,
i.e. for differentE0 values. So, one can claim that the gap
widths increase asN increases.

5 Nonlinear Stability Analysis of
Fundamental Solitons

In this section, the nonlinear stability properties of the
fundamental lattice solitons are explored. One way to do
this is the power analysis. Thepoweris defined as

P=

∫∫ ∞

−∞
| f (x,y)|2dxdy (19)

and plays an important role in determining the stability of
the soliton f (x,y). In [28], Vakhitov and Kolokolov
proved that a necessary condition for the linear stability
of the solitonf (x;µ) is

dP
dµ

< 0 . (20)

In other words, the soliton is stable only if its power
decreases with increasing propagation constantµ . This
condition is called theslope condition.

Key analytic results on nonlinear stability were
obtained in [29,?]. They proved that the necessary
conditions for nonlinear stability are the slope condition
(20) and the spectral condition. Furthermore, it is well
known that a necessary condition for collapse in the 2D

cubic NLS equation is that the power of the beam exceeds
the critical powerPc ≈ 11.7 [31].

The fundamental solitons of the NLS equation can
become unstable in two ways:

1.Is the slope condition not satisfied, this leads to a
focusing instability.

2.Is the spectral condition associated with the eigenvalue
problem (see [32]) not satisfied, this leads to adrift
instability.

In order to investigate the nonlinear stability, first
approach is trying to predict collapse by using the VK
criterion by plotting the soliton powerP versus the
propagation constantµ graph.

2 3 4 5
0

20

40

60

µ

P 

(a)

2 3 4 5
0

20

40

60

µ

P 

(b)

2 4 6
0

20

40

60

µ

P 

(c)

Fig. 10: (Color online) Power versusµ graph of the solitons
obtained at the lattice maximum withE0 = 8, V0 = 1 and the
potentials: (a)N = 4; (b) N = 5; (c) N = 7.

As it can be seen from Fig.10, the power decreases as
µ increases for all three different potentials.
Consequently, all the solitons obtained from the
numerical solution of the Eq. (1) by the spectral
renormalization method explained in the previous section
are expected to be stable as they all satisfy the
Vakhitov-Kolokolov stability criterion. However, the
VK-condition is not sufficient. The soliton may undergo a
drift instability, that is, the soliton might move from the
lattice maximum towards a nearby lattice minimum
during the direct simulation. One way to check this is to
let the soliton move along thez-axis and see whether it
conserves its maximum amplitude and its location.

In this context,the center of mass is monitored as

(< x>,< y>) =
1
P

∫∫ ∞

−∞
(x,y)|u|2dxdy. (21)

Here,P≡ P[u] :=
∫∫ ∞

−∞ |u|2dxdyis the soliton power.
To study whether there exists a drift instability or not,

Eq. (1) is computed over a long distance. For this
purpose, a random noise of 1% is added to the soliton;
finite difference method is used on derivativesuxx anduyy,
and fourth order Runge-Kutta method is employed to
advance inz.

A fundamental soliton is considered nonlinearly stable
if it conserves its location and maximum amplitude during
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the direct simulation. Therefore, the maximum amplitude
and centers of mass versus the propagation distance graphs
are plotted for the fundamental solitons.

6 Stability Analysis of Solitons on Lattice
Maximum

Following are sample outcomes of the nonlinear stability
test for some parameters and different potentials. More
precisely, Fig.11 depicts the evolution of the soliton
obtained on the lattice maximum of the periodic potential
(N = 4) with E0 = 8, V0 = 1 andµ = 4, the change ofx
and y coordinates of the center of mass overz, cross
section along the diagonal axis of the soliton
superimposed on the potential atz= 10 and contour plot
of the soliton superimposed on the potential after the
propagation; Fig.12 and Fig.13 depict the same but for
the Penrose-5 and Penrose-7 potentials respectively. Note
that for each case, the initial condition is taken on the
lattice maximum, so are the obtained solitons.
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Fig. 11: (Color online) Evolution of the soliton obtained with
E0 = 8,V0 = 1, µ = 4 and the potentialN= 4. (a) Peak amplitude
maxx,y|u(x,y,z)| as a function of the propagation distancez; (b)
Change ofx and y coordinates of the center of mass overz;
(c) Cross section along the diagonal axis of the soliton at the
maximum superimposed on the potentialN = 4 at z= 10; (d)
Contour plot of the soliton at the maximum superimposed on the
potentialN = 4 atz= 10.

As it can be seen from Fig.11, Fig. 12 and Fig.13,
peak amplitudes of the fundamental solitons slightly
oscillate with the propagation distancez and the centers
of mass almost stay at the same place. This suggests that
the fundamental solitons for all three lattices are
nonlinearly stable.

In contrary, the existence of nonlinearly unstable
solitons of the NLS equation with Kerr nonlinearity for
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Fig. 12: (Color online) Evolution of the soliton obtained with
E0 = 8,V0 = 1, µ = 4 and the potentialN= 5. (a) Peak amplitude
maxx,y|u(x,y,z)| as a function of the propagation distancez; (b)
Change ofx and y coordinates of the center of mass overz;
(c) Cross section along the diagonal axis of the soliton at the
maximum superimposed on the potentialN = 5 at z= 10; (d)
Contour plot of the soliton at the maximum superimposed on the
potentialN = 5 atz= 10.

0 5 10
1.92

1.922

1.924

1.926

1.928

1.93

z

max(|u|)           

(a)

0 2 4 6 8 10
−1

−0.5

0

0.5

1
x 10

−4

z

centers           
of mass          

(b)

 

 

<x>
<y>

−10 10
0

0.9985

x=y

z

(c)

x

y

(d)

−10 10
−10

10

Fig. 13: (Color online) Evolution of the soliton obtained with
E0 = 8,V0 = 1, µ = 4 and the potentialN= 7. (a) Peak amplitude
maxx,y|u(x,y,z)| as a function of the propagation distancez; (b)
Change ofx and y coordinates of the center of mass overz;
(c) Cross section along the diagonal axis of the soliton at the
maximum superimposed on the potentialN = 7 at z= 10; (d)
Contour plot of the soliton at the maximum superimposed on the
potentialN = 7 atz= 10.

the periodic potentialN = 4 and Penrose-5 potential were
shown in [8].
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7 Conclusion

The purpose of this study was to investigate the existence
and stability properties of solitons in periodic (N = 4) and
certain quasicrystal (N = 5 andN = 7) lattices.

Firstly, the solutions of saturable NLS equation with
an external potential are obtained by means of the spectral
renormalization method. The band-gap structure of the
lattice solitons are obtained for periodic and Penrose type
potentials. The effects of the bias fieldE0 and the
potential depthV0 on the gap width are investigated and
depicted in some figures and it is shown that on one hand,
increasing the bias fieldE0 expands the gap width, on the
other hand, increasing the potential depthV0 decreases the
gap width. Another result is that increasingN expands the
gap width.

After obtaining fundamental solitons, their nonlinear
stability properties are investigated according to Vakhitov-
Kolokolov stability criterion and by direct simulations. It
is observed that direct simulations are in good agreement
with Vakhitov-Kolokolov stability criterion.
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