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Abstract: Using computational methods, the numerical existence antingear stability of fundamental solitons in saturablediaeon
crystal and certain type of quasicrystal lattices are itigated. In a certain parameter regime of the lattice depththe propagation
constant, the first nonlinear band-gap structures arersataand the effect of the DC bias field (external electric fialtd the lattice
depth to the gap width are analyzed.
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1 Introduction On one hand, little is known about the spectrum with
quasi-periodic potentials/]. On the other hand, recently
é'n [8], Nonlinear Schrodinger (NLS) equation with

In the last few years, optical solitons have become th ‘ | tentials  (latti . tal d
main area for studying solitons’ interactions and they areSX‘€fnal potentiais (lattices) possessing crystal an
responsible for most of the progress on soliton quasicrystal structures are studied and the numerical

phenomena because of the ease with which sophisticate%?('Stence of fundameptal solitons is shown. In the same
experiments can be conducted in a Iaboratorystudy, the first nonlinear band-gap structure of the

environment that offers precise control over almost everyfindamental lattice solitons are computed and their

arameter. Furthermore, the ability to sample the W<';lves°‘tability properties are investi_gaf[ed by nqmeriqal
girectly as they propagate ang the a\?ailability of methods. (1+1)D nonlinear Schrodinger equation with

numerous material systems that are fully characterized byaturable nonlinearity is studied both analytically and

a set of simple equations result in a field in which theory umencglly in the current Ilteraturé]f[ll]. .
and experiments make rapid progress. In this paper, the numerical existence and nonlinear

Recently, there has been considerable interest instablllty of solitons in crystal and certain quasicrystal

studying solitons in systems with periodic potentials or][caoo”tgvr:/?lnals s(gtjlr(;?)slé a(r2e+l|)n|5/es;t1|gﬁ;[ier:]oé.arThSCthodoilﬁl elrs
lattices, in particular, those which can be generated in 9 9

nonlinear optical materials1[2]. In periodic lattices, equation with an external potential

solitons can typically form when their propagation ) Eou(x,y,2)

constants (or eigenvalues) are within a certain region, so  1Uz(x¥,2) +4u— TTVXY) 1 Uy, 2 @
called gap; a concept that is borrowed from the ’ 7

Floquet-Bloch theory for linear propagation. However,  Inoptics,u(x,y,z) corresponds to the complex-valued,

the external potential of complex systems can be muctslowly varying amplitude of the electric field in the
more general and physically richer than a periodic lattice Xy-plane propagating in the direction, Au = uxx + Uyy
For example, atomic crystals can have variouscorresponds to diffractioriy is the applied DC bias field
irregularities such as defects and edge dislocations owhich induces the saturable nonlinearity ang,y) is an
quasicrystal  structures which have long-rangeéxternal optical potential that can be written as the
orientational order but no translational symme8y4]. In  intensity of a sum oN phase-modulated plane waves, i.e.
general, when the lattice periodicity is slightly pertwbe (see L2)),
the band-gap structure and soliton properties also become

: . S . 2
slightly perturbed and solitons are expected to exist in Vu(xy) = Vo N lei(xcosgN"DercosgN@) @
much the same way as in the perfectly periodic cas@] [ ’ N2 nZO
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The potentials folN = 2,3,4,6 yield periodic lattices prevents the numerical scheme from diverging. The
which correspond to standard 2D crystal structuresoptical mode is then obtained from an iteration scheme,
whereas N = 5,7 correspond to quasicrystals. In which converges rapidly. This method can efficiently be
particular, the quasicrystal witN = 5 is often called the applied to a large class of problems including higher
Penrose tiling. order nonlinear terms with different homogeneities.

Recently, Freedman et al. observed solitons in In this section, we consider the saturable (2+1)D
Penrose and other quasicrystal lattices generated by theonlinear Schrodinger equation with a potential:
optical induction methodl[].

For the solution of this equation, a fixed-point spectral
computational method (spectral renormalization method
[8) is employed which uses the ansatz _
u(x,y,z) = f(x,y)e '"# where f(x,y) is a real valued Using the ansata(x,y,z) = f(x,y)e 'H* gives
function andyu is the propagation constant (eigenvalue)
and solves it iteratively in the Fourier space.

In this paper, the numerical existence of fundamental
solitons on the periodic and quasicrystal lattices is shown
and the band-gap structures are found for periodic and  Multiplying both sides of this equation b:y?uz results
Penrose type potentials. The effects of the potential depthn
and applied bias field on the gap width are investigated. L E 4 ft fyy— Eof _ (5)

Next, the nonlinear stability of the fundamental HEW 1LV 42
solitons is investigated. For this reason, the change qf the By applying Fourier transformation, one obtains
soliton power with respect to the eigenvalue (soliton

. EOU(Xaya Z) _
%2+ 80— T n oy 0 @

Eofeiiuz

f —iuz f f —iuz _
i (foct fyy)e 1+V +|f2

(4)

powerP versusy) is analyzed in order to predict collapse R R Eof
according to the slope condition. The long time (distance) uf— (K + kﬁ)f — (W) =0 (6)
behaviors of the fundamental solitons are also observed +V AT

by direct simulations of saturable NLS equation, i.e. 14 jreyent singularities in the denominator in future

whether they conserve their shapes, locations and e ations, the termf is added to and subtracted from
maximum amplitudes or not. To study the nonhnear()

stability, Eq. @) is directly computed over a long distance
(Finite difference method is used on derivativggs and 5 5 . Eof
Uyy; fourth-order Runge-Kutta method is used to advance (H +0f - (K +Ig+n)f -7 <m> =0. (7
in z) for both periodic and Penrose type potentials. The

initial conditions were fundamental solitons with %1

random noise in the amplitude and phase. Solving for thef in the second term above yields

(B
2 Spectral Renormalization Method B K2+ K+ ' ®

Spectral renormalization method is essentially a Fourier  |n order to get a solution that its amplitude does not
iteration method. The idea of this method was proposedyrow nor tends to zero with each iteration we introduce a
by Petviashvili in 6. The idea behind the Petviashvili's new variablew(x,y) such thatf (x,y) = Aw(x,y). Making
method is to transform the underlying governing equationthe substitutiorf. (X,y) = AW(x,y) gives

to Fourier space and determine a convergence factor

based upon the degree (homogeneity) of a single (“Jrr)w_f]( Eqw )
nonlinear term. This method has been extensively used to W= LVHARWE) )
find localized solutions in a wide range of nonlinear ke + ke +r

systems. This method can be successfully applied to
nonlinear systems only if the degree of the nonlinearity is
fixed in the associated evolution equation. In fact, in
nonlinear optics, many equations involve nonlinearities
with different homogeneities, such as cubic-quintic, or

whereA is a non-zero constant to be determined. We use
the fixed point iteration method in order to fimd For this
purposew’can be calculated using the following iteration
scheme:

even lack of homogeneity, as in saturable nonlinearity. N EqWn_
, Y & : (U+T)W_g—F (7”1)
Ablowitz and Musslimani27] proposed a generalized o _ n- L+V+[A P jwn_g [2 he z+
numerical scheme for computing solitons in nonlinear k2 -+ k3 +r ’
waveguides called spectral renormalization. The essence (10)

of the method is to transform the governing equation intowith the initial condition taken as a Gaussian
Fourier space and find a nonlinear nonlocal integral ) )
equation coupled to an algebraic equation. The coupling wo = e (0% +(y=y0)%) (11)
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Here, xg and yp define the location of the initial Oncew is obtained from 10) by means of 16) to
condition. In order to center the initial condition on the calculate A for each iteration, the desired soliton is
lattice maximum (the one that appears at the center of the (x,y) = Aw(x,y) = A.Z 1(W).
lattice), one should take, = yo = 0. The first nonlinear gap is the edge of the parameter

The iteration continues untif, —W,_1| < 10'2and  regime of the potential deptky and eigenvalug: for
that the obtainedv Satisfies 9) with an absolute error less which the numerical method converges to a localized
than 10°. Convergence is obtained quickly when the mode. For Kerr nonlinearity, one can observe that, in the
mode is strongly localized in the band gap. This occursband region, beyond a certain threshold value of the
when the linearized spectrum is in the semi-infinite bandeigenvalue the numerical method yields an extended state

gap.

which is called theBloch waveregion. This phenomenon

However,A is unknown and hence must be calculateddoesn’t occur for saturable nonlinearity. Presence of

for each iteration.
Multiplying (9) by kf + k7 + r leads to

Eow
ar - -
7 <1+V+|A|2|w|2) '
(12)

(K2 + K2+ )W = (p+1)W—

After moving all terms to the left side, one has
o ( Eow

2 12 W _
(ke + K — )W+ .7 1+V+|/\|2|w|2> 0. (13)

Multiplying by the conjugate o#v,"i.e. byw* results in

Eow
2 2 ~12 o 0 p
(K +ky — W) |W|* + .7 (—1+V+|/\|2|w|2>wk 0. (14)

Finally, by integrating this equation, one gets

|+~
// (1+V+O|VX|2|w|2)de:0'

The equation15) can not be solved analytically far.

W)Wk
(15)

We need a numerical method such as the Newton-Raphs A

method for finding roots of the equatioh). Employing
the Newton-Raphson Method to the equatids)(gives
following iteration scheme:

F (/\n—l)

)\nz)\n—l_m )

nezt (16)

HereF(A) andF’' = d)\ are given as follows:

- [ +é-whwpdks

W (17)
// <1+V+)\2|W|2>de’
Eow|w|? R
// < 1+V+A2jw|2)2 )Wkdk'
(18)

Whenn = 1 an initial quess fordg is required. We
chose A\g to be 1 and the stopping criterions are

|An — An_1] < 1012 and that the obtainedl satisfies 15)
with an absolute error less than %0

saturation helps the modes to stay localized but the
convergence is not achieved beyond a threshold value of

.

3 Numerical Existence of Fundamental
Solitons

In this section, fundamental lattice solitons obtained by
means of the spectral renormalization method will be
demonstrated. A comparison of the amplitudes and the
profiles of the solitons obtained on each lattice maxima
and an observation of the effect of the increment of
potential depth/y on the periodic lattice are also analyzed
in this section.

In Fig. 1, 3D view of the soliton obtained on the
lattice maximum with the parameteEy = 8, potential
depthVp = 1 and the eigenvalug = 4 is depicted. In the
same figure, contour plot of the soliton superimposed on
the initial condition and underlying periodic lattice
(N = 4) is shown. Fig.2 and Fig.3 display the same
outcomes for Penrose-5 and Penrose-7 potentials
respectively. Note that for each case, the initial conditio

(1' taken on the lattice maximum and after the iteration, a
0

calized mode is obtained at the same location.

y -10 -10

Fig. 1: (Color online) (a) 3D view of the soliton on the periodic
lattice N = 4) maximum withEg = 8, Vo = 1 andu = 4; and
(b) its contour plot (blue) superimposed on the initial dtiod
(green) and underlying lattice (red).

In order to compare the maximum amplitudes and the
profiles of the fundamental solitons obtained on the
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(b)
15 15
u(x,0), u(x,0),
05 i “‘ 05
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-10 -10
Fig. 2: (Color online) (a) 3D view of the soliton on the Penrose-5 2 2
lattice N = 5) maximum withEg = 8, Vg = 1 andu = 4; and 15 15
(b) its contour plot (blue) superimposed on the initial dtiod u@.y),| | u(0.y),
(green) and underlying lattice (red). o5 hi 05
0 - 0 L
-10 -10

Fig. 4: (Color online) On axis profiles of the solitons obtained
with Eg = 8,Vp = 1 andu = 4 at the maximum of the potentials:
(@N=4, (b)N =5, (c)N =7 along x-axis; (AN =4, (e)N =5,

(f) N = 7 along y-axis.

(@) (b) (c) (d)
5 T 5 T 5 T 5 T
451 A 451 1 451 T 451
Fig. 3: (Color online) (a) 3D view of the soliton on the Penrose-7 at at 4 : at
lattice N = 7) maximum withEg = 8, Vg = 1 andu = 4; and
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(b) its contour plot (blue) superimposed on the initial dtiod 351
(green) and underlying lattice (red). |
u(x,0)

25F
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15F
periodic, Penrose-5 and Penrose-7 lattices, on axis mod

profiles are depicted in Fig. m

It can be observed from Figh. that the amplitudes of s
the fundamental solitons slightly increase as the ol
numerical value ofN increases. On the other hand, the
shapes of the fundamental solitons do not exhibit any
difference asN increases despite the fact that the
fundamental lattice solitons in Kerr medium show Fig. 5: (Color online) On axis profiles of the solitons at the
changes in shape. For example, Penrose-5 solitons af@aximum of the periodic potentia(= 4) along x-axis obtained
shown to have dimples when their eigenvalues are closdith Eo =8, u=2.2.and (alo = 1; (b) Vo = 2; () Vo = 3; (d)
to gap edged]. Vo=4.

In order to investigate the effect of the potential depth

©b) on the fundamental solitons, the periodic lattice case
i(;/():onsidered and it is shown that tt?e amplitude of the? Bgnd-gap Structures of Fundamental
fundamental soliton located on the lattice maximum Lattice Solitons
decreases as the potential depth increases. An example for
this fact is illustrated in Figs whereN = 4 (periodic = Band-gap structure is a linear concept that first appeared
lattice) andVg is increased from 1 to 4. This also holds in Floguet theory as well as condensed matter theory (i.e.
true for Penrose-5 and Penrose-7 solitons. diffraction of X-rays through atomic crystals).
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In nonlinear optics, the propagation of the soliton on a ‘
lattice depends on the depth of the lattice and the
propagation constant (or the eigenvalue). In the spectrum
of the propagation, there are strips (or regions), where a 3
localized structure is obtained (calleghps) and strips
where the solution is not a localized structure but an
extended state (callebands). The whole spectrum is ° 2. BAND
calledband-gap structuref the lattice or the potential.

The first nonlinear gap of a lattice is the region where
localized solutions (solitons) exist. In a certain paramet i
regime of the potential depthy and the propagation
constantu, spectral renormalization method converges to o5
a localized bound state, i.e. to the solution df that is
bounded and decays to zero. By fixing the potential depth
and increasing the eigenvalue, both the convergence and
the localization of the solution are checked. In this way, Fig. 7: (Color online) Band-gap structure of the solitons obtained
the first nonlinear gap edge of the lattices considered irwith Eg = 8 and the potentialsl = 4, N = 5 andN = 7 at the
this work is obtained. In this case, although the modelattice maximum (superimposed)
stays localized during the iteration (due to the saturation
term) but the convergence is not achieved beyond a
certain threshold value of the eigenvalye which is

(@) (b)

considered as the gap edge. 3 a
25 é A
Gap Gap s
Width Width
15 2
(@) (b) (©)
4 43— 4 1 .
sp BAND 3 BAND s BAND 0%
Vo \4 vV, r o [ e
0,4 0, 0,4 0 2 4 6 8 0 2 4 6 8
t t EO EO
1k GAP 1 GAP 1 GAP
¢ ¢ (©) (d)
02 4 6 8 02 4 6 8 02 4 6 8 4 ¥ 4 —6—N=4 ¥
n H u —+—N=5
Gap ° Gap [l
Fig. 6: (Color online) Band-gap structure of the solitons obtained Width, Width,
at the lattice maximum witkg = 8 and the potentials: (&) = 4;
(b)N=5;(c)N=7. 1 1
0 H—f—k—F 0 —@——&
0 2 4 6 8 0 2 4 6 8
In Fig. 6, the band-gap structures are depicted for B &

periodic, Penrose-5 and Penrose-7 solitons in separate

graphs, located on the (absolute) lattice maxima for the

fixed value ofEq = 8. For a more clear comparison of the Fig. 8: (Color online) Gap width versuy graph of the solitons
band- -gap Structures those obtained band- -gap Structuré@talned at the lattice maximum WI\I‘@) =1 and the potentlals
are depicted on top of each other in Fig. @N=4 bBIN=5 CN=7 (dN=4N=5N=7

It is observed, especially from the Fig, that (Superimposed).
increasingN expands the gap region. This shows the fact
that the gap regions are wider for quasicrystal type
lattices than that of the periodic type lattice.

In order to observe the effect of the bias fi€glto the In order to explore the effect of the potential depth on
band-gap structure, the potential dejgh= 1 is fixed and ~ the gap width, the potential dep¥fp versus gap width
by the use of the SR method, the existence of fundamentaraphs for the periodic potential = 4 is plotted. Those
solitons for increasing values dfy for the periodic, graphs for fundamental solitons on lattice maximum are
Penrose-5 and Penrose-7 lattices are investigated. shown in Fig.9. It can be seen that the gap width

For smallEg values, no soliton could be obtained. As decreases a¢, increases. Same phenomenon occurs for
Eo gets greater, the number of eigenvalues for which aduasicrystals as well.
soliton exists increases. In other words, the gap width  When Fig.6 and Fig.7 are considered, it is observed

increases aRy increases. that the Penrose-7 type potential brings out a bigger gap
Above mentioned facts are demonstrated in Big. region than the Penrose-5 type potential and the Penrose-5
(@© 2015 NSP
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(a) (b) cubic NLS equation is that the power of the beam exceeds
°] °] the critical powelP, ~ 11.7 [31].
4 4 The fundamental solitons of the NLS equation can
SV?SW sv"’i‘gthg, become unstable in two ways:
2 2 1.Is the slope condition not satisfied, this leads to a
. . focusing instability
I 2.1s the spectral condition associated with the eigenvalue
% 1 2 3 a4 problem (see32]) not satisfied, this leads to drift
Vo instability.
© In order to investigate the nonlinear stability, first
approach is trying to predict collapse by using the VK
Gap * criterion by plotting the soliton poweP versus the
Width, propagation constant graph.

@) (b) (c)

60 60 60

Fig. 9: (Color online) Gap width versug graph of the solitons
obtained at the lattice maximum witfy = 8 and the potentials:
@N=4 b)N=5, (c)N=7, d)N=4,N=5 N=7 20 20 20
(superimposed).

type potential brings out a bigger gap region than periodic . ) )
N = 4 type potential. This holds also true for other cases,19- 10: (Color online) Power versug graph of the solitons
i.e. for differentE values. So, one can claim that the gap °Ptained at the lattice maximum wit =8, Vo = 1 and the
widths increase a increases. potentials: (aN = 4; (D)N =5; (N = 7.

. o ) As it can be seen from Fid.0, the power decreases as
5 Nonlinear Stability Analysis of U increases for all three different potentials.
Fundamental Solitons Consequently, all the solitons obtained from the
numerical solution of the Eqg.1J by the spectral
In this section, the nonlinear stability properties of the renormalization method explained in the previous section
fundamental lattice solitons are explored. One way to doare expected to be stable as they all satisfy the

this is the power analysis. Tipoweris defined as Vakhitov-Kolokolov stability criterion. However, the
VK-condition is not sufficient. The soliton may undergo a

p_ // I (x,y)[2dxdy (19) drift instability, that is, the soliton might move from the
J—w lattice maximum towards a nearby lattice minimum

. ) o . during the direct simulation. One way to check this is to
and plays an important role in determining the stability of |et the soliton move along theaxis and see whether it
the soliton f(x,y). In [28], Vakhitov and Kolokolov  conserves its maximum amplitude and its location.
proved that a necessary condition for the linear stability  |n this context,the center of mass is monitored as
of the solitonf (x; i) is

1 00
4P (<x>,<y>):5/Lm(x,y)|u|2dxdy. 1)

dn <0. (20)

Here,P = P[u] := [/*, |u|?dxdyis the soliton power.

In other words, the soliton is stable only if its power To study whether there exists a drift instability or not,

decreases with increasing propagation constantThis  Eq. (1) is computed over a long distance. For this

condition is called thelope condition purpose, a random noise of 1% is added to the soliton;
Key analytic results on nonlinear stability were finite difference method is used on derivativggsanduyy,

obtained in £9,7]. They proved that the necessary and fourth order Runge-Kutta method is employed to

conditions for nonlinear stability are the slope condition advance ire.

(20) and the spectral condition. Furthermore, it is well A fundamental soliton is considered nonlinearly stable

known that a necessary condition for collapse in the 2Dif it conserves its location and maximum amplitude during

(@© 2015 NSP
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the direct simulation. Therefore, the maximum amplitude . @ a0 (b)
and centers of mass versus the propagation distance graphs Lo

are plotted for the fundamental solitons. centers °
max(|ul)-*% of mass O

1.924
=27

6 Stability Analysis of Solitons on Lattice L [

Maximum z z

0.9985

Following are sample outcomes of the nonlinear stability
test for some parameters and different potentials. More z
precisely, Fig.11 depicts the evolution of the soliton @ ©
obtained on the lattice maximum of the periodic potential , ® &b @
(N = 4) with Eg = 8, Vp = 1 andu = 4, the change of o g A
and y coordinates of the center of mass owgrcross x=y X
section along the diagonal axis of the soliton
superimposed on the potentialzat 10 and contour plot
of the sqllton .superlmpo.sed on the potential after thema&_y\u(x7y7z)| as a function of the propagation distarceb)
propagation; Fig12 and Fig.13 depict the same but for  cnange ofx andy coordinates of the center of mass ower
the Penrose-5 and Penrose-7 potentials respectively. Not@) cross section along the diagonal axis of the soliton at th
that for each case, the initial condition is taken on themaximum superimposed on the potenfiél= 5 at z = 10; (d)
lattice maximum, so are the obtained solitons. Contour plot of the soliton at the maximum superimposed en th
potentialN = 5 atz= 10.

e @ 9

Fig. 12: (Color online) Evolution of the soliton obtained with
Eo=8,Vo =1, u =4 and the potentidll = 5. (a) Peak amplitude

(@) x10" (b)

1.93 4

1.928 ) /""\\ /’”\\
centers / \ ' \
max(|ul)-*% ofmass | /. S 4 @)
1924 & 'l/ \‘“ 193 ‘
122 25/ [ — 1928 05‘
,,,, . P centers i Al
1925 5 10 “o 2 4 610 max(|u|)1.926 of mass 0 Y
; . o2 WWWW o
0.9993 10 (d) 1oz h |
9993 7 T SR YR IR
“ | 1v920 ; 0
Z , P ¢
0.9985
5 © @
; WD O B :
% =1 10
X
Fig. 11: (Color online) Evolution of the soliton obtained with Ay y
Eg=8,Vp =1, 4 = 4 and the potentidil = 4. (a) Peak amplitude e x=y

max y|u(x,y, z)| as a function of the propagation distarceb)
Change ofx andy coordinates of the center of mass owr Fig. 13: (Color online) Evolution of the soliton obtained with
(c) Cross section along the diagonal axis of the soliton at th Eg =8,V =1, u =4 and the potentidll = 7. (a) Peak amplitude
maximum superimposed on the potenfi= 4 atz = 10; (d) max y|u(X,y,z)| as a function of the propagation distarxeb)
Contour plot of the soliton at the maximum superimposed en th Change ofx andy coordinates of the center of mass ower
potentialN = 4 atz= 10. (c) Cross section along the diagonal axis of the soliton at th
maximum superimposed on the potenfil= 7 atz = 10; (d)
Contour plot of the soliton at the maximum superimposed en th
As it can be seen from Fidl1, Fig. 12 and Fig.13, ~ PotentialN =7 atz=10.
peak amplitudes of the fundamental solitons slightly
oscillate with the propagation distanzeand the centers
of mass almost stay at the same place. This suggests that
the fundamental solitons for all three lattices are
nonlinearly stable.
In contrary, the existence of nonlinearly unstable the periodic potentiaN = 4 and Penrose-5 potential were
solitons of the NLS equation with Kerr nonlinearity for shown in B].
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