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Abstract: A number of theorems on contractive mappings for common fp@dts in partial metric spaces have been proved and
many of them apply to self maps. In this paper, we extend a aamfired point theorem on a partial metric space by Karapéhait.
so that it can apply to a non-self mapping in a metrically expartial metric space under specified conditions.
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1 Introduction and Preliminaries Each partial metri on X generates d, topologyp

on X with a base being the family of open ba{B(x,€) :
A number of researchers have developed theorems whiche X, & > 0} whereBp(x, &) = {y € X : p(x,y) < p(X,X) +

stipulate the conditions for fixed points to exist for pdrtia g} forall x € X ande > 0.

metric spaces, and in some cases, designed algorithms to

locate them. Definition 2. [4] Let (X, p) be a partial metric space and
The purpose of this study is to discuss the existence of{xn} be a sequence in X. Then

common fixed points of a pair of non-self mappings in the

context of partial metric spaces under certain conditions. () {Xn} converges to xe X if and only if
At this stage we introduce a few preliminaries that will P(X,X) = liMn_e0 P(X, Xn).

be useful in developing the theorem proved in this study. (i) {Xn} is called a Cauchy sequence if and only if there
exists (and is finitemn m— -+ P(Xn, Xm)-
Definition 1.[4] A partial metric space is a paifX, p), '

where X is a non-empty set and the mappinx X — R Definition 3. A partial metric spacéX, p) is said to be

is a function such that for all,y,z € X complete if every Cauchy sequerfog} in X converges,
(P0): 0 < p(x,X) < p(X,y), with respect tarp, to a point xe X such that
(P1): p(x,.x) = p(x.y) = P(Y;y) < x=Y, g
(P2): p(x,y) = p(y,X), and P(x) = lim _ p(Xn,Xm).

(P3): p(x,y) < p(x,2) + p(zy) — p(z,2).

The functionp in the partial metric space is called the
partial metric
Note that, owing to (P0) and (P1), we have

Lemma 1.[4] Let (X, p) be a partial metric space. Then
(X, p°) is a metric space defined for allxe X, where

P°(X,Y) = 2p(X,y) — P(X,X) — P(Y,Y)-

p(xy) =0 x=y. 1 , o
In this study, we ternp® as the metric derived from the
An example of a partial metric spa¢X, p) is where  partial metricp.
X = RT, the set of non-negative real numbers, and the  \we take note of the following lemma.
mappingp: X x X — R* is defined as
p(x,y) = max{x,y} for all x,y € R*. Lemma 2.[1]
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(i) A sequencedx,} is a Cauchy sequence in the partial
metric space(X,p) if and only if it is a Cauchy
sequence in the metric spaé, p®).

(i) A partial metric spacgX, p) is complete if and only if
the metric spacéX, p°) is complete.

Lemma 3.Let (X, p) be a partial metric space and lefp

As an example, the partial metric spa@e", p) where
p(x,y) = max{x,y} for all x,y € R™ is metrically convex.
This is because the metric spa¢¥, p°) is metrically
convex, wherep3(x,y) = |x —y|, which is the metric
derived from the partial metrip.

Lemma 6. Let(X, p) be a metrically convex partial metric

be the metric derived from the partial metric p as definedspace. Let ¥/ € X. If z¢ sedx,y] then:

in Lemmal. Then for all ab,c € X,
p>(a,b) < p*(a,c) = p(a,b) < 2p(a,c).

Proof.

= 2p(a,b) — p(a,a)—p(b,b)
§2p(a7 C) - p(a, a) - p(C, C)
= 2p(a,b) <2p(a,c) — p(c,c) + p(b,b)
<2p(a,c) + p(b,b)
<2p(a,c)+p(ab)

because(b,b) < p(a,b) from Definition1, (PO).
= p(a,b) < 2p(a,c).
The metrically convex metric space is defined as follows:

Definition 4. [2] A metric space(X,d) is said to be
metrically convex if for all xy in X with x# vy, there
exists a point z in X(x# z#y) such that

d(x,y) =d(x,2) +d(zy).

Remark 1. When (X,d) is a metrically convex metric
space, we define

sedx,y] = {z: d(x,y) =d(x,2) +d(z,y)}.

We get the following lemma from Assad and Kir®]

(i)

(i)

Proof.Applying (2) to Definition5, if z< sedx,y], then
we have:

P(X,y) — p(x,2) = p(zy) — p(z 2),
p(x.y) > p(x,2).

P(x.Y) = P°(X%,2) + p°(zy) =

2p(x,y) = p(X,X) = P(Y;y) = 2p(X,2) — p(X,X) — p(z,2)
+2p(zy) - p(z,2) - p(y,y)

= p(X,y) = p(%,2) + p(z)y) — p(z,2)

= p(X,Y) — p(X,2) = p(zy) — p(z,2).

As p(z,y) — p(z,z) > 0, from (PO) of Definitionl we have

p(x,y) = p(x,2).
This proves Lemma.

Lemma 7. Let C be a non-empty subset of a metrically
convex partial metric spacéX, p) which is closed in
(X, p®). If x e C and ye X\C, then there exists a point
z € dC (the boundary of C with respect to (¥)) such
that

P(X,Y) + p(z,2) = p(X,2) + p(ZY).

Proof. From Definition 5, if the partial metric space
(X,p) is metrically convex, thenX, p%) is metrically
convex. From Lemm&, this means that ik € C and
y € X\C then there existg in JdC, (the boundary of),
such thatp3(x,y) = p3(x,2) + p*(zy). Using Lemmal,

Lemma 4. Let C be a closed subset of the complete andthis means

convex metric space X. IfxC and y¢ C, then there exists
a point ze dC (the boundary of C) such that

d(x,2) +d(zy) =d(x,y). 2

Using Remark 1, we can rephrase Lendras follows

Lemma 5. Let C be a closed subset of the complete an
convex metric space X. IfxC and y¢ C, then there exists
a point ze dC (the boundary of C) such thatzsedx, y|.

We introduce the metrically convex partial metric
space.

Definition 5. A partial metric spac€X, p) is said to be

metrically convex if the corresponding metric space

(X,p°) is metrically convex in the sense of LemBa

where §(x.y) = 2p(xy) — p(x,x) — p(y,y) for all
X,y € X.

PP(x.Y) = P°(%,2) + p°(zy)
= 2p(x,y) — P(X%,X) — p(Y,y) = 2p(X,2) — p(X,X) — p(z,2)
+2p(zy) - p(z,2) - p(y,y)
= p(X,y) = p(%,2) + p(z)y) — p(z,2)
= p(X,Y) + p(z,.2) = p(X,2) + p(z,y).

d\Ne now prove the following lemma, which is modified

from Theorem 1 of Assad and Kirk2], and is necessary
for our work.

Lemma 8. Consider a sequend@v }neny € R such that,
foralln > 2, we have

Wn < kmax{wn_2,wh_1},k € (0,1],

®3)

then

(4)

Wn < K22 max{wo, wy }.
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Proof. We prove the lemma by the induction. First we
show that Lemm@& holds forn = 2.
We note thak € (0,1] impliesk < k2. Hence, ifn =
2, then @) leads to
Wy < kmax{wo, w1 }
< K2 max{wo, w; }

= K222 max{wo, w1 }.

(%)

We then show that the lemma holds foe= 3. If n= 3,
then @) leads to
wy < kmax{wy,wo}. If wy > ws, then we get
wy < kmax{wy,w,}
= w3 < kwy
< kmax{wo, w1 }

=K¥2. kY2 max{wo, w1 }.
If howeverw; < w,, we get
ws < kmax{wy, w,}
= W3 < kwp
= Wz < k x k¥?k"Y2max{wo, w1 }, from (5)
< K2 max{wo, w; }
< K¥2.kY2max{wo, w1}, becaus& /2 > 1.

We now show that, if Lemma@ holds for 1< n < j where
j > 2, then it must be hold fof 4+ 1. Hence we have from

©)
(6)

Wj1 < kmax{wj_1,w;}.
We consider two cases.
Case (i):Supposev;_; > w;j. Then @) becomes
Wit < kw1
< k- k0717212 max{wg, wy } from (4)

= kU+/21-12 maxfwg, wy }.

(7)
Case (ii): Supposevj_1 < wj. Then @) becomes

Wi2 < kw
< kK22 max{wo, w; } from (4)

= k(+2/2-2 max{wp, wy }.

(8)

~ We note that fojj > 2 andk € (0, 1] we havekI+1)/2 >
k(+2)/2 Hence 7) and @) imply that

w1 < KUHD/2k-1 2 max{wg, wy }.

A mappingS: C — X is called aself mappingf C = X.
Otherwise it is called aon-self mapping

Given amappin®: C — X, whereC C X, x € Cis said
to be afixed pointof Sin X if Sx= x.

Consider two mappingS, T : C — X whereC C X. A
pointx € X is called acoincidence poindf SandT in X if
there is av € X such thatv = Sx= Tx The pointw in this
case is called @oint of coincidencdf in additionw = X,
thenx s called thecommon fixed poirdf SandT.

We now introduce the following theorem by Karapinar
et al. [3] which states the conditions under which two self
maps have a common fixed point in a partial metric space.

Theorem 1.Let ST : X — X be mappings on a complete
partial metric spacéX, p).
(i) Let there be re [0,1) such that

max{ p(SXTSX, p(Tx, STR} < rmin{p(x, SX), p(x, TX)}

forall x € X and let

(i) a(y) =inf {p(x.y) +min{p(x, SX, p(x, TX)} } > O for

all x € X where y is not a common fixed pointof Sand T.
Then ST have a unique common fixed point&(z) =
T(z), with

p(z,z) = 0.

The aim of this paper is to extend the above theorem to
apply to non-self mappings.

2 Main Results

We start with stating the theorem which we intend to
prove.

Theorem 2. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect (¥, p°). LetdC, the
boundary of C with respect t(X, p%), be non-empty. Let
ST :C — X be continuous mappings. Let there be R
such that0 < 2r < 1 and whenever Syy € C, the
following conditions hold:

(a)

max{ p(SXTSY, p(Tx STy} < rmin{p(x, Sy, p(x, Ty)},
(b) xe C = Sxand Tx C,

(c) SC and TC are closed {{X, p°).

Then there is a unique pointzC such that = Tz= Sz
and p(z,z) =0.

Proof. We generate a sequeng®,} in the following
way. We commence with an arbitrarg € dC. From
assumption (b), it means we can chogge- Sy € C. We
determineTx. If Tx € C, then we setx; = Tx. If
however Tx; ¢ C, we choosex, € dC such that
X2 € sedSx», T x1]. We then findSx.

We compute inductively the other elements of the
sequencéxn}. If Sx, € C, thenxon 1 = Sxn. Otherwise,
if Sx%n ¢ C for n > 1, then we choosgy, .1 € dC such
thatxon 1 € sedT Xon—1,S%n)-

From assumption (b), Xont1 € 0C
Xont2 = TXont1 € C. We then findT Xon 1.

Similarly, if Txni1 € C, then Xoni2 = TXonyi.
Otherwise, ifTxn1 ¢ C, then we chooseon» € dC
such thatn,2 € sedSxn, T Xen+1]. We then findS»%n. 1.

implies

(© 2018 NSP
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We now partition the sefx,,n € N} into Using (P3) of Definitiorl, we have
P = {Xont1:Xen+1=S%n} U{Xoni2: Xons2=TXen,1} and
Q= {Xen+1: Xont1 7 S%n} U{Xoni2: Xoni2 # TXont1} P(Xan+1%en+2) = P(Xen+1, TXont1)

We note that ifxo, € P, thenxp, = Txgn_1 forn > 1. < p(Xant1, S¥%n) + P(Sx%n, T Xon+1)
Similarly if xony1 € P, thenxon 1 = Sxn. We also note — P(S%n, S%n)
that if xon € Q, thenxa, € dC. Similarly if Xon.1 € Q, then ’
Yo 1 EZQC_Q 2 Y1 €Q < p(%n+1,S%n) + P(S%n, Toont 1)
Remark 2. We show that if<on € Q, thenxan_1 € P. < p(Xan; S%n) + P(S%n, TXen+1),

Supposen_1 € Q. This means«,_1 € dC, which, by Lemma6 (i)
from assumption (b), impliegon, = Txn_1 € C. Hence — (T S%n) -+ D(S¥n. T X
Xon € P which is a contradiction. Using a similar P(Ten-1. )Qn_) - P(S%n, Toen1),
argumentyon 1 € Q = Xon € P. asXen = 1 %on-1
We consider the following cases:

This implies
Case 1Let (Xm,Xm+1) € Px P. P
Consider whemis even, that isn= 2n for somen P(Xon11,X2n12)
N,n > 1. In this casexn = T Xon_1, Xont1 = S¥n. We have < 2max o(T x S Sxon. Tx
from the assumption: — ){p( 2n—1, )Qn)a p( )an 2n+1)}(-12)
P(XanXan+1) = P(Xen, S¥n) If P(TXn-1,5%n) > P(S%n TXeni1), then (2)
= P(TXn-1,ST%n-1) becomes

< max{ P(S¥%n—1, TS%n_1), P(T Xon—1, ST)anl)}
< rmin{p(Xan-1,S%n-1), P(Xon—1, T Xon—1) }
<rp(Xen-1,TXn-1)

= Ip(Xan—1,Xen).

P(X2nt1,Xon+2) < 2P(T Xen—1, S%n)
=2p(TXen—1,ST%n-1),
asXon = TXon_1
= P(Xan+1,X2nt2) < 2rp(Xen—1,%an), (13)

We get a similar result whem is odd, that is using the argumentin Case 2, (s&6)J.

If p(TXanlaS)Qn) < p(S)QnaTXZnJrl)y then (2

P(Xan+1,X2nt2) < rP(Xan, Xan+1)- becomes

Hence, in all cases whe(g&n,Xy:1) € P x P, we have P(Xons 1, Xons2)) < 2P(S%m, T Xons1)
P(Xm, Xm+1) < FP(Xm-1,%m)- 9) = 2p(ST%n-1, TXen+1),
becaus Xon_1 = Xon

Case 2.5upposéxm,Xm+1) € P x Q. Consider whem is = 2p(T %ons1, ST X%n_1)

even, implyingm = 2n for somen € N,n > 1. Then, from

the construction of proof, we hawg, = xon = T Xn-1 and =2 ma?<{ P(S%n+2,TS¥%n-1); P(TXen+1, STn-1)}
Xmi1 = Xons1 € seq{TXon_1, S%n}. < 2r[min{p(Xzn+1,S%n-1), P(Xen+1, TXen-1) }
Hence, from Lemma@& (ii), we have <2rp(Xen+1, TXon—1)
= 2rp(TXen—1,Xen+1
P(Xen, Xen 1) < P(Xzn, S%n) = D(X2n+1n7 Xon+2 < 2rp(Xen; Xen+1)s (14)
= P(TXen-1,ST %n-1) (10) asT Xon_1 = Xon.
< P (Xen-1,%en). By (13) and (14), we have

Here we use the argument shown in Case 1.

. . ; X , X: < 2rmax{ p(Xon_1,Xon), P(Xon, X .
We get a similar result whemis odd, that is P(Xan+-1,Xen+2) < {P(xon-1,Xan), POXon, Xon 1)}

A similar argument is valid whem is even. Thus in

P(Xn+1,Xen+2) < TP (Xan, Xont1)- general if(xm, Xm11) € Q x P, we have
Hence, in all cases whemm, Xn1) € P x Q, we have P(Xm, Xm+-1) < 2r max{ p(Xm—2, Xm—1)» P(Xm—1,%m)- }
P(Xm, Xm+1) < rP(Xm-1,Xm)- (11) By Remark 2, the case whefn, xmn:1) € Qx Q |s($1§))t
Case 3.Let (Xm,Xm+1) € Q x P, which impliesxm_1 € P. posag!]%e, considering all three cases, and their

Let us consider first whemis odd, implyingn=2n+ corresponding results as shown B),((11) and (L5), we
1 for somen € N. From the construction of sequence, we phaye

havexani1 € sedXon, S¥%n} andxani2 = T Xont1 @andxon =
TXon_1, (see Remark 2). P(Xm, Xm+1) < 2r max{ p(Xm—2,Xm-1), P(Xm—1,Xm) } -

(@© 2018 NSP
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We use Lemma@ with wi = p(x;,%i+1). Forme N, we get
P(Xm, Xm+1) < (2r)™25 where

& = (2r)"Y2max{p(xo,xa), P(X1,%2)}-

Letm> n. Then, from (P3) of Definitiorl inductively,
we have

1 m-1
P(Xi,Xit1) — z P(Xit1,%i+1)

1I=n

3
I

P(Xn, Xm) < _

I
A

P(Xi, Xi+1)

IA
M T

n

+
8

<) p(xi,Xit1)

IA
o]
M >

w(zr)i/Z

1
n/2
o(2r) 1o

I
]

Takingh,m— 400, we get

niToo P(Xn,Xm) = 0 < +o0.

which makegx,} C C a Cauchy sequence {iX, p).

Now, as the partial metric spa¢¥, p) is complete, so
is the corresponding metric spage, p®), (see Lemma).

We will show thatz is unique. Supposg is also a
common fixed point o6andT. Then
p(Z.2) = p(S£,T2)
= p(Sz,TS2
<max{p(Sz,TS2,p(TZ,ST2}
<rmin{p(Z,S2,p(Z,T2)}

<rp(Z,S2

=r1p(Z,2)
=p(Z,2 =0

=7Z =1z by ().

Therefore,z is a unique fixed point ofS and T. On
replacingZ by zin above argument, we getz,z) = 0.
We have completed the proof of Theor@m

Remark 2. If we setx =y in Theorem2 and consider
C = X so that only Case 1 applies, then we get Theotem
found in Karapinaet al.[3].

If we setT =1, wherel is the identity mapping, then
we get the following corollary, which is an extension of
Matthews Contraction Principld] to non-self mappings.

Corollary 1. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect (¥, p°). LetdC, the
boundary of C with respect {X, p®), be non-empty. Let:S

C — X be a continuous mapping. Let there be R such
that0 <2r < 1and forall xy € C the following conditions
hold:

We haveC as a closed subset of the complete metric spacdd) P(SXSY) < rp(x,y),

(X, p%). ThereforeCC is complete inX, p¥) and hence it is
also complete irtX, p).

Hence, there ig € C such that

z= lim Xn.
n—-co

We consider the subsequer{og, } of {xn} in P. Then we
have
Xon, = TXon,—1. AST is a continuous mapping, we have

ink = TX2nk—1

= lim xon = Iim Txpn 1
Ng—+0 Ng——+-00
=z=Tz

Similarly, asSis a continuous mapping, we have

Xon+1 = S¥n,
= lim x = lim S
e e 2n+1 oo Xn,

=7=52

Thus,zis a common fixed point dbandT.

(b) xe 0C = SxeC and

(c) SCis closed.

Then there is a unique pointzC such that z= Sz with
p(z,z) = 0.

If we setS=T, then we get the following corollary:

Corollary 2. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect (X, p°). Let dC,
the boundary of C with respect (X, p%), be non-empty.
Let S: C — X be a continuous mapping. Let there be R
such thaD < 2r < 1and whenever S$ye C the following
conditions hold:

(a) p(Sx ) < rp(x,Sy),

(b) Sxe 0C = x€C, and

(c) SC is closed.

Then there is a unique pointC such that z= Sz and
p(z,z) = 0.

Example 1. Consider the partial metric spad, p),
whereX = R and p(x,y) = max{x,y} for all x,y € R".
The metric derived from this partial metric is
PE(X,y) = [X—Yl.

Let C = [0,5] U [10,30]. Define the mappings
ST:R"™ - R as Sx= 0.4x and Tx = 0.45x for all
xeC.

(© 2018 NSP
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We note thaBT x= T Sx= 0.18x.

We also note that for somec C, we haveSx¢ C or
Tx¢ C. Whenx= 20, we have&Sx=8¢ CandTx=9¢C,
which make bottsandT to be non-self mappings.

We observe thatdC with respect to (X, p®) is
{0,5,10,30}. Thusx € dC implies Sxe {0,2,4,12} c C
andTxe {0,2.25,4.5,135} c C.

We haveSC= [0,2] U [4,12] and we also hav@C =
[0,2.25/U[4.5,13 5], both sets being closed {iX, p®).

The condition thaBy Ty € C implies thaty € [0,5] U
[25,30].

As p(x,y) = max{x,y}, we have

max{p(Sx TSy, p(Tx STy}
= max{ p(0.4x,0.18y), p(0.45x,0.18y) }
= max{ max{0.4x,0.18y},max{0.45x,0.18y} }
= max{0.45x,0.18y}. (16)

Similarly

min{p(x, Sy,p(x, Ty)} = min{p(x,0.4y), p(x,0.45y)}
= min{max{x, 0.4y}, max{x,0.45y} }
= max{x,0.4y}. a7
We usen=0.48<1/2.
We consider the following cases.
Case (i).Let x,y € [0,5] or x,y € [25,30] with y < 2.5x.
This means 8y < 0.45x and Q4y < x. Hence from {6)
we have
max{ p(Sx TSy, p(Tx, STy} = max{0.45x,0.18y}
= 0.45x.
(18)
Similarly, from (17), we have
min{ p(x, Sy), p(x, Ty) } = max{x, 0.4y} = x. (19)

Comparing 18) with (19), and recalling that
h=0.48<1/2, we have

max{ p(Sx TSy, p(Tx STy} < hmin{p(x, Sy, p(x, T(y)}.)
20
Case (ii). Let x,y € [0,5] with y > 2.5x. This implies
0.18y > 0.45x and 04y > x.
From (16) we have

max{ p(Sx TSy, p(Tx, STy} = max{0.45x,0.18y}

=0.18y.
(21)

From @7) we have
min{p(x, Sy, p(x, Ty)} = max{x,0.4y} = 0.4y. (22)

Comparing 21) with (22), and recalling that
h=0.48< 1/2, we have in this case

maxX{ p(Sx TSy, p(Tx, STy} < hmin{p(x, Sy), p(X, T(y%:];)

The situation where,y € [25,30] with y > 2.5x is not
possible.
Case (jii). We now considek € [0,5],y € [25,30]. In this
case, we have

0.45x<0.45x5=2.25<4.5=0.18x25<0.18y. (24)

The equationZ4) impliesx < 0.4y.
From (16) we have
max{ p(Sx TSy, p(Tx, STy} = max{0.45x,0.18y}
=0.18y.
(25)
From @7) we have
min{p(x, Sy, p(x, Ty)} = max{x,0.4y} = 0.4y. (26)

Comparing 25) with (26), and recalling that
h=0.48< 1/2, we have in this case

max{ p(Sx TSy, p(Tx STy} < hmin{p(x,Sy), p(x, T(y)}-)
27

Case (iv).Finally, we consider when € [0, 5] and

X € [25,30]. In this case we have

0.18y < 0.18x5=0.9<1125=0.45x 25< 0.45x.
(28)
The equationZ8) implies Q4y < X.
From (16) we have

max{ p(Sx TSy, p(Tx, STy} = max{0.45x,0.18y}

=0.45x.
(29)

From (17), we have
min{ p(x, Sy), p(x, Ty) } = max{x, 0.4y} = x. (30)

Comparing 29) with (30), and recalling that
h=0.48< 1/2, we have in this case

max{ p(Sx TSy, p(Tx,STY} < hmin{p(x,Sy), p(x, T(y)}-)
31
Thus in all possible cases we have

max{p(Sx TSy, p(Tx STy} <hmin{p(x, Sy), p(x, Ty)}.
We note that, becau&0) = T (0) = 0, the poinz=0

is a common fixed point of the mapping§sndT. We also
note thatp(z,z) = 0.
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