Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015) %N =¥} 305

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090137

BCDR: Data Reuse Framework for Multi-core Systems
with Local Memories

Jue Wang* and YanGang \WWang

Supercomputing Center, Computer Network Information €ei@hinese Academy of Science, Beijing, China

Received: 6 Apr. 2014, Revised: 7 Jul. 2014, Accepted: &0Dil4
Published online: 1 Jan. 2015

Abstract: Emerging heterogeneous multi-core systems, such as thed8MBE, are deployed with multiple hardware accelerators
to enhance the performance of the systems. In these syse&amls, accelerator includes its own local memory where softwa
controlled DMA transfers are provided to utilize the membandwidth. Two important software controlled managemeethads
(direct buffering and software controlled cache) are aupin regular and irregular references, respectively. Tinetime coherence
maintenance is performed when the same global memory tocéireferenced by both software controlled cache and buffes
paper proposes a BCDR framework to exploit data reuse fdetsuand software cache. The framework includes buffef@bufata
reuse optimizations, buffer2cache/cache2buffer datsereptimizations and buffered array identification. Fofdn2buffer data reuse
optimizations, the Retaining Buffered Data technique aip&lming optimization are given to optimize critical regi after a basic
data reuse optimization. To make use of the opportunitydadiwby buffer2buffer optimizations, the buffer2cachefegtbuffer data
reuse optimizations are presented to improve the perfazenah applications with irregular accesses. Furthermoiteyfeered data
identification algorithm is presented to increase the peeof global data-flow analysis for the coherence maintenaetween SCC
and buffers. The experimental results show that our opétiias expose many opportunities for both buffer and cathe transferred
data amount between the local store and global memory iseedwy 16.35% on average for all cases. Our optimizatiorisdéureduce
19.7% of the average execution time. In addition, the roretcoherence maintenance overhead is reduced significantly

Keywords: Compiling Technique, Software Controlled Cache and BufRRem-time Techniques, Multi-core Systems

1 Introduction binaries for the PPE and SPE on a Cell BE chip. Two
important methods proposed in the IBM Single Source

Multi-core systems with multiple hardware accelerators,Compiler manage the communication between these local
such as the Cell Broadband Engine (Cell BE) stores and the global system memory. These methods are
architecture, are promising platform for parallel direct buffering and Software Controlled Cache (SCC).
computing. The Cell BE[,2] is comprised of 8 SPEs and The direct buffering technique is used in regular
explicitly managed memory hierarchies. Each SPE has itspplications whose access patterns are predictable by
own 256KB fast local memory called a "local store”. precise compile-time analysis. For irregular applicagion
There is not hardware coherence between the local storda which access patterns are not analysable at
or between the local stores and global system memorycompile-time phase, the SCC, which simulates the
This memory design requires programmers not only tooperations of hardware cache, is an effective method to
judiciously insert DMA operations to use fast local transfer data between the local store and global memory.
memory effectively, but also to explicitly orchestratefibot The SCC is also able to be used in regular accesses, but
data and codes to fit in the SPE’s local store. How tothe overhead of cache look-up and individual data transfer
effectively manage data of the memory hierarchy hasfor cache misses is unavoidable. Especially, SCC is
been growing research and industry interest. inefficient for regular applications whose access patterns

The IBM Single Source Compiler3] for Cell BE have poor locality. Thus the optimal method suggested by
takes an OpenMP4] program as input due to OpenMP’s Ref.[3,5] is to combine buffer and SCC to support regular
ease of use and widely acceptance in the industry andccesses and irregular accesses, respectively. When both
research area. The compiler automatically generates

* Corresponding author e-mawangjue@sccas.cn

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090137

306 NS 2 J. Wang, Y. Wang: BCDR: Data Reuse Framework for Multi-core.

memory. the DMATiler B] applies compressed data

: transfers and DMA commands to achieve the best DMA
Iy ?ﬁ@mm-ﬂwﬂd ! performance for a given loop nest. The above
#rmarve orep for nowadt - optimizations can be complementary to our work. For a
Futi=0 =24 - VoSt parallel region invo]vir)g multip_le Ioops_or Work-sha_rin_g
a[] = a[] +bf: constructs, the key insight of this paper is how to optimize
! ? inter-loop (or inter-work-sharing constructs) to reuséada
avap for _ betweerr]l the buffers or th(e)buffers and SCC. TheI:(WhSl and
Y WS2 shown in Fig. 1 (a) represent two work-sharing
flushe | hélmnf :é’lH_,Hﬂ}[. S constructs in OpenMP. After the loop normalization of the
hﬁd = }) WS1 and WS2, iterations are divided into chunks, and the
rgiml T ‘ il chunks are assigned to the threads according to the
\ i default scheduling (static scheduling) of OpenMP. Fig.

1(b) and Fig. 1(c) present the optimized intermediate

I ahIF code
(e) Ingat Cpe = codes of W1 and W2 by using the single buffer technique,

wlatic_affer_alloe foufs, zel, respectively. The loops are blocked using a block factor of
ﬂ“hf‘-h‘-‘ﬁ;“-“uﬂ'?_'b”jh: AIm:), bf due to the limit of available space in the local store.
foi=0; =M 1 ar=tf){ When the data is first brought into buffer, the buffer data
stafic buffer getfoufa, alil, ... become live. When the data is freed or written into global
etatic_buffer gatlbufb, blil ...J, memory, the buffer data is killed. Merging the outer loop
frei=il; 1< ran1rEN 1 can eliminate the DMA get operation of array a and reuse
tufhli] = bufa[] +iurhll, the data residing in the buffer bufa.
static buffer poi(tafa, afif], ... %)
} In this paper, we propose a Buffer-Cache Data Reuse
Slatic_huffer_frem(hufy, sizs); (BCDR) framework, which includes buffer2buffer data
latic_buffer_fres(hufh, doe); reuse optimizations, and buﬁerZCache/'cach.e.quﬁer data
oy Optieeiec] cods Foy WE | by divectbuffiring reuse optimizations, and buffered array identificatiore Th

overview of the BCDR framework is given in Fig. 2. A

basic buffer2buffer data reuse optimization, which is
based on OpenMP relaxed consistency model, is first
given to restructure loops to reduce buffer data. After the

glatic baffer_alloe foafa, s,
glate_huffer alloe ddb, s,
forfi=0; 1=k 1; i+=bf){

etatic Inaffer getfbnfa, afif, ...}

. .) basic buffer2buffer optimization, a Retaining Buffered
;mifﬁ%b{ﬂﬁ}’ Data (RBD) technique is used to improve the

[= bufhfi] +bufi[d performance of critical and ordered regions. And a

shatic iffer_pufludby b i ’ Y pipelining model utilizes the communication between the

- T local stores to optimize the critical regions in OpenMP
slatic hffer free(hofy, size) - program instead of the communication between the local
ma::i:_hLﬂr—ﬂEe[hum: E'EE:I.', store and global system memory. Additionally, the

(e meg rode E:ws:ehydjmhﬂm buffer2buffer data reuse optimizations may extend the

live range of buffers, which provides an opportunity to
reuse data between buffers and SCC. To utilize this
opportunity, the buffer2cache (or cache2buffer)
Fig. 1: An example to optimize the code by direct buffering optimizations are proposed to improve the performance of
applications by checking buffers (or SCC). The above
optimizations may make the run-time coherence check
operations relatively centralized. The buffered array

SCC and buffer reference the same global memor;)getm'ffl'cat'on ']5 'mplemﬁnfq to |méortov? the ;t)rr]eusmn of
location, the compile-time/run-time coherence ata-flow analysisg| which is used to trace the access

maintenanceq] is performed to check and update data of sequence of buffer and SCC. Our experiments show that
SCC at the entry or exit of the direct buffer. the raise of the precision can reduce the number of

. - coherence checks effectively.
When the data of an innermost loop can not fit in the

available space in the local store, the buffer optimization 1he OpenMP version of NAS benchmark is used to
techniques 6] block the loop and insert corresponding evaluate our optimizations. The transferred data amount is
data transfer operations for regular references reduced by 16.35%, on average, for all cases. Furthermore,

Furthermore, T. Liu et al.7] focuses on an independent OUr optimizations reduce 19.7% of the average execution
loop to give reference grouping, buffer dependencel!Me:

checking and buffer compression to reduce the data Our compiler-time analysis procedure of BCDR
transferred between the local stores and global systenframework has been implemented in Cetus compiler

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015)www.naturalspublishing.com/Journals.asp NS P 307

| Inter-procedure buffered array identi fication | I

]

Ieentify flush-based region |

. i
Bufferdbuffer data reuse Pre-processing for data reuse within o flush-based region
| Bazic bulfer2ZbudTer data reuse |
¥ilnke |Condsdntc lirepm) |
o : " i i ek _datn_rorss fior e oo L1 L2
| RBD technique | | Pipeline model | Ak o o ssdidote Joope (L1 nad LI ans eralzhls for detan
e tmnaturmatem, £
i rpniy [F S _|i,|.;l|-r|;| 1, L2k
bufferleache and cacheXbuffer optimizations ; Borord Ty tninalermitian_indomsabion O
|
Fig. 2: Buffer-cache data reuse framework 1

Preqpracessing For data reuse between Nush-based regions |
1]

T
il

M --"'-_-. e
framework] which is a source-to-source translator. The ~=—Jlotullerca e ;==
major contributions of this paper are the following:] B

(1) We propose a basic buffer2buffer data reuse | Check buffer depandence for fwa candidaig Joops
optimization technique to effectively reuse data residing : : I : :
in buffers. For critical regions in OpenMP, the RBD ln,dm,m_ifnnmmm

techniques and pipelining model are proposed to reduce
the communication amount between the local store and
global system memory.

(2) We present cache2buffer and buffer2cache data
reuse optimization techniques to reuse data between
buffer and SCC. Especially for applications with irregular

array accesses, the buffer2cache optimization not onl¥

reduces the communication amount but also increases thg 9'°"- Back to the example ShO.WH in Fig. 1(a), a parallel
region surround two work-sharing constructs WS1 and

WS2. fp0 and fp2 present global flush operations implied
%tjthe entry and exit of parallel region. fpl is a flush point
h

Fig. 3: Overview of buffer2buffer data reuse optimization

hit ratio to fetch data in the local store.

(3) We give a buffered array identification algorithm to
enhance the precise of data-flow analysis for buffer. Usin
this algorithm, the coherence maintenance overhead ca
be reduced significantly.

plied at the exit of WS2. These flush operations split
e parallel region of OpenMP program into two
flush-based regions. In our cases, if a global flush is

(4) We give detail experiments and communication . : :
analysis for the performance of our optimizations Theencountered, all data will be killed and enforced to write
’ o memory from SCC or buffers in the local stores.

rest of the paper is organized as follows: Section 2 givestb enMP’'s memory model provides buffer reuse
our buffer2buffer data reuse optimization. Section 3 P o y ! P :
portunities between multiple loops or work-sharing

presents buffer2cache and cache2buffer data reus%gnstructs
optimizations to improve the performance of irregular S) : .

applications. Section 4 describes the algorithm to identif reulsréﬂgs tisri(i:zt;?c;xveggrs;t sgé\r/r?ea gazgaﬁ)ugggizmﬁred?gin
buffered array for precise data-flow analysis. Section 5 resent g RBD tecﬁni ue and ivep a pielinin ’model o
gives the experimental results and analysis to demonstrat'?,-tiIiZ the bandwidth bq fween ﬂ? | Ipli ; 9

the effectiveness of our optimizations. Section 6 reviewsd4€ the ba etween the local stores.

related work. Finally, Section 7 concludes the paper.

2.1 Basic Buffer2buffer Data Reuse
2 Buffer 2buffer Data Reuse Optimization Optimization

OpenMP provides a relaxed consistency shared-memorfrig. 3 shows the overview of the basic buffer2buffer data
model. Each thread’s temporary view of memory is notreuse optimization. We first identify flush-based region in
required to be consistent with memory at all times. Thethe control-flow graph. We then perform the
OpenMP flush operation enforces the consistencypre-processing for data reuse within each flush-based
between the temporary view and memory. It is used inregion and between the flush-based regions. If there is not
flush directive and implicit operations, such as barrierdata reuse opportunity, the true code transformation phase
directive, exit from work-sharing region, entry to and exit will be issued.

from parallel, etc. In an OpenMP program, the global For the pre-processing algorithm to reuse data within
flush splits the parallel region into two parts. We call the a single flush-based region, the conditions to check if two
sub-region between two global flushes "flush-based’candidate loops are available for data reuse transformatio

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

308 NS 2 J. Wang, Y. Wang: BCDR: Data Reuse Framework for Multi-core.

are similar to the conditions of loop fusions(. Their

main differences include the following items: foxhi=t), 1T it=ndy Macpll

i, 3= mir(b)) Loop LI

(1) The basic buffer2buffer data reuse optimization =] +hMl-
. . afl] = a1 +b[l;
only focus on the loops involving the regular references.
(2) When block factor is equal to 1, the data size of Faxfii=0; 1i=0T; ii+=hf) JLoopla’
transformed codes is required to fit in the available local Bori=n; ¥ min{ 0 M MLoopl2
store space. L] = aff +h(1;

(3) The mapping of iterations on threads is identical

for both candidate loops. () Irterme dizte codee after the boopetdp &

(4) The pre-processing algorithm is. ungvailable for farfit=0: 141 Tt
the codes surrounded by the synchronization construct foui =i i eed i HBL) 4+
(such as the critical construct and ordered construci, etc. aff] =afi] +bE]
and lock routines. A RBD technique and a pipelining L)
model (the detail are given in the sub-section 2.2 and 2.3 ﬂ:';‘h:]i'rl“ ”fg“".hﬂq:';”'"]
are proposed to improve the performance for this kind of } [=2l +h[d;
codes.

If two candidate loops meet the conditions of data i) Crtire e eock s wite the loop Eion
reuse transformation, corresponding block factor will be _ .
re-calculated according to the available space in loca stafic_buffir_sloc(bufh, ame);
store, the access pattern of each references and tr static_bufter_alloc{bufh, moe);

. . : foriE; 1i=1; i)
buffering scheme(such as single- double- or triple- et buff . i
: - _budfar_gatibndfa, afdi], ...,
buffers)p]. The following step is to record the code o tic_buffer_getfbnth, b{], ...):
transformation information including the locations (to frefimii: i< TmmATHRE M A
insert the buffer allocation operations, DMA get/put hufa[i] =hufa[]] +hoafh[];
operations, etc) and the data structure to store the S _
transformation from global memory address to buffer fo{ P, i mirk 3L E N
address. The advanced loop fusion judgment and globe mgruﬂaﬂ;umm:ﬁ?ﬁ%ﬂ 3
loop fusion [LO] can be applied to improve our --hﬂ—t ! Wl
) . : elatic_tafler bbb, b, ..
pre-processing algorithm and code transformation for the 1
buffer2buffer data reuse. static_buffer Beechnfa, size);
The pre-processing algorithm for inter-region is stafic_bofer Bee(bufy, e

similar to the algorithm for data reuse within a _ _ o
flush-based region. The first step of the algorithm is to] Trmsirmed rode hyauwr pre-processing alzonthm shown i Fig. 3
check the data reuse for two adjacent candidate loops in
different flush-based regions. In the code transformation . . .
phase, the data write-back operation for buffer (if neededf'g- 4 Example of code transformation using our pre-processing
is required to be inserted before the global flush. algorithm

Compiler-time/run-time buffer dependence check is
required to ensure the correctness of program execution.
This dependence check proposed by Liu et . i o :
applied I[I)’l the single loop. ﬁ ispused to)éeterminei]wh{setherb“ﬁer size is computed according to the block factor and
two references have different access patterns but acce&gferences. The final step of code transformation is to
the same (or overlapped) memory space. If the buffernsert the buffer allocate/free and data transfer operafio
dependence for two candidate references can not b nd to translate t.he. accesses to g!obal memory into local
resolved at compile-time phase, run-time dependenc uffers. The opt|m|zed codes using direct buffers. are
check will be issued. In our work, this method is extendedPrésented in Fig. 4(c). To merge the DMA operations
to determine whether two references in different |Oopseffect|vely, Regqlar Section Descriptors (RSO are
access the same (or overlapped) memory space. If s¢/Sed to summarize array references.
overlapped buffers are merged into one.

In the code transformation phase, the traditional loop
fusion transformation is unavailable due to the OpenMP2.2 RBD Technique
semantic and loop strip-mining. For the program
presented in Fig. 1(a), the intermediate codes after th&@he above analysis and transformation can not be applied
loop strip mining is presented in Fig. 4(a). The innermostin the loop within the critical and ordered region, since
loops L1 and L2 shown in Fig.4(a) can not be merged, butthe basic buffer2buffer data reuse optimization may result
their outer loops L1’ and L2" may be merged using the in the expansion of the synchronization region. For
loop fusion techniques. Our code transformation phaseexample, the loop L3 and L4 in Fig. 5(a) can not be
generates the merged code shown in Fig. 4(b). The direanerged. Using the conservative methd&id, the data of

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015)www.naturalspublishing.com/Journals.asp %N =¥} 309

Ao b oD e Thel
T (g)
& oo ¥ o]
.-:-'m—.agzdi: d
T 1=0-L=T-LH+3 1,
A+l +—=Dall; .
b I <Tiboml i:_'Fl].
Ty 1=, L= B+ T
o[§ +=mE]l d
-+ 3
} o
[=) Example for criticalo==imon
Aatir boffer alloc (bafps sime 175
saTe_bapa = Thatfpa;

£ om’ di=0; di=H-1 ; ii—b£1]
i (= i =g
Taxfpa +=ixe,
slatic b er el bodfp a, p afid] ...

TOITEFN. 1= minr i+ 14- 131+
trdp a[i+l] +— nadpalil;
HAabtir buaff e patdbutfpab|d L.)5
H

et _LoCHO)
Ll _DIrrer_allod Fr e SRR
Tommil=0; U= d+=m)
clabir ol er _gelibufy a[ldl, ... %
I rd == 1 || (1 ==1hl] - —
rtatlc_tn¥fer_ortladre ,Talill. ... L R L

Torii=H, 1= dnC H-+hr FoA+)
bt w [i] +=Thurtpe [il:

clatic bof o pabute afii], .o i
3 ®
ctatlic bodfer e bota, o
ctatlic boffar o bmfpe .cioe 1)
Tald e lewloila;

e Ootaded oods Fig. 6: Pipelining model for critical region

Fig. 5: Example of data reuse optimization for critical region

2.3 Pipeline Model for Critical Regions

From OpenMP specificatiord], a thread waits at the
beginning of a critical region until no thread is executing
a critical region. As a result, each thread executes the
codes in the critical region. If there is a reference for a
shared array in the critical region, the buffered data for
the shared array can be reused for the current thread team.
array pa in the local store is not killed until the critical Thomas Chen 13| indicated that the bandwidth of
region is encountered. The implicit flush fpl emits the SPE-to-Memory DMA transfers is lower than that of
data of pa to the global memory, which results in the lossSPE-to-SPE DMA transfers. The integrated memory
of data reuse between the loop L3 and L4. To reuse theontroller (MIC) provides a peak bandwidth of 25.6GB/s
data of pa as many as possible, the optimized intermediatt® the global memory, while the Element Interconnect
codes are given in Fig. 5(b). The variable Ib and ub, whichBus (EIB) provides a peak bandwidth of 204.8GB/s for
are computed at compile-time phase, are used to indicat@#tra-chip data transfers among the local stores.
the range of retained data in bufpa. These variables are In this sub-section, we give a pipelining model which
determined by the available space in the local memory. not only hides the computation in the critical region but

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

310

N SS ¥

J. Wang, Y. Wang: BCDR: Data Reuse Framework for Multi-core.

also utilizes the DMA operations between the local stores
on chip instead of the DMA operations between the local

Fpragrra o peuslial
.

3
Spramimea o o

stores and global memory. For example, in Fig. 5, the Pt i MEE
HH H B[= dNaf #1111
critical region has a loop L4 where a represents a share: oo “:']
array and pa represents a private array. The loof r"m;‘-;ri_’-.]:_-‘; i—l;_“l;l‘:r:i”—-}{ wesa
strip-mining is applied in the loop L4 to reduce the ;D ’
memory footprint. Iterations of loop L4 are divided into ias L-f'.di scmricnes dnciudimz on Gmwegular
chunks to satisfy the available space in local store. The === *=*i]
. spmic buiTor aloobuih, sseal;
execution diagram of transformed codes is shown in Fig. sswic buimer allocburb cies 1
6. We use two signal registers to ensure the correctness ¢ roatis oo 1- isnog AN
pipelined program. A link arrow represents the sending b=t
direction of signal. Note that the thread TrdO (or Trd7) o o .)
. smiic_bhafter gabmal. Bl - .23
reads (or writes) the shared arrays from (or to) the global .
memory only once. sttt BT bt BEEEE. .
:.:.l:u e bhmfTiesr fressiimeli | solsecqs
(b} Trmnsforoesd code Ffocr W53
3 Buffer 2cache and Cache2buffer R R ST el
O t. . t. "’Iaﬁ?—hf'f_t:':_:“—a!ljf".‘_.c?j:ﬁ‘j =sEarc
ptimizations i~ rad, L
e i i = mir i+ BrC™ I K+

AF b B fe[] bl 3
tomakil i} bu Ffee lowcolonp st e i], bufb
SURocds ey e baafer 1o find recuired cddatn e
t clee f
basFalil — cackes Ekokapikas el il

The buffer2buffer data reuse optimization not only makes
DMA operations relatively centralized but also gives an
opportunity for the case where data of buffers (or SCC) can
be reused by SCC (or buffers). After the buffer2buffer data
reuse optimizations are performed, the buffer2cache ant
cache2buffer data reuse optimizations are used to enhanc
the data reuse between the buffer and SCC.

The run-time SCC techniqué][is used in irregular
refererences due to the difficulty of analysis of irregular
data access patterns at compile-time phase. The
work-sharing construct WS3 and corresponding
transformed code are shown in Fig. 7 (a) and Fig. 7 (b).
For the further data reuse, the data of array b is retained a4 | dentifying Buffered Arrays
many as possible. In Fig. 7 (c), the transformed code of
WS4 adopts the buffers and SCC because the constru¢tor the applications with SCC and direct buffer, the
WS4 includes both regular references (a[i] and c[i]) andcoherence of cache and buffer has to be maintained to
irregular reference (b[c[i]]). Due to the implicit flush ensure the correctness of program execution according to
operation between WS3 and WS4, the conservativeDpenMP relaxed-consistency model. Our optimization
method B,5] can not ensure that the SCC used by WS4only extends the live range of direct buffer and doesn’t
can reuse the array b data buffered in WS3. The run-timehange the semantic of relaxed consistency model in
function call bufferlookup is developed to find b[c[i]] in OpenMP. Thus, for the coherence problem of buffer and
the buffer bufb in local store. The buffer structure, which SCC, the compile-time/run-time SCC check technique
is designed according to the flat buffef],[consists of and corresponding global data flow analy&kgdroposed
buffer directory and buffer storage. The buffer direct@yi in T. Chen can also be applied in our cases. T. Chen
used in run-time lookup of buffer or cache. The 128-bit indicated that the run-time coherence checks are only
SIMD instructions are used to improve the performanceinvoked at the beginning/end of the live range of a direct
of lookup operation. buffer. In our cases, the extensions to the live range of

T. Chen Pp] indicated that the buffer-check-cache direct buffer may decrease the total overhead of
operation is only used in three cases to ensure th&oherence checks, but it makes the run-time check
correctness of program execution. In our cases, theperations relatively centralized. A precise array
buffer-check-cache operation can be done as thealata-flow analysis can decrease the overhead of run-time
cache2buffer optimization to reuse the data in cache. Theheck operations effectively. In this section, an
data in the SCC are retained to be reused by the followindnter-procedural buffered arrays identification algarth
buffers. In our compiler implementation, a simple shown in Fig. 8, is proposed to improve the precision of
use-use/use-def analysis is developed for adjacent loopglobal data-flow analysis in Ref].
to find the data reuse opportunities between the buffers In addition, the RSD, which is incorporated into the
and SCC. To improve the precise of the analysis, theglobal data analysisg], can also reduce the number of
buffered array identification algorithm is given in the coherence maintenance significantly. Fig. 9 shows the
following section. total number of run-time coherence check operations after

SO LE e S o find recpdined danesT S
I
stmbe__bmalFor pandbufa, afidi], - e
stavic_bufTer freaibua b, o ise s
seacic budfor, frecdhafc, stz

meacie huiTer freed saves bo b, siee 195

oy Traastorrmes] codlbe for WSS bae direcr BT s
amal S0

Fig. 7: Example of buffer2cache optimization

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015)www.naturalspublishing.com/Journals.asp %N =¥\ 311

Alsarithm lig tfferred artays

lognt: P- & teandoeed codea where e loopa bave been Hacked an ;f;mi fur 3:' UEF :T Jf ;U :C’ fp m‘l
rottesponing DA operat ong have been ingetted. mmberonee

Chtgnut: Bl o b o-dmenmonnl aay. The fiet column of B prease P

b oot of bufFered arvay nam eg b o are vsed in declaration points, enct eneo R L S L A N L L
1o of BA qreserts o set of tuffered aray nemes which are abases fo i

the fizet element Bor anelyra

Ligt param precedwrs (PR DECE EAN)
frenachrall firrtm F_CALLER_FRO which rdls FRO_DBC3

Fig. 9: The number of coherence maintenance

if{ e podeg)
let prramy be the parameter in the fortion paraeter ia o
F CALLER, FRO comagponding to the procedas paramets: AFF BT |co [EF | FT)@ | oo [wo | se
BAH BasicbulleeZhulTer datagenze | o | & | 0 [& | o[& | | o
totord the paran endmi it oo BA RBE::E::E :: :: j
If (there s the poedwe CALLER Fowhich cal: ;ﬂfa"h.;bamru. 7 "
F_GA.LLER_PHO] [acheduffer ot roua s <
if (patet helongs to the procedute parameter list o BufSorod oy idendifioahons |+ | | [S|4 | |4
CALLER F)
Lig param_procedwsTRD_DBCS, naat)
f*mu.inpmgm"l Fig. 10: Performed Optimizations
Ba=1}
[*F it buffere d astars in spu codes™ consists of SPE component and PPE component. Since
forech tranafoom ed loop current Cetus compiler only supports C+OpenMP, all of
if (g coded) test cases adopt corresponding C version. The C +
foremch direct budfer call staememt DRCS OpenMP program is translated into C + run-time library

API. For translated codes, some array subscript

reeard the bffered aray rame BAN and coespordny 40 oformations (such as the translation from the address

aphal pame i iba declurebion past of the global memory to one of buffer or cache in the
b thees informaticn indg BA, local store) and code partitions (for large applicationto fi
if thirte iathe pracedues PRO DBCS which calls DBCE) in the local store) are implemented manually.
F(BAN icthe procedws patunister of FRO DECS) To comprehensively evaluate the performance of our
Lis para procedareFRO_DACA Ethj_ optimizations, we employ the C + OpenMP versid][

of NAS benchmark from Omni OpenMP compiler
project. The experiments are conducted on a QS20 Cell
Blade which has two Cell BE chips and runs RedHat
Fig. 8. Inter-procedural algorithm to identify buffered arrays | inux ES 5.1. We only use one Cell BE chip. A command
numactl is used to bind our programs to one Cell chip.
The baseline version adopts the double-buffer technique
. , [6] to transform loops (only containing regular
our precise data flow analysis. For NAS OpenMP references) without the optimizations proposed in section
benchemarksly, there is only one DMA put operation 3 '3 anqd 4. The total size of buffer is 64k. The SCC,
(from IS) which needs the run-time coherence checks. \ynich is used in iregular references, is a 4-way

associative cache with 128-byte cache line. The total size
. of SCC is 64k.
5 Performance Evaluation We summarize our optimizations for each application
in Fig. 10. The buffered array identification and basic
We have implemented a subset of OpenMP directives antbuffer2buffer data reuse technique can be used in all
our optimizations using the Cetus compiled] [and cases. The RBD technique and pipeline model focus on
self-developed run-time library. The runtime library the critical constructs which exist in EP, IS and LU. The
which is implemented using the Cell SDK 3.0516] buffer2cache and cache2buffer data reuse techniques are

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

312 NS 2 J. Wang, Y. Wang: BCDR: Data Reuse Framework for Multi-core.

A3 ETCOEF FT = LO i B8P Bhareii Mo Doci Dol Wi Box mo]
Hasic bufferZouffer datarense P30 DOZRLID B4 pdd4 23 1
ALY b chrd e i O pop pd4 por g 0 ';_n.e —
Fpeling modsl noopop pod poropooD 1;:“.
HuferZeache da reuge nnip p niop p 0 EH
Cache fnuffer daia mowne n & p p g3 g0 én
Torial 03 004132 BE0T |44 (B3
ar t - - 13 e - ar

Fig. 11: Communication data reduction (Percentage) between the

local memory and global memory Fig. 12: Normalized execution time on 8 SPEs for different

optimization techniques

applied in irregular applications (including CG, FT and
IS) where the same array is referenced by both the cachgyecytion time is normalized to the time for the baseline

and buffer. version for each application. The bar marked y baseline
denotes the baseline version without the optimizations
presented in section 2, 3 and 4. The bar marked by opl
5.1 Communication Data Reduction between represents the version using the basic buffer2buffer data
Local Memory and Global Memory reuse optimization. The bar marked by op2 represents the

version which introduces RBD technique into the version

The buffered array identification algorithm can enhanceMarked by opl. The bar marked by op3 represents the
the precise of global data flow analysis to reduce theVersion which introduces pipeline model into the version
overhead of run-time coherence check. OtherMmarked by op2. The restcan be done in the same manner.
optimizations can reduce transferred data between thdN€ last bar marked by opté contains the basic
local memory and global memory. Fig. 11 shows the dataPuffer2buffer data reuse, RBD technique, pipeline model,
reduction (between the local memory and global buffer2cache data reuse, cach2buffer data reuse and

memory) for each application. The input data of NAS Puffered array identification optimizations.
benchmark employ Class A. The basic buffer2buffer data reuse technique not only

In the second row of Fig. 11, since the benchmark gpreduces the number of DMA opertions and corresponding
and IS have only 8 loops which can be tiled by direct data amount but also minimizes the wait time between the
buffering and reference very small amount of array datacomputation and communication. In Fig. 12, the numbers
these benchmarks gain a little of improvement using thgfor the basic buffe'erL'lfer data reuse technigue conform to
basic buffer2buffer data reuse. For the benchmark FT, ouf€ result shown in Fig. 11. The buffer2cache data reuse
optimizations are difficult to find the data reuse due to the¢@n reduce the communication amount between the local
complex control-flow of program. The advanced loop store and global memory as well as the number of cache
fusion technique 18] can be applied to find more data MiSS and corresponding overhead. For CG, our
reuse opportunities. In the forth column, the pipelining buffer2cache data reuse increases the hit ratio of local

model replace the communications between the locaftore (including the hit of SCC and buffer in the local
stores and global memory with the communicationsStore) from 59% to 96%. For IS, the hit ratio is increased
between the local stores. The communication datd™m 3.3% t06.1%.

reduction depends on the data amount referenced by the

critical region. For the buffer2cache and cache2buffer

data reuse optimizations, the size of reused data depends3 Runtime Overhead of Optimization

on the ratio of the retained data size to the size of work setrechni ques

of irregular references because the input data of IS and

CG is random array. We measured the runtime overhead of proposed

optimization techniques. The basic buffer2buffer data
) o) reuse technique and buffered array identification does not
5.2 Execution Time of Optimization Techniques give rise to the overhead. The main run-time overhead of
our optimization techniques include the overhead of
Fig. 12 shows execution time on 8 SPEs for the baselindranch statements in the RBD technique, the overhead of
version and different optimization techniques. The actualbranch statements and lookup operations for buffer2cache

(@© 2015 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015)www.naturalspublishing.com/Journals.asp NS = 313

AFD[RED [Bufferdearhe | Cachebdfer) e o]
teckmque |dgareuse | dlarss -E
CE |om 015 02
B (008
I3 o 02 (47 .
LU ﬂmi : AT %4 B FT 15 i)] =P

Fig. 13: Run-time overhead of proposed optimization techniques

on 8 SPEs (Percentage) Fig. 14: Performance comparisons of BCDR framework and
single-source OpenMP compiler

data reuse and cache2buffer data reuse optimization, and

the overhead of coherence maintenance. The overhead @f; 1 ework. Additionally, the Ref.7] indicates that some
loop up operations and coherence maintenance can B8, have been modified manually (before OpenMP
reduced using SIMD instructions and be carefully ¢ompijer optimizations) to expose more parallelism. But

overlapped with the non-blocking DMA operations. - gcpR framework adopts original C version of NAS
Additionally, the coherence maintenance has bee'&\?nchmark provided by Omni OpenMP compiler project.
reduced to one issue in our cases. It can be ignoreqye pejieve that the optimizations of BCDR framework
compared to the total execution of program. Fig. 13 giveS.zy pe used as the optimization of the single-source
the run-time overhead of our optimizations (including the OpenMP compiler to improve the performance of
RBD technique, buffer2cache data reuse and CaCheZb“ﬁerplications.

data reuse) for on 8 SPEs.

5.4 Performance Comparison 6 Related work

Fig. 14 shows the comparative result of the speedups obirect buffering, which is only available for regular data
our BCDR framework and that of the single-source accesses in loop nests, is used to store data referenced by
OpenMP compiler in the Cell SDK 3.0. The speedups ardoop after strip mining. Chen et al.6] developed a
computed using 8 SPEs over 1 PPE. The bar CBEXLCperformance model of direct buffer for single DMA
represents the speedups of applications usingransfer. This model focuses on continuous memory
single-source OpenMP compiler. The bar BCDR accesses to compute block factor and select the buffer
represents the speedups of applications using our BCDRcheme among double- or triple- buffer. Furthermore, Liu
framework. Lee et.al. 19 found that the actual etal. [7] designed a Direct Blocking Data Buffer (DBDB)
performance of the single-source OpenMP complier isto reuse buffer data for the single innermost loop. They
not good as the numbers reported in Re§,7[. The provided two different buffer structures (flat buffer and
reason 7] may be that some loops in the benchmark compressed buffer) for contiguous data accesses and
applications were manually modified to expose morediscontinuous accesses, respectively. A performance
optimization opportunities. Thus, we compare with the model was proposed to guide the DMA transfer scheme
best experimental results reported in R&. [selection among single-DMA, multi-DMA and DMA-list.
From Fig. 14, we can find that our BCDR framework Cell SuperScalarZl], CellGen R2] and IBM ALF [23]
performs better than single-source OpenMP compiler inautomate double buffering to overlap DMA and
two applications (CG and LU). For EP and IS, our BCDR computation. These buffer optimizations can be
framework performs as well as single-source OpenMPincorporated into our framework to improve the
compiler. For FT, MG, SP, our framework performs worse performance of single loop execution. Our BCDR
than single-source OpenMP compiler. However, note thaframework is to reuse data between buffers and SCC.
many compiler optimizations (such as DBDB framework SCC is an effective and elegant method for irregular
[7] and cache prefetching2()]), which enhance the data accesses which are unpredictable at compile-time
performance of single loop of program, have beenphase. A lot of research effort24,25,26] have been
incorporated into the single-source OpenMP compiler.focused on SCC. For Cell BE processor, Balart et2f] |
These optimizations which boost performance resultamplemented an asynchronous software cache to overlap
reported in Ref]] are complementary to our BCDR communication and computation. Furthermore, Gonzalez

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

314 NS 2 J. Wang, Y. Wang: BCDR: Data Reuse Framework for Multi-core.

et al. 28] optimize the performance of applications with Acknowledgement

high-locality and irregular accesses using a hierarchical

hybrid software-cache architecture. This hybrid softwareThis paper is supported by Natural Science Fund of China
cache architecture is similar to the buffer and cacheunder grant 61303050, the Hi-Tech Research and
scheme of IBM single source compile3]] COMIC [19] Development Program (863) of China
provided a new memory consistency model calledNo0.2011AA01A205, and around Five Top Priorities of
centralize release consistency where coherenc®ne-Three-Five Strategic Planning, CNIC(Grant No.
management is centralized in the PPE. It includes a pagE€NIC_PY-1404).

buffer implementation which is similar to a 4-way set

associative cache. Seo et aR9 further design an

extended set-index cache and adaptive executioReferences

strategies that select the optimal cache line size and

replacement policy. The software prefetching technique [1] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,

[20] is proposed to improve the performance of SCC. vy watanabe, and T. Yamazaki. Synergistic Processing
Looking both forwards and backwards schemes are given in Cell's Multicore Architecture. IEEE Micro26, 10-24,

to minimize the cache pollution caused by prefetching. March/April 2006.

To gain the best performance, IBM single source [2]IBM, Sony, and Toshiba. Cell Broadband
compiler B] adopts SCC and direct buffering for irregular Engine Architecture. IBM, 2011.
and regular accesses respectively. Chen et 8. | http://www.ibm.com/developerworks/power/cell/

presented a compile-time and run-time analysis method to[3] K- O'Brien, K. O'Brien, Z. Sura, T. Chen, and T. Zhang.
maintain the coherence of SCC and buffers. A global ~ Supporting OpenMP on Cell. International Journel of
data-flow analysis was proposed to reduce the overhead[Parallel Programming (IJPPJ5, 289-311, June 2008.

of run-time coherence check. In this paper, we give an /4 Operr:MP,http_.//openrr]np.org/vvlp/”) 0
inter-procedure buffered array identification algoritton t 2} fTérCthzn’Ci-lI}_énl’ET- Zroiggs?)tr? . %I;%cesc:;a;tllqrégln?;?nﬂnal
increase the precise of the global data-flow analysis as to = P ' ;

d th b f fi h heck Conference on Supercomputing (ICS’08), 2008.
reduce the number of run-ime conerence CNecks. [6] T. Chen, Z. Sura, K. O'Brien, and K. O’'Brien, "Optimizing

Stream reuse technique3([31,32] are proposed to the use of static buffers for DMA on a CELL chip,” in Proc.
optimize stream programs on stream processors[33, 34] of the International Workshop on Languages and Compilers
which also has limit local memory. Our optimizations are for Parallel Computing (LCPC’06). Springer Berlin, 2006,
to improve data transfer for OpenMP programs. To the pp. 314-329.
best of our knowledge, we present the first method to [7] Tao Liu, Haibo Lin, Tong Chen, John Kevin O’Brien, Ling
exploit the data reuse between SCC and buffers on Shao, "DBDB: optimizing DMA transfer for the Cell BE
Cell-like systems. Architecture”, in Proc. of the International Conference on

Supercomputing (ICS '09),2009.

[8] Haibo Lin, Tao Liu, Lakshminarayanan Renganarayanan,

Huoding Li, Tong Chen, Kevin O’Brien, Ling Shao:
7 Conclusion Automatic Loop Tiling for Direct Memory Access. IPDPS

2011: 479-489

[9] http://cetus.ecn.purdue.edDetus Release 1.3, June 2011.
In this paper, we proposed a set of data reusdl10]Bacon, D, Graham, S.; Sharp, O. "Compiler
optimizations for the buffer and software controlled Transformations for High Performance Computing”;
cache. We first give optimization techniques (including ~ ACM Computing Surveys26, pp. 345-420, Dec. 1994.
basic buffer2buffer data reuse, Retaining Buffered Data11]John Ng,Dattatraya Kulkarni,Wei Li,Robert Cox,and
and pipelining model) for data reuse between the buffers ~ Scott Bobholz, " Inter-procedural Loop Fusion, Array
to reduce the number of DMA operations and to minimize Contraction and Rotatlon,ln 12th Intern_atl(_)nal Confe_eenc
the amount of transferred data. After buffer2buffer data 0 Parallel Architectures and Compilation Techniques
reuse optimizations, the data reuse optimizations betwee 5 |(:PA(|E|T OIB)k'ZOO?j' K. K dv. An imol i ‘
the software controlled cache and buffer are performed td~2 avad anl bound Znne y.l n imp emenltat.'on 0
improve the performance of irregular applications. Interprocedural bounded regular section analysis. IEEE
. . . Transactions on Parallel and Distributed SysteBns350-

Further, an inter-procedure buffer array identification 360, 1991.
algonthm is given to improve the pl’eCISIOI”I.Of data flow [13] Chen, T. Raghavan, R. Dale, J. N. Iwata, E., Cell
analysis as to reduce the overhead of run-time coherence " goadhand Engine Architecture and its first implementation

checks. The experimental results show that our 5 performance view, IBM JOURNAL OF RESEARCH
optimizations provide many opportunities for buffer and AND DEVELOPMENT, 200751, pages 559-572.
cache. The transferred data amount is reduced by 16.35%4] H. Jin, M. Frumkin, and J. Yan, "The OpenMP

on average. Our optimizations further reduce 19.7% of implementation of NAS parallel benchmarks and its
the average execution time. The run-time coherence performance.” NAS Technical Report NAS-99-011, NASA
maintenance overhead is reduced significantly. Ames Research Center, Moffett Field, CA, October, 1999.

(@© 2015 NSP
Natural Sciences Publishing Cor.

http://www.ibm.com/developerworks/power/cell/
http://openmp.org /wp/
http://cetus.ecn.purdue.edu

Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015)www.naturalspublishing.com/Journals.asp %N =) 315

[15] IBM DevloperWorks. Cell broadband [29] S. Seo, J. Lee, and Z. Sura, "Design and implementation
engine resource center. http://www.ibm.com/ of software-managed caches for multicores with local
developerworks/power/cell/downloads.html. memory,” in Proc. of the 15th International Symposium

[16] IBM. Software Development Kit for Multicore on High-Performance Computer Architecture (HPCA'Q9),
Acceleration version 3.0, Programmer’'s Guide. IBM, 20009.
2007.http://www.ibm.com/developerworks/power/cell/ [30] Abhishek Das, William J. Dally, and Peter Mattson.

[17] Parallel and High Performance Applicational Software ~ Compiling for stream processing. In PACT '06: Proceedings
Exchange Editorial Committee. Omni OpenMP compiler of the 15th international conference on Parallel architiesst
project.http://phase.hpcc.jp/omni and compilation techniques, pages 33-42, New York, NY,

[18] Manjikian, N.; Abdelrahman, T.; "Fusion of Loops for USA, 2006.

Parallelism and Locality”; IEEE Transactions on Parallel [31] Xuejun Yang, Ying Zhang, Jingling Xue, lan Rogers, Gen
and Distributed Systems; pp. 193-209, Feb. 1997. Li, and Guibin Wang. Exploiting loop-dependent stream

[19]Lee, S. Seo, C. Kim et al., "Comic: A Coherent reuse for stream processors. In PACT '08: Proceedings of
Shared Memory Interface for Cell BE,” in Proc. the the 17th international conference on Parallel architestur
17th international conference on Parallel Architectunes a and compilation techniques, pages 22- 31, 2008.
Compilation Techniques (PACT’08), 2008. [32] Xuejun Yang, Li Wang, Jingling Xue, Yu Deng, Ying Zhang:

[20] T. Chen, T. Zhang, Z. Sura, and M. G. Tallada, "Prefatghi Comparability graph coloring for optimizing utilizatiorf o

Iregular References for Software Cache on Cell” in Proc. ~ Stréam register files in stream processors. in PPoPP 09:
of the sixth annual IEEE/ACM international symposium on Proceedings of the 14th ACM SIGPLAN symposium on
Code generation and optimization (CGO’08), 2008, pp. 155- Principles and practice of parallel programming(PPOPP
Toa. 2009). New York, N, USA: ACM: 111-120.

. 33] Intel many integrated core architecture.
[21] P. Bellens, J. M. P?erez, R. M. Badia, and J. LabartdSGel [oY 0 €
A Programming Model for the Cell BE Architecture. In http://en.wikipedia.org/wiki/InteMIC, Oct. 2012. (from

Proceedings of the ACM/IEEE SC2006 Conference Internet) . .
on High Performance Networking and Computing [34] C. Intel, Knight Corner Software Developers Guide elnt
(Supercomputing’06), page 86, 2006. 2012.

[22] S. Schneider, J.-S. Yeom, B. Rose et al., "A Comparison
of Programming Models for Multiprocessors with Explicitly
Managed Memory Hierarchies,” in P_PoPP ’09:_ Pr_oceedings Jue Wang is
of thg 14th ACM SIGPLAN Symposium on Principles and currently working as
practice of parallel programming. New York, NY, USA: a associate professor
ACM, 2008, pp. 131-140. - -

. . . in the supercomputing

[23] C. H. Crawford, P. Henning, M. Kistler, and C. Wright. ter of Chinese Academ
Accelerating Computing With the Cell Broadband Engine center ademy

; of Science. The motivation
Processor. In Proceedings of the 2008 ACM Conference on behind his work is to improve
Computing Frontiers (CF08), pages 3-12, 2008. . :

[24] O. S. Unsal, R. Ashok, I. Koren et al., "Cool-cache fot ho soft sys'te'ms by increasing the
multimedia,” in Proceedings of the 34th annual ACM/IEEE productlv!ty of p.rogrammers
international symposium on Microarchitecture (MICRO34). and by increasing software
Washington, DC, USA: IEEE Computer Society, 2001, pp. . _ _ performance ~on modern
274-283. architectures including many cores clusters, GPU and

[25] Z. Radovi?c and E. Hagersten, "Removing the overhead!ntel MIC.
from software-based shared memory,” in Proc. of the 2001 .
ACM/IEEE conference on Supercomputing (SC’'01). New Yangang Wang IS
York, NY, USA: ACM, 2001, pp. 56-56. an associate researcher

[26] C. A. Moritz, M. Frank, and S. P. Amarasinghe, "Flexcech in Supercomputing Center
A framework for flexible compiler generated data caching,” of Chinese Academy
in the Second International Workshop on Intelligent of Sciences. His
Memory Systems (IMS’00). London, UK: Springer-Verlag, research interests include
2001, pp. 135-146. computational mathematics

[27]J. Balart, M. Gonzalez, X. Martorell et al., "A Novel and high performance
Asynchronous Software Cache Implementation for the Cell- computing.

BE processor,” in Proc. of the 20th International Workshop
on Languages and Compilers for Parallel Computing
(LCPC'07), 2007.

[28] M. Gonz'alez, N. Vujic, X. Martorell et al., "Hybrid
access-specific software cache techniques for the Cell BE
architecture,” in Proc. the 17th international conference
on Parallel Architectures and Compilation Techniques
(PACT’08), 2008, pp. 292-302.

(@© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.ibm.com/ developerworks/power/cell/
http://phase.hpcc.jp/ omni
http://en.wikipedia.org/wiki/Intel_MIC

	Introduction
	Buffer2buffer Data Reuse Optimization
	Buffer2cache and Cache2buffer Optimizations
	Identifying Buffered Arrays
	Performance Evaluation
	Related work
	Conclusion

