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Abstract: Emerging heterogeneous multi-core systems, such as the IBMCell BE, are deployed with multiple hardware accelerators
to enhance the performance of the systems. In these systems,each accelerator includes its own local memory where software
controlled DMA transfers are provided to utilize the memorybandwidth. Two important software controlled management methods
(direct buffering and software controlled cache) are applied in regular and irregular references, respectively. The run-time coherence
maintenance is performed when the same global memory location is referenced by both software controlled cache and buffer.This
paper proposes a BCDR framework to exploit data reuse for buffers and software cache. The framework includes buffer2buffer data
reuse optimizations, buffer2cache/cache2buffer data reuse optimizations and buffered array identification. For buffer2buffer data reuse
optimizations, the Retaining Buffered Data technique and pipelining optimization are given to optimize critical region after a basic
data reuse optimization. To make use of the opportunity induced by buffer2buffer optimizations, the buffer2cache/cache2buffer data
reuse optimizations are presented to improve the performance of applications with irregular accesses. Furthermore, abuffered data
identification algorithm is presented to increase the precise of global data-flow analysis for the coherence maintenance between SCC
and buffers. The experimental results show that our optimizations expose many opportunities for both buffer and cache.The transferred
data amount between the local store and global memory is reduced by 16.35% on average for all cases. Our optimizations further reduce
19.7% of the average execution time. In addition, the run-time coherence maintenance overhead is reduced significantly.
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1 Introduction

Multi-core systems with multiple hardware accelerators,
such as the Cell Broadband Engine (Cell BE)
architecture, are promising platform for parallel
computing. The Cell BE[1,2] is comprised of 8 SPEs and
explicitly managed memory hierarchies. Each SPE has its
own 256KB fast local memory called a ”local store”.
There is not hardware coherence between the local stores
or between the local stores and global system memory.
This memory design requires programmers not only to
judiciously insert DMA operations to use fast local
memory effectively, but also to explicitly orchestrate both
data and codes to fit in the SPE’s local store. How to
effectively manage data of the memory hierarchy has
been growing research and industry interest.

The IBM Single Source Compiler [3] for Cell BE
takes an OpenMP [4] program as input due to OpenMP’s
ease of use and widely acceptance in the industry and
research area. The compiler automatically generates

binaries for the PPE and SPE on a Cell BE chip. Two
important methods proposed in the IBM Single Source
Compiler manage the communication between these local
stores and the global system memory. These methods are
direct buffering and Software Controlled Cache (SCC).
The direct buffering technique is used in regular
applications whose access patterns are predictable by
precise compile-time analysis. For irregular applications
in which access patterns are not analysable at
compile-time phase, the SCC, which simulates the
operations of hardware cache, is an effective method to
transfer data between the local store and global memory.
The SCC is also able to be used in regular accesses, but
the overhead of cache look-up and individual data transfer
for cache misses is unavoidable. Especially, SCC is
inefficient for regular applications whose access patterns
have poor locality. Thus the optimal method suggested by
Ref.[3,5] is to combine buffer and SCC to support regular
accesses and irregular accesses, respectively. When both
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Fig. 1: An example to optimize the code by direct buffering

SCC and buffer reference the same global memory
location, the compile-time/run-time coherence
maintenance [5] is performed to check and update data of
SCC at the entry or exit of the direct buffer.

When the data of an innermost loop can not fit in the
available space in the local store, the buffer optimization
techniques [6] block the loop and insert corresponding
data transfer operations for regular references.
Furthermore, T. Liu et al. [7] focuses on an independent
loop to give reference grouping, buffer dependence
checking and buffer compression to reduce the data
transferred between the local stores and global system

memory. the DMATiler [8] applies compressed data
transfers and DMA commands to achieve the best DMA
performance for a given loop nest. The above
optimizations can be complementary to our work. For a
parallel region involving multiple loops or work-sharing
constructs, the key insight of this paper is how to optimize
inter-loop (or inter-work-sharing constructs) to reuse data
between the buffers or the buffers and SCC. The WS1 and
WS2 shown in Fig. 1 (a) represent two work-sharing
constructs in OpenMP. After the loop normalization of the
WS1 and WS2, iterations are divided into chunks, and the
chunks are assigned to the threads according to the
default scheduling (static scheduling) of OpenMP. Fig.
1(b) and Fig. 1(c) present the optimized intermediate
codes of W1 and W2 by using the single buffer technique,
respectively. The loops are blocked using a block factor of
bf due to the limit of available space in the local store.
When the data is first brought into buffer, the buffer data
become live. When the data is freed or written into global
memory, the buffer data is killed. Merging the outer loop
can eliminate the DMA get operation of array a and reuse
the data residing in the buffer bufa.

In this paper, we propose a Buffer-Cache Data Reuse
(BCDR) framework, which includes buffer2buffer data
reuse optimizations, and buffer2cache/cache2buffer data
reuse optimizations, and buffered array identification. The
overview of the BCDR framework is given in Fig. 2. A
basic buffer2buffer data reuse optimization, which is
based on OpenMP relaxed consistency model, is first
given to restructure loops to reduce buffer data. After the
basic buffer2buffer optimization, a Retaining Buffered
Data (RBD) technique is used to improve the
performance of critical and ordered regions. And a
pipelining model utilizes the communication between the
local stores to optimize the critical regions in OpenMP
program instead of the communication between the local
store and global system memory. Additionally, the
buffer2buffer data reuse optimizations may extend the
live range of buffers, which provides an opportunity to
reuse data between buffers and SCC. To utilize this
opportunity, the buffer2cache (or cache2buffer)
optimizations are proposed to improve the performance of
applications by checking buffers (or SCC). The above
optimizations may make the run-time coherence check
operations relatively centralized. The buffered array
identification is implemented to improve the precision of
data-flow analysis [5] which is used to trace the access
sequence of buffer and SCC. Our experiments show that
the raise of the precision can reduce the number of
coherence checks effectively.

The OpenMP version of NAS benchmark is used to
evaluate our optimizations. The transferred data amount is
reduced by 16.35%, on average, for all cases. Furthermore,
our optimizations reduce 19.7% of the average execution
time.

Our compiler-time analysis procedure of BCDR
framework has been implemented in Cetus compiler
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Fig. 2: Buffer-cache data reuse framework

framework [9] which is a source-to-source translator. The
major contributions of this paper are the following:

(1) We propose a basic buffer2buffer data reuse
optimization technique to effectively reuse data residing
in buffers. For critical regions in OpenMP, the RBD
techniques and pipelining model are proposed to reduce
the communication amount between the local store and
global system memory.

(2) We present cache2buffer and buffer2cache data
reuse optimization techniques to reuse data between
buffer and SCC. Especially for applications with irregular
array accesses, the buffer2cache optimization not only
reduces the communication amount but also increases the
hit ratio to fetch data in the local store.

(3) We give a buffered array identification algorithm to
enhance the precise of data-flow analysis for buffer. Using
this algorithm, the coherence maintenance overhead can
be reduced significantly.

(4) We give detail experiments and communication
analysis for the performance of our optimizations. The
rest of the paper is organized as follows: Section 2 gives
our buffer2buffer data reuse optimization. Section 3
presents buffer2cache and cache2buffer data reuse
optimizations to improve the performance of irregular
applications. Section 4 describes the algorithm to identify
buffered array for precise data-flow analysis. Section 5
gives the experimental results and analysis to demonstrate
the effectiveness of our optimizations. Section 6 reviews
related work. Finally, Section 7 concludes the paper.

2 Buffer2buffer Data Reuse Optimization

OpenMP provides a relaxed consistency shared-memory
model. Each thread’s temporary view of memory is not
required to be consistent with memory at all times. The
OpenMP flush operation enforces the consistency
between the temporary view and memory. It is used in
flush directive and implicit operations, such as barrier
directive, exit from work-sharing region, entry to and exit
from parallel, etc. In an OpenMP program, the global
flush splits the parallel region into two parts. We call the
sub-region between two global flushes ”flush-based”

Fig. 3: Overview of buffer2buffer data reuse optimization

region. Back to the example shown in Fig. 1(a), a parallel
region surround two work-sharing constructs WS1 and
WS2. fp0 and fp2 present global flush operations implied
at the entry and exit of parallel region. fp1 is a flush point
implied at the exit of WS2. These flush operations split
the parallel region of OpenMP program into two
flush-based regions. In our cases, if a global flush is
encountered, all data will be killed and enforced to write
to memory from SCC or buffers in the local stores.
OpenMP’s memory model provides buffer reuse
opportunities between multiple loops or work-sharing
constructs.

In this section, we first give a basic buffer2buffer data
reuse optimization. For some special cases, we then
present a RBD technique and give a pipelining model to
utilize the bandwidth between the local stores.

2.1 Basic Buffer2buffer Data Reuse
Optimization

Fig. 3 shows the overview of the basic buffer2buffer data
reuse optimization. We first identify flush-based region in
the control-flow graph. We then perform the
pre-processing for data reuse within each flush-based
region and between the flush-based regions. If there is not
data reuse opportunity, the true code transformation phase
will be issued.

For the pre-processing algorithm to reuse data within
a single flush-based region, the conditions to check if two
candidate loops are available for data reuse transformation
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are similar to the conditions of loop fusions [10]. Their
main differences include the following items:

(1) The basic buffer2buffer data reuse optimization
only focus on the loops involving the regular references.

(2) When block factor is equal to 1, the data size of
transformed codes is required to fit in the available local
store space.

(3) The mapping of iterations on threads is identical
for both candidate loops.

(4) The pre-processing algorithm is unavailable for
the codes surrounded by the synchronization constructs
(such as the critical construct and ordered construct, etc.)
and lock routines. A RBD technique and a pipelining
model (the detail are given in the sub-section 2.2 and 2.3)
are proposed to improve the performance for this kind of
codes.

If two candidate loops meet the conditions of data
reuse transformation, corresponding block factor will be
re-calculated according to the available space in local
store, the access pattern of each references and the
buffering scheme(such as single- double- or triple-
buffers)[6]. The following step is to record the code
transformation information including the locations (to
insert the buffer allocation operations, DMA get/put
operations, etc) and the data structure to store the
transformation from global memory address to buffer
address. The advanced loop fusion judgment and global
loop fusion [10] can be applied to improve our
pre-processing algorithm and code transformation for the
buffer2buffer data reuse.

The pre-processing algorithm for inter-region is
similar to the algorithm for data reuse within a
flush-based region. The first step of the algorithm is to
check the data reuse for two adjacent candidate loops in
different flush-based regions. In the code transformation
phase, the data write-back operation for buffer (if needed)
is required to be inserted before the global flush.

Compiler-time/run-time buffer dependence check is
required to ensure the correctness of program execution.
This dependence check proposed by Liu et al. [7] is
applied in the single loop. It is used to determine whether
two references have different access patterns but access
the same (or overlapped) memory space. If the buffer
dependence for two candidate references can not be
resolved at compile-time phase, run-time dependence
check will be issued. In our work, this method is extended
to determine whether two references in different loops
access the same (or overlapped) memory space. If so,
overlapped buffers are merged into one.

In the code transformation phase, the traditional loop
fusion transformation is unavailable due to the OpenMP
semantic and loop strip-mining. For the program
presented in Fig. 1(a), the intermediate codes after the
loop strip mining is presented in Fig. 4(a). The innermost
loops L1 and L2 shown in Fig.4(a) can not be merged, but
their outer loops L1’ and L2’ may be merged using the
loop fusion techniques. Our code transformation phase
generates the merged code shown in Fig. 4(b). The direct

Fig. 4: Example of code transformation using our pre-processing
algorithm

buffer size is computed according to the block factor and
references. The final step of code transformation is to
insert the buffer allocate/free and data transfer operations,
and to translate the accesses to global memory into local
buffers. The optimized codes using direct buffers are
presented in Fig. 4(c). To merge the DMA operations
effectively, Regular Section Descriptors (RSD) [12] are
used to summarize array references.

2.2 RBD Technique

The above analysis and transformation can not be applied
in the loop within the critical and ordered region, since
the basic buffer2buffer data reuse optimization may result
in the expansion of the synchronization region. For
example, the loop L3 and L4 in Fig. 5(a) can not be
merged. Using the conservative method [5], the data of
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Fig. 5: Example of data reuse optimization for critical region

array pa in the local store is not killed until the critical
region is encountered. The implicit flush fp1 emits the
data of pa to the global memory, which results in the loss
of data reuse between the loop L3 and L4. To reuse the
data of pa as many as possible, the optimized intermediate
codes are given in Fig. 5(b). The variable lb and ub, which
are computed at compile-time phase, are used to indicate
the range of retained data in bufpa. These variables are
determined by the available space in the local memory.

Fig. 6: Pipelining model for critical region

2.3 Pipeline Model for Critical Regions

From OpenMP specification [4], a thread waits at the
beginning of a critical region until no thread is executing
a critical region. As a result, each thread executes the
codes in the critical region. If there is a reference for a
shared array in the critical region, the buffered data for
the shared array can be reused for the current thread team.
Thomas Chen [13] indicated that the bandwidth of
SPE-to-Memory DMA transfers is lower than that of
SPE-to-SPE DMA transfers. The integrated memory
controller (MIC) provides a peak bandwidth of 25.6GB/s
to the global memory, while the Element Interconnect
Bus (EIB) provides a peak bandwidth of 204.8GB/s for
intra-chip data transfers among the local stores.

In this sub-section, we give a pipelining model which
not only hides the computation in the critical region but
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also utilizes the DMA operations between the local stores
on chip instead of the DMA operations between the local
stores and global memory. For example, in Fig. 5, the
critical region has a loop L4 where a represents a shared
array and pa represents a private array. The loop
strip-mining is applied in the loop L4 to reduce the
memory footprint. Iterations of loop L4 are divided into
chunks to satisfy the available space in local store. The
execution diagram of transformed codes is shown in Fig.
6. We use two signal registers to ensure the correctness of
pipelined program. A link arrow represents the sending
direction of signal. Note that the thread Trd0 (or Trd7)
reads (or writes) the shared arrays from (or to) the global
memory only once.

3 Buffer2cache and Cache2buffer
Optimizations

The buffer2buffer data reuse optimization not only makes
DMA operations relatively centralized but also gives an
opportunity for the case where data of buffers (or SCC) can
be reused by SCC (or buffers). After the buffer2buffer data
reuse optimizations are performed, the buffer2cache and
cache2buffer data reuse optimizations are used to enhance
the data reuse between the buffer and SCC.

The run-time SCC technique [3] is used in irregular
refererences due to the difficulty of analysis of irregular
data access patterns at compile-time phase. The
work-sharing construct WS3 and corresponding
transformed code are shown in Fig. 7 (a) and Fig. 7 (b).
For the further data reuse, the data of array b is retained as
many as possible. In Fig. 7 (c), the transformed code of
WS4 adopts the buffers and SCC because the construct
WS4 includes both regular references (a[i] and c[i]) and
irregular reference (b[c[i]]). Due to the implicit flush
operation between WS3 and WS4, the conservative
method [3,5] can not ensure that the SCC used by WS4
can reuse the array b data buffered in WS3. The run-time
function call bufferlookup is developed to find b[c[i]] in
the buffer bufb in local store. The buffer structure, which
is designed according to the flat buffer [7], consists of
buffer directory and buffer storage. The buffer directory is
used in run-time lookup of buffer or cache. The 128-bit
SIMD instructions are used to improve the performance
of lookup operation.

T. Chen [5] indicated that the buffer-check-cache
operation is only used in three cases to ensure the
correctness of program execution. In our cases, the
buffer-check-cache operation can be done as the
cache2buffer optimization to reuse the data in cache. The
data in the SCC are retained to be reused by the following
buffers. In our compiler implementation, a simple
use-use/use-def analysis is developed for adjacent loops
to find the data reuse opportunities between the buffers
and SCC. To improve the precise of the analysis, the
buffered array identification algorithm is given in the
following section.

Fig. 7: Example of buffer2cache optimization

4 Identifying Buffered Arrays

For the applications with SCC and direct buffer, the
coherence of cache and buffer has to be maintained to
ensure the correctness of program execution according to
OpenMP relaxed-consistency model. Our optimization
only extends the live range of direct buffer and doesn’t
change the semantic of relaxed consistency model in
OpenMP. Thus, for the coherence problem of buffer and
SCC, the compile-time/run-time SCC check technique
and corresponding global data flow analysis [5] proposed
in T. Chen can also be applied in our cases. T. Chen
indicated that the run-time coherence checks are only
invoked at the beginning/end of the live range of a direct
buffer. In our cases, the extensions to the live range of
direct buffer may decrease the total overhead of
coherence checks, but it makes the run-time check
operations relatively centralized. A precise array
data-flow analysis can decrease the overhead of run-time
check operations effectively. In this section, an
inter-procedural buffered arrays identification algorithm,
shown in Fig. 8, is proposed to improve the precision of
global data-flow analysis in Ref.[5].

In addition, the RSD, which is incorporated into the
global data analysis [5], can also reduce the number of
coherence maintenance significantly. Fig. 9 shows the
total number of run-time coherence check operations after
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Fig. 8: Inter-procedural algorithm to identify buffered arrays

our precise data flow analysis. For NAS OpenMP
benchemarks [14], there is only one DMA put operation
(from IS) which needs the run-time coherence checks.

5 Performance Evaluation

We have implemented a subset of OpenMP directives and
our optimizations using the Cetus compiler [9] and
self-developed run-time library. The runtime library
which is implemented using the Cell SDK 3.0 [15,16]

Fig. 9: The number of coherence maintenance

Fig. 10: Performed Optimizations

consists of SPE component and PPE component. Since
current Cetus compiler only supports C+OpenMP, all of
test cases adopt corresponding C version. The C +
OpenMP program is translated into C + run-time library
API. For translated codes, some array subscript
transformations (such as the translation from the address
of the global memory to one of buffer or cache in the
local store) and code partitions (for large application to fit
in the local store) are implemented manually.

To comprehensively evaluate the performance of our
optimizations, we employ the C + OpenMP version [17]
of NAS benchmark from Omni OpenMP compiler
project. The experiments are conducted on a QS20 Cell
Blade which has two Cell BE chips and runs RedHat
Linux ES 5.1. We only use one Cell BE chip. A command
numactl is used to bind our programs to one Cell chip.
The baseline version adopts the double-buffer technique
[6] to transform loops (only containing regular
references) without the optimizations proposed in section
2, 3 and 4. The total size of buffer is 64k. The SCC,
which is used in irregular references, is a 4-way
associative cache with 128-byte cache line. The total size
of SCC is 64k.

We summarize our optimizations for each application
in Fig. 10. The buffered array identification and basic
buffer2buffer data reuse technique can be used in all
cases. The RBD technique and pipeline model focus on
the critical constructs which exist in EP, IS and LU. The
buffer2cache and cache2buffer data reuse techniques are
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Fig. 11: Communication data reduction (Percentage) between the
local memory and global memory

applied in irregular applications (including CG, FT and
IS) where the same array is referenced by both the cache
and buffer.

5.1 Communication Data Reduction between
Local Memory and Global Memory

The buffered array identification algorithm can enhance
the precise of global data flow analysis to reduce the
overhead of run-time coherence check. Other
optimizations can reduce transferred data between the
local memory and global memory. Fig. 11 shows the data
reduction (between the local memory and global
memory) for each application. The input data of NAS
benchmark employ Class A.

In the second row of Fig. 11, since the benchmark EP
and IS have only 8 loops which can be tiled by direct
buffering and reference very small amount of array data,
these benchmarks gain a little of improvement using the
basic buffer2buffer data reuse. For the benchmark FT, our
optimizations are difficult to find the data reuse due to the
complex control-flow of program. The advanced loop
fusion technique [18] can be applied to find more data
reuse opportunities. In the forth column, the pipelining
model replace the communications between the local
stores and global memory with the communications
between the local stores. The communication data
reduction depends on the data amount referenced by the
critical region. For the buffer2cache and cache2buffer
data reuse optimizations, the size of reused data depends
on the ratio of the retained data size to the size of work set
of irregular references because the input data of IS and
CG is random array.

5.2 Execution Time of Optimization Techniques

Fig. 12 shows execution time on 8 SPEs for the baseline
version and different optimization techniques. The actual

Fig. 12: Normalized execution time on 8 SPEs for different
optimization techniques

execution time is normalized to the time for the baseline
version for each application. The bar marked y baseline
denotes the baseline version without the optimizations
presented in section 2, 3 and 4. The bar marked by op1
represents the version using the basic buffer2buffer data
reuse optimization. The bar marked by op2 represents the
version which introduces RBD technique into the version
marked by op1. The bar marked by op3 represents the
version which introduces pipeline model into the version
marked by op2. The rest can be done in the same manner.
The last bar marked by opt6 contains the basic
buffer2buffer data reuse, RBD technique, pipeline model,
buffer2cache data reuse, cach2buffer data reuse and
buffered array identification optimizations.

The basic buffer2buffer data reuse technique not only
reduces the number of DMA opertions and corresponding
data amount but also minimizes the wait time between the
computation and communication. In Fig. 12, the numbers
for the basic buffer2bufer data reuse technique conform to
the result shown in Fig. 11. The buffer2cache data reuse
can reduce the communication amount between the local
store and global memory as well as the number of cache
miss and corresponding overhead. For CG, our
buffer2cache data reuse increases the hit ratio of local
store (including the hit of SCC and buffer in the local
store) from 59% to 96%. For IS, the hit ratio is increased
from 3.3% to 6.1%.

5.3 Runtime Overhead of Optimization
Techniques

We measured the runtime overhead of proposed
optimization techniques. The basic buffer2buffer data
reuse technique and buffered array identification does not
give rise to the overhead. The main run-time overhead of
our optimization techniques include the overhead of
branch statements in the RBD technique, the overhead of
branch statements and lookup operations for buffer2cache
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Fig. 13: Run-time overhead of proposed optimization techniques
on 8 SPEs (Percentage)

data reuse and cache2buffer data reuse optimization, and
the overhead of coherence maintenance. The overhead of
loop up operations and coherence maintenance can be
reduced using SIMD instructions and be carefully
overlapped with the non-blocking DMA operations.
Additionally, the coherence maintenance has been
reduced to one issue in our cases. It can be ignored
compared to the total execution of program. Fig. 13 gives
the run-time overhead of our optimizations (including the
RBD technique, buffer2cache data reuse and cache2buffer
data reuse) for on 8 SPEs.

5.4 Performance Comparison

Fig. 14 shows the comparative result of the speedups of
our BCDR framework and that of the single-source
OpenMP compiler in the Cell SDK 3.0. The speedups are
computed using 8 SPEs over 1 PPE. The bar CBEXLC
represents the speedups of applications using
single-source OpenMP compiler. The bar BCDR
represents the speedups of applications using our BCDR
framework. Lee et.al. [19] found that the actual
performance of the single-source OpenMP complier is
not good as the numbers reported in Ref. [5,7]. The
reason [7] may be that some loops in the benchmark
applications were manually modified to expose more
optimization opportunities. Thus, we compare with the
best experimental results reported in Ref. [7].

From Fig. 14, we can find that our BCDR framework
performs better than single-source OpenMP compiler in
two applications (CG and LU). For EP and IS, our BCDR
framework performs as well as single-source OpenMP
compiler. For FT, MG, SP, our framework performs worse
than single-source OpenMP compiler. However, note that
many compiler optimizations (such as DBDB framework
[7] and cache prefetching [20]), which enhance the
performance of single loop of program, have been
incorporated into the single-source OpenMP compiler.
These optimizations which boost performance results
reported in Ref.[7] are complementary to our BCDR

Fig. 14: Performance comparisons of BCDR framework and
single-source OpenMP compiler

framework. Additionally, the Ref. [7] indicates that some
loops have been modified manually (before OpenMP
compiler optimizations) to expose more parallelism. But
our BCDR framework adopts original C version of NAS
benchmark provided by Omni OpenMP compiler project.
We believe that the optimizations of BCDR framework
can be used as the optimization of the single-source
OpenMP compiler to improve the performance of
applications.

6 Related work

Direct buffering, which is only available for regular data
accesses in loop nests, is used to store data referenced by
loop after strip mining. Chen et al. [6] developed a
performance model of direct buffer for single DMA
transfer. This model focuses on continuous memory
accesses to compute block factor and select the buffer
scheme among double- or triple- buffer. Furthermore, Liu
et al. [7] designed a Direct Blocking Data Buffer (DBDB)
to reuse buffer data for the single innermost loop. They
provided two different buffer structures (flat buffer and
compressed buffer) for contiguous data accesses and
discontinuous accesses, respectively. A performance
model was proposed to guide the DMA transfer scheme
selection among single-DMA, multi-DMA and DMA-list.
Cell SuperScalar [21], CellGen [22] and IBM ALF [23]
automate double buffering to overlap DMA and
computation. These buffer optimizations can be
incorporated into our framework to improve the
performance of single loop execution. Our BCDR
framework is to reuse data between buffers and SCC.

SCC is an effective and elegant method for irregular
data accesses which are unpredictable at compile-time
phase. A lot of research efforts [24,25,26] have been
focused on SCC. For Cell BE processor, Balart et al. [27]
implemented an asynchronous software cache to overlap
communication and computation. Furthermore, Gonzalez
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et al. [28] optimize the performance of applications with
high-locality and irregular accesses using a hierarchical,
hybrid software-cache architecture. This hybrid software
cache architecture is similar to the buffer and cache
scheme of IBM single source compiler [3]. COMIC [19]
provided a new memory consistency model called
centralize release consistency where coherence
management is centralized in the PPE. It includes a page
buffer implementation which is similar to a 4-way set
associative cache. Seo et al. [29] further design an
extended set-index cache and adaptive execution
strategies that select the optimal cache line size and
replacement policy. The software prefetching technique
[20] is proposed to improve the performance of SCC.
Looking both forwards and backwards schemes are given
to minimize the cache pollution caused by prefetching.

To gain the best performance, IBM single source
compiler [3] adopts SCC and direct buffering for irregular
and regular accesses respectively. Chen et al. [5]
presented a compile-time and run-time analysis method to
maintain the coherence of SCC and buffers. A global
data-flow analysis was proposed to reduce the overhead
of run-time coherence check. In this paper, we give an
inter-procedure buffered array identification algorithm to
increase the precise of the global data-flow analysis as to
reduce the number of run-time coherence checks.

Stream reuse techniques [30,31,32] are proposed to
optimize stream programs on stream processors[33, 34]
which also has limit local memory. Our optimizations are
to improve data transfer for OpenMP programs. To the
best of our knowledge, we present the first method to
exploit the data reuse between SCC and buffers on
Cell-like systems.

7 Conclusion

In this paper, we proposed a set of data reuse
optimizations for the buffer and software controlled
cache. We first give optimization techniques (including
basic buffer2buffer data reuse, Retaining Buffered Data
and pipelining model) for data reuse between the buffers
to reduce the number of DMA operations and to minimize
the amount of transferred data. After buffer2buffer data
reuse optimizations, the data reuse optimizations between
the software controlled cache and buffer are performed to
improve the performance of irregular applications.
Further, an inter-procedure buffer array identification
algorithm is given to improve the precision of data flow
analysis as to reduce the overhead of run-time coherence
checks. The experimental results show that our
optimizations provide many opportunities for buffer and
cache. The transferred data amount is reduced by 16.35%
on average. Our optimizations further reduce 19.7% of
the average execution time. The run-time coherence
maintenance overhead is reduced significantly.

Acknowledgement

This paper is supported by Natural Science Fund of China
under grant 61303050, the Hi-Tech Research and
Development Program (863) of China
No.2011AA01A205, and around Five Top Priorities of
One-Three-Five Strategic Planning, CNIC(Grant No.
CNIC PY-1404).

References

[1] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic Processing
in Cell’s Multicore Architecture. IEEE Micro,26, 10-24,
March/April 2006.

[2] IBM, Sony, and Toshiba. Cell Broadband
Engine Architecture. IBM, 2011.
http://www.ibm.com/developerworks/power/cell/.

[3] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang.
Supporting OpenMP on Cell. International Journel of
Parallel Programming (IJPP),36, 289-311, June 2008.

[4] OpenMP,http://openmp.org/wp/.
[5] T. Chen, H. Lin, T. Zhang et al., ”Orchestrating data transfer

for the Cell/B.E. processor,” in Proc. of the International
Conference on Supercomputing (ICS’08), 2008.

[6] T. Chen, Z. Sura, K. O’Brien, and K. O’Brien, ”Optimizing
the use of static buffers for DMA on a CELL chip,” in Proc.
of the International Workshop on Languages and Compilers
for Parallel Computing (LCPC’06). Springer Berlin, 2006,
pp. 314-329.

[7] Tao Liu, Haibo Lin, Tong Chen, John Kevin O’Brien, Ling
Shao, ”DBDB: optimizing DMA transfer for the Cell BE
Architecture”, in Proc. of the International Conference on
Supercomputing (ICS ’09),2009.

[8] Haibo Lin, Tao Liu, Lakshminarayanan Renganarayanan,
Huoding Li, Tong Chen, Kevin O’Brien, Ling Shao:
Automatic Loop Tiling for Direct Memory Access. IPDPS
2011: 479-489

[9] http://cetus.ecn.purdue.edu, Cetus Release 1.3, June 2011.
[10] Bacon, D.; Graham, S.; Sharp, O.; ”Compiler

Transformations for High Performance Computing”;
ACM Computing Surveys;26, pp. 345-420, Dec. 1994.

[11] John Ng,Dattatraya Kulkarni,Wei Li,Robert Cox,and
Scott Bobholz, Inter-procedural Loop Fusion, Array
Contraction and Rotation,in 12th International Conference
on Parallel Architectures and Compilation Techniques
(PACT’03),2003.

[12] P. Havlak and K. Kennedy. An implementation of
interprocedural bounded regular section analysis. IEEE
Transactions on Parallel and Distributed Systems,2, 350-
360, 1991.

[13] Chen, T. Raghavan, R. Dale, J. N. Iwata, E., Cell
Broadband Engine Architecture and its first implementation:
a performance view, IBM JOURNAL OF RESEARCH
AND DEVELOPMENT, 2007,51, pages 559-572.

[14] H. Jin, M. Frumkin, and J. Yan, ”The OpenMP
implementation of NAS parallel benchmarks and its
performance.” NAS Technical Report NAS-99-011, NASA
Ames Research Center, Moffett Field, CA, October, 1999.

c© 2015 NSP
Natural Sciences Publishing Cor.

http://www.ibm.com/developerworks/power/cell/
http://openmp.org /wp/
http://cetus.ecn.purdue.edu


Appl. Math. Inf. Sci.9, No. 1, 305-315 (2015) /www.naturalspublishing.com/Journals.asp 315

[15] IBM DevloperWorks. Cell broadband
engine resource center. http://www.ibm.com/
developerworks/power/cell/downloads.html.

[16] IBM. Software Development Kit for Multicore
Acceleration version 3.0, Programmer’s Guide. IBM,
2007.http://www.ibm.com/developerworks/power/cell/.

[17] Parallel and High Performance Applicational Software
Exchange Editorial Committee. Omni OpenMP compiler
project.http://phase.hpcc.jp/omni.

[18] Manjikian, N.; Abdelrahman, T.; ”Fusion of Loops for
Parallelism and Locality”; IEEE Transactions on Parallel
and Distributed Systems;8, pp. 193-209, Feb. 1997.

[19] Lee, S. Seo, C. Kim et al., ”Comic: A Coherent
Shared Memory Interface for Cell BE,” in Proc. the
17th international conference on Parallel Architectures and
Compilation Techniques (PACT’08), 2008.

[20] T. Chen, T. Zhang, Z. Sura, and M. G. Tallada, ”Prefetching
Irregular References for Software Cache on Cell,” in Proc.
of the sixth annual IEEE/ACM international symposium on
Code generation and optimization (CGO’08), 2008, pp. 155-
164.

[21] P. Bellens, J. M. P?erez, R. M. Badia, and J. Labarta. CellSs:
A Programming Model for the Cell BE Architecture. In
Proceedings of the ACM/IEEE SC2006 Conference
on High Performance Networking and Computing
(Supercomputing’06), page 86, 2006.

[22] S. Schneider, J.-S. Yeom, B. Rose et al., ”A Comparison
of Programming Models for Multiprocessors with Explicitly
Managed Memory Hierarchies,” in PPoPP ’09: Proceedings
of the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming. New York, NY, USA:
ACM, 2008, pp. 131-140.

[23] C. H. Crawford, P. Henning, M. Kistler, and C. Wright.
Accelerating Computing With the Cell Broadband Engine
Processor. In Proceedings of the 2008 ACM Conference on
Computing Frontiers (CF08), pages 3-12, 2008.

[24] O. S. Unsal, R. Ashok, I. Koren et al., ”Cool-cache for hot
multimedia,” in Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture (MICRO34).
Washington, DC, USA: IEEE Computer Society, 2001, pp.
274-283.

[25] Z. Radovi?c and E. Hagersten, ”Removing the overhead
from software-based shared memory,” in Proc. of the 2001
ACM/IEEE conference on Supercomputing (SC’01). New
York, NY, USA: ACM, 2001, pp. 56-56.

[26] C. A. Moritz, M. Frank, and S. P. Amarasinghe, ”Flexcache:
A framework for flexible compiler generated data caching,”
in the Second International Workshop on Intelligent
Memory Systems (IMS’00). London, UK: Springer-Verlag,
2001, pp. 135-146.

[27] J. Balart, M. Gonzalez, X. Martorell et al., ”A Novel
Asynchronous Software Cache Implementation for the Cell-
BE processor,” in Proc. of the 20th International Workshop
on Languages and Compilers for Parallel Computing
(LCPC’07), 2007.

[28] M. Gonz‘alez, N. Vujic, X. Martorell et al., ”Hybrid
access-specific software cache techniques for the Cell BE
architecture,” in Proc. the 17th international conference
on Parallel Architectures and Compilation Techniques
(PACT’08), 2008, pp. 292-302.

[29] S. Seo, J. Lee, and Z. Sura, ”Design and implementation
of software-managed caches for multicores with local
memory,” in Proc. of the 15th International Symposium
on High-Performance Computer Architecture (HPCA’09),
2009.

[30] Abhishek Das, William J. Dally, and Peter Mattson.
Compiling for stream processing. In PACT ’06: Proceedings
of the 15th international conference on Parallel architectures
and compilation techniques, pages 33-42, New York, NY,
USA, 2006.

[31] Xuejun Yang, Ying Zhang, Jingling Xue, Ian Rogers, Gen
Li, and Guibin Wang. Exploiting loop-dependent stream
reuse for stream processors. In PACT ’08: Proceedings of
the 17th international conference on Parallel architectures
and compilation techniques, pages 22- 31, 2008.

[32] Xuejun Yang, Li Wang, Jingling Xue, Yu Deng, Ying Zhang:
Comparability graph coloring for optimizing utilization of
stream register files in stream processors. in PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming( PPOPP
2009). New York, NY, USA: ACM: 111-120.

[33] Intel many integrated core architecture.
http://en.wikipedia.org/wiki/IntelMIC, Oct. 2012. (from
Internet)

[34] C. Intel, Knight Corner Software Developers Guide. Intel,
2012.

Jue Wang is
currently working as
a associate professor
in the supercomputing
center of Chinese Academy
of Science. The motivation
behind his work is to improve
soft systems by increasing the
productivity of programmers
and by increasing software
performance on modern

architectures including many cores clusters, GPU and
Intel MIC.

Yangang Wang is
an associate researcher
in Supercomputing Center
of Chinese Academy
of Sciences. His
research interests include
computational mathematics
and high performance
computing.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
http://www.ibm.com/ developerworks/power/cell/
http://phase.hpcc.jp/ omni
http://en.wikipedia.org/wiki/Intel_MIC

	Introduction
	Buffer2buffer Data Reuse Optimization
	Buffer2cache and Cache2buffer Optimizations
	Identifying Buffered Arrays
	Performance Evaluation
	Related work
	Conclusion

