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Abstract: A number of theorems on contractive mappings for common fixedpoints in partial metric spaces have been proved and
many of them apply to self maps. In this paper, we extend a common fixed point theorem on a partial metric space by Karapinaret al.
so that it can apply to a non-self mapping in a metrically convex partial metric space under specified conditions.
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1 Introduction and Preliminaries

A number of researchers have developed theorems which
stipulate the conditions for fixed points to exist for partial
metric spaces, and in some cases, designed algorithms to
locate them.

The purpose of this study is to discuss the existence of
common fixed points of a pair of non-self mappings in the
context of partial metric spaces under certain conditions.

At this stage we introduce a few preliminaries that will
be useful in developing the theorem proved in this study.

Definition 1.[4] A partial metric space is a pair(X, p),
where X is a non-empty set and the mapping p: X×X →R

is a function such that for all x,y,z∈ X

(P0): 0≤ p(x,x)≤ p(x,y),
(P1): p(x,x) = p(x,y) = p(y,y)⇔ x= y,
(P2): p(x,y) = p(y,x), and
(P3): p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

The functionp in the partial metric space is called the
partial metric.

Note that, owing to (P0) and (P1), we have

p(x,y) = 0⇔ x= y. (1)

An example of a partial metric space(X, p) is where
X = R

+, the set of non-negative real numbers, and the
mappingp : X×X → R

+ is defined as
p(x,y) = max{x,y} for all x,y∈R

+.

Each partial metricp on X generates aT0 topologyτp
onX with a base being the family of open balls{Bp(x,ε) :
x∈X,ε > 0} whereBp(x,ε) = {y∈ X : p(x,y)< p(x,x)+
ε} for all x∈ X andε > 0.

Definition 2. [4] Let (X, p) be a partial metric space and
{xn} be a sequence in X. Then

(i) {xn} converges to x∈ X if and only if
p(x,x) = limn→∞ p(x,xn).

(ii) {xn} is called a Cauchy sequence if and only if there
exists (and is finite)limn,m→+∞ p(xn,xm).

Definition 3. A partial metric space(X, p) is said to be
complete if every Cauchy sequence{xn} in X converges,
with respect toτp, to a point x∈ X such that

p(x,x) = lim
n,m→+∞

p(xn,xm).

Lemma 1. [4] Let (X, p) be a partial metric space. Then
(X, ps) is a metric space defined for all x,y∈ X, where

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y).

In this study, we termps as the metric derived from the
partial metricp.

We take note of the following lemma.

Lemma 2. [1]
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(i) A sequence{xn} is a Cauchy sequence in the partial
metric space(X, p) if and only if it is a Cauchy
sequence in the metric space(X, ps).

(ii) A partial metric space(X, p) is complete if and only if
the metric space(X, ps) is complete.

Lemma 3.Let (X, p) be a partial metric space and let ps

be the metric derived from the partial metric p as defined
in Lemma1. Then for all a,b,c∈ X,

ps(a,b)≤ ps(a,c)⇒ p(a,b)≤ 2p(a,c).

Proof.

ps(a,b)≤ ps(a,c)

⇒ 2p(a,b)− p(a,a)−p(b,b)

≤2p(a,c)− p(a,a)− p(c,c)

⇒ 2p(a,b)≤2p(a,c)− p(c,c)+ p(b,b)

≤2p(a,c)+ p(b,b)

≤2p(a,c)+ p(a,b)

becausep(b,b)≤ p(a,b) from Definition1, (P0).

⇒ p(a,b)≤ 2p(a,c).

The metrically convex metric space is defined as follows:

Definition 4. [2] A metric space(X,d) is said to be
metrically convex if for all x,y in X with x 6= y, there
exists a point z in X,(x 6= z 6= y) such that

d(x,y) = d(x,z)+d(z,y).

Remark 1. When (X,d) is a metrically convex metric
space, we define

seg[x,y] = {z : d(x,y) = d(x,z)+d(z,y)}.

We get the following lemma from Assad and Kirk [2].

Lemma 4. Let C be a closed subset of the complete and
convex metric space X. If x∈C and y/∈C, then there exists
a point z∈ ∂C (the boundary of C) such that

d(x,z)+d(z,y) = d(x,y). (2)

Using Remark 1, we can rephrase Lemma4 as follows

Lemma 5. Let C be a closed subset of the complete and
convex metric space X. If x∈C and y/∈C, then there exists
a point z∈ ∂C (the boundary of C) such that z∈ seg[x,y].

We introduce the metrically convex partial metric
space.

Definition 5. A partial metric space(X, p) is said to be
metrically convex if the corresponding metric space
(X, ps) is metrically convex in the sense of Lemma3,
where ps(x,y) = 2p(x,y) − p(x,x) − p(y,y) for all
x,y∈ X.

As an example, the partial metric space(R+, p) where
p(x,y) = max{x,y} for all x,y∈ R

+ is metrically convex.
This is because the metric space(X, ps) is metrically
convex, whereps(x,y) = |x − y|, which is the metric
derived from the partial metricp.

Lemma 6. Let(X, p) be a metrically convex partial metric
space. Let x,y∈ X. If z∈ seg[x,y] then:

(i) p(x,y)− p(x,z) = p(z,y)− p(z,z),
(ii) p(x,y)≥ p(x,z).

Proof.Applying (2) to Definition5, if z∈ seg[x,y], then
we have:

ps(x,y) = ps(x,z)+ ps(z,y)⇒

2p(x,y)− p(x,x)− p(y,y) = 2p(x,z)− p(x,x)− p(z,z)

+2p(z,y)− p(z,z)− p(y,y)

⇒ p(x,y) = p(x,z)+ p(z,y)− p(z,z)

⇒ p(x,y)− p(x,z) = p(z,y)− p(z,z).

As p(z,y)− p(z,z)≥ 0, from (P0) of Definition1 we have

p(x,y)≥ p(x,z).

This proves Lemma6.

Lemma 7. Let C be a non-empty subset of a metrically
convex partial metric space(X, p) which is closed in
(X, ps). If x ∈ C and y∈ X\C, then there exists a point
z∈ ∂C

(

the boundary of C with respect to (X, ps)
)

such
that

p(x,y)+ p(z,z) = p(x,z)+ p(z,y).

Proof. From Definition 5, if the partial metric space
(X, p) is metrically convex, then(X, ps) is metrically
convex. From Lemma5, this means that ifx ∈ C and
y ∈ X\C then there existsz in ∂C, (the boundary ofC),
such thatps(x,y) = ps(x,z) + ps(z,y). Using Lemma1,
this means

ps(x,y) = ps(x,z)+ ps(z,y)

⇒ 2p(x,y)− p(x,x)− p(y,y) = 2p(x,z)− p(x,x)− p(z,z)

+2p(z,y)− p(z,z)− p(y,y)

⇒ p(x,y) = p(x,z)+ p(z,y)− p(z,z)

⇒ p(x,y)+ p(z,z) = p(x,z)+ p(z,y).

We now prove the following lemma, which is modified
from Theorem 1 of Assad and Kirk [2], and is necessary
for our work.

Lemma 8.Consider a sequence{wn}n∈N ∈ R
+ such that,

for all n ≥ 2, we have

wn ≤ kmax{wn−2,wn−1},k∈ (0,1], (3)

then
wn ≤ kn/2k−1/2max{w0,w1}. (4)
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Proof. We prove the lemma by the induction. First we
show that Lemma8 holds forn= 2.

We note thatk ∈ (0,1] impliesk≤ k1/2. Hence, ifn=
2, then (3) leads to

w2 ≤ kmax{w0,w1}

≤ k1/2max{w0,w1}

= k2/2k−1/2max{w0,w1}.

(5)

We then show that the lemma holds forn = 3. If n = 3,
then (3) leads to
w3 ≤ kmax{w1,w2}. If w1 ≥ w2, then we get

w3 ≤ kmax{w1,w2}

⇒ w3 ≤ kw1

≤ kmax{w0,w1}

= k3/2 ·k−1/2max{w0,w1}.

If howeverw1 < w2, we get

w3 ≤ kmax{w1,w2}

⇒ w3 ≤ kw2

⇒ w3 ≤ k× k2/2k−1/2max{w0,w1}, from (5)

≤ k3/2max{w0,w1}

≤ k3/2 ·k−1/2max{w0,w1}, becausek−1/2 ≥ 1.

We now show that, if Lemma8 holds for 1≤ n≤ j where
j ≥ 2, then it must be hold forj +1. Hence we have from
(3)

wj+1 ≤ kmax{wj−1,wj}. (6)

We consider two cases.
Case (i):Supposewj−1 ≥ wj . Then (6) becomes

wj+1 ≤ kwj−1

≤ k ·k( j−1)/2k−1/2max{w0,w1} from (4)

= k( j+1)/2k−1/2max{w0,w1}. (7)

Case (ii):Supposewj−1 < wj . Then (6) becomes

wj+2 ≤ kwj

≤ k ·k j/2k−1/2max{w0,w1} from (4)

= k( j+2)/2k−1/2max{w0,w1}. (8)

We note that forj ≥ 2 andk∈ (0,1]we havek( j+1)/2 ≥

k( j+2)/2. Hence (7) and (8) imply that

wj+1 ≤ k( j+1)/2k−1/2max{w0,w1}.

A mappingS: C→X is called aself mappingif C=X.
Otherwise it is called anon-self mapping.

Given a mappingS:C→X, whereC⊆X, x∈C is said
to be afixed pointof S in X if Sx= x.

Consider two mappingsS,T : C→ X whereC ⊆ X. A
pointx∈ X is called acoincidence pointof SandT in X if
there is aw∈ X such thatw= Sx= Tx. The pointw in this
case is called apoint of coincidence. If in additionw= x,
thenx is called thecommon fixed pointof SandT.

We now introduce the following theorem by Karapinar
et al. [3] which states the conditions under which two self
maps have a common fixed point in a partial metric space.

Theorem 1.Let S,T : X → X be mappings on a complete
partial metric space(X, p).
(i) Let there be r∈ [0,1) such that

max{p(Sx,TSx), p(Tx,STx)} ≤ r min{p(x,Sx), p(x,Tx)}

for all x ∈ X and let
(ii) α(y) = inf

{

p(x,y)+min{p(x,Sx), p(x,Tx)}
}

> 0 for
all x ∈ X where y is not a common fixed point of S and T.
Then S,T have a unique common fixed point z= S(z) =
T(z), with
p(z,z) = 0.

The aim of this paper is to extend the above theorem to
apply to non-self mappings.

2 Main Results

We start with stating the theorem which we intend to
prove.

Theorem 2. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect to(X, ps). Let∂C, the
boundary of C with respect to(X, ps), be non-empty. Let
S,T : C → X be continuous mappings. Let there be r∈ R

such that 0 ≤ 2r < 1 and whenever Sy,Ty ∈ C, the
following conditions hold:
(a)
max{p(Sx,TSy), p(Tx,STy)} ≤ r min{p(x,Sy), p(x,Ty)},
(b) x∈ ∂C⇒ Sx and Tx∈C,
(c) SC and TC are closed in(X, ps).
Then there is a unique point z∈ C such that z= Tz= Sz
and p(z,z) = 0.

Proof. We generate a sequence{xn} in the following
way. We commence with an arbitraryx0 ∈ ∂C. From
assumption (b), it means we can choosex1 = Sx0 ∈C. We
determineTx1. If Tx1 ∈ C, then we setx2 = Tx1. If
however Tx1 /∈ C, we choose x2 ∈ ∂C such that
x2 ∈ seg[Sx0,Tx1]. We then findSx2.

We compute inductively the other elements of the
sequence{xn}. If Sx2n ∈C, thenx2n+1 = Sx2n. Otherwise,
if Sx2n /∈ C for n ≥ 1, then we choosex2n+1 ∈ ∂C such
thatx2n+1 ∈ seg[Tx2n−1,Sx2n].

From assumption (b), x2n+1 ∈ ∂C implies
x2n+2 = Tx2n+1 ∈C. We then findTx2n+1.

Similarly, if Tx2n+1 ∈ C, then x2n+2 = Tx2n+1.
Otherwise, if Tx2n+1 /∈ C, then we choosex2n+2 ∈ ∂C
such thatxn+2 ∈ seg[Sx2n,Tx2n+1]. We then findSx2n+1.
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We now partition the set{xn,n∈ N} into
P= {x2n+1 : x2n+1 =Sx2n}∪{x2n+2 : x2n+2 = Tx2n+1} and
Q= {x2n+1 : x2n+1 6= Sx2n}∪{x2n+2 : x2n+2 6= Tx2n+1}.

We note that ifx2n ∈ P, thenx2n = Tx2n−1 for n ≥ 1.
Similarly if x2n+1 ∈ P, thenx2n+1 = Sx2n. We also note
that if x2n ∈ Q, thenx2n ∈ ∂C. Similarly if x2n+1 ∈ Q, then
x2n+1 ∈ ∂C.
Remark 2. We show that ifx2n ∈ Q, thenx2n−1 ∈ P.

Supposex2n−1 ∈ Q. This meansx2n−1 ∈ ∂C, which,
from assumption (b), impliesx2n = Tx2n−1 ∈ C. Hence
x2n ∈ P which is a contradiction. Using a similar
argument,x2n+1 ∈ Q⇒ x2n ∈ P.

We consider the following cases:
Case 1.Let (xm,xm+1) ∈ P×P.

Consider whenm is even, that ism= 2n for somen∈
N,n≥ 1. In this casex2n = Tx2n−1, x2n+1 = Sx2n. We have
from the assumption:

p(x2n,x2n+1) = p(x2n,Sx2n)

= p(Tx2n−1,STx2n−1)

≤ max{p(Sx2n−1,TSx2n−1), p(Tx2n−1,STx2n−1)}

≤ r min{p(x2n−1,Sx2n−1), p(x2n−1,Tx2n−1)}

≤ rp(x2n−1,Tx2n−1)

= rp(x2n−1,x2n).

We get a similar result whenm is odd, that is

p(x2n+1,x2n+2)≤ rp(x2n,x2n+1).

Hence, in all cases where(xm,xm+1) ∈ P×P, we have

p(xm,xm+1)≤ rp(xm−1,xm). (9)

Case 2.Suppose(xm,xm+1) ∈ P×Q. Consider whenm is
even, implyingm= 2n for somen∈ N,n≥ 1. Then, from
the construction of proof, we havexm = x2n = Tx2n−1 and
xm+1 = x2n+1 ∈ seg{Tx2n−1,Sx2n}.

Hence, from Lemma6 (ii), we have

p(x2n,x2n+1)≤ p(x2n,Sx2n)

= p(Tx2n−1,STx2n−1)

≤ rp(x2n−1,x2n).

(10)

Here we use the argument shown in Case 1.
We get a similar result whenm is odd, that is

p(x2n+1,x2n+2)≤ rp(x2n,x2n+1).

Hence, in all cases when(xm,xm+1) ∈ P×Q, we have

p(xm,xm+1)≤ rp(xm−1,xm). (11)

Case 3.Let (xm,xm+1) ∈ Q×P, which impliesxm−1 ∈ P.
Let us consider first whenm is odd, implyingm= 2n+

1 for somen∈ N. From the construction of sequence, we
havex2n+1 ∈ seg{x2n,Sx2n} andx2n+2 = Tx2n+1 andx2n =
Tx2n−1, (see Remark 2).

Using (P3) of Definition1, we have

p(x2n+1,x2n+2) = p(x2n+1,Tx2n+1)

≤ p(x2n+1,Sx2n)+ p(Sx2n,Tx2n+1)

− p(Sx2n,Sx2n)

≤ p(x2n+1,Sx2n)+ p(Sx2n,Tx2n+1)

≤ p(x2n,Sx2n)+ p(Sx2n,Tx2n+1),

by Lemma6 (ii)

= p(Tx2n−1,Sx2n)+ p(Sx2n,Tx2n+1),

asx2n = Tx2n−1

This implies

p(x2n+1,x2n+2)

≤ 2max{p(Tx2n−1,Sx2n), p(Sx2n,Tx2n+1)}.
(12)

If p(Tx2n−1,Sx2n) ≥ p(Sx2n,Tx2n+1), then (12)
becomes

p(x2n+1,x2n+2)≤ 2p(Tx2n−1,Sx2n)

= 2p(Tx2n−1,STx2n−1),

asx2n = Tx2n−1

⇒ p(x2n+1,x2n+2)≤ 2rp(x2n−1,x2n), (13)

using the argument in Case 2, (see (10)).
If p(Tx2n−1,Sx2n) < p(Sx2n,Tx2n+1), then (12)

becomes

p(x2n+1,x2n+2))≤ 2p(Sx2n,Tx2n+1)

= 2p(STx2n−1,Tx2n+1),

becauseTx2n−1 = x2n

= 2p(Tx2n+1,STx2n−1)

≤ 2max{p(Sx2n+1,TSx2n−1), p(Tx2n+1,STx2n−1)}

≤ 2r[min{p(x2n+1,Sx2n−1), p(x2n+1,Tx2n−1)}

≤ 2rp(x2n+1,Tx2n−1)

= 2rp(Tx2n−1,x2n+1)
⇒ p(x2n+1,x2n+2)≤ 2rp(x2n,x2n+1),

asTx2n−1 = x2n.
(14)

By (13) and (14), we have

p(x2n+1,x2n+2)≤ 2r max{p(x2n−1,x2n), p(x2n,x2n+1)}.

A similar argument is valid whenm is even. Thus in
general if(xm,xm+1) ∈ Q×P, we have

p(xm,xm+1)≤ 2r max{p(xm−2,xm−1), p(xm−1,xm).}
(15)

By Remark 2, the case where(xm,xm+1)∈Q×Q is not
possible.

Hence, considering all three cases, and their
corresponding results as shown in (9), (11) and (15), we
have

p(xm,xm+1)≤ 2r max{p(xm−2,xm−1), p(xm−1,xm)}.
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We use Lemma8 with wi = p(xi ,xi+1). Form∈N, we get
p(xm,xm+1)≤ (2r)m/2δ where

δ = (2r)−1/2max{p(x0,x1), p(x1,x2)}.

Let m> n. Then, from (P3) of Definition1 inductively,
we have

p(xn,xm)≤
m−1

∑
i=n

p(xi ,xi+1)−
m−1

∑
i=n

p(xi+1,xi+1)

≤
m−1

∑
i=n

p(xi ,xi+1)

≤
+∞

∑
i=n

p(xi ,xi+1)

≤ δ
+∞

∑
i=n

(2r)i/2

= δ (2r)n/2 1
1−2r

.

Takingn,m→+∞, we get

lim
n→+∞

p(xn,xm) = 0<+∞.

which makes{xn} ⊂C a Cauchy sequence in(X, p).
Now, as the partial metric space(X, p) is complete, so

is the corresponding metric space(X, ps), (see Lemma2).
We haveC as a closed subset of the complete metric space
(X, ps). Therefore,C is complete in(X, ps) and hence it is
also complete in(X, p).

Hence, there isz∈C such that

z= lim
n→+∞

xn.

We consider the subsequence{xnk} of {xn} in P. Then we
have
x2nk = Tx2nk−1. As T is a continuous mapping, we have

x2nk = Tx2nk−1

⇒ lim
nk→+∞

x2nk = lim
nk→+∞

Tx2nk−1

⇒ z= Tz.

Similarly, asS is a continuous mapping, we have

x2nk+1 = Sx2nk

⇒ lim
nk→+∞

x2nk+1 = lim
nk→+∞

Sx2nk

⇒ z= Sz.

Thus,z is a common fixed point ofSandT.

We will show thatz is unique. Supposez′ is also a
common fixed point ofSandT. Then

p(z′,z) = p(Sz′,Tz)

= p(Sz′,TSz)

≤ max{p(Sz′,TSz), p(Tz′,STz)}

≤ r min{p(z′,Sz), p(z′,Tz)}

≤ rp(z′,Sz)

= rp(z′,z)

⇒ p(z′,z) = 0

⇒ z′ = z, by (1).

Therefore,z is a unique fixed point ofS and T. On
replacingz′ by z in above argument, we getp(z,z) = 0.

We have completed the proof of Theorem2.

Remark 2. If we set x = y in Theorem2 and consider
C= X so that only Case 1 applies, then we get Theorem1
found in Karapinaret al. [3].

If we setT = I , whereI is the identity mapping, then
we get the following corollary, which is an extension of
Matthews Contraction Principle [4] to non-self mappings.

Corollary 1. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect to(X, ps). Let∂C, the
boundary of C with respect to(X, ps), be non-empty. Let S:
C → X be a continuous mapping. Let there be r∈ R such
that0≤ 2r < 1 and for all x,y∈C the following conditions
hold:
(a) p(Sx,Sy)≤ rp(x,y),
(b) x∈ ∂C⇒ Sx∈C and
(c) SC is closed.
Then there is a unique point z∈ C such that z= Sz with
p(z,z) = 0.

If we setS= T, then we get the following corollary:

Corollary 2. Let (X, p) be a complete metrically convex
partial metric space and C be a non-empty closed subset
of X, the closure being with respect to(X, ps). Let ∂C,
the boundary of C with respect to(X, ps), be non-empty.
Let S: C→ X be a continuous mapping. Let there be r∈R

such that0≤ 2r < 1 and whenever Sx,Sy∈C the following
conditions hold:
(a) p(Sx,S2y)≤ rp(x,Sy),
(b) Sx∈ ∂C⇒ x∈C, and
(c) SC is closed.
Then there is a unique point z∈ C such that z= Sz and
p(z,z) = 0.

Example 1. Consider the partial metric space(X, p),
whereX = R

+ and p(x,y) = max{x,y} for all x,y ∈ R
+.

The metric derived from this partial metric is
ps(x,y) = |x− y|.

Let C = [0,5] ∪ [10,30]. Define the mappings
S,T : R+ → R

+ as Sx= 0.4x and Tx = 0.45x for all
x∈C.
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We note thatSTx= TSx= 0.18x.
We also note that for somex ∈ C, we haveSx/∈ C or

Tx /∈C. Whenx= 20 , we haveSx= 8 /∈C andTx= 9 /∈C,
which make bothSandT to be non-self mappings.

We observe thatδC with respect to (X, ps) is
{0,5,10,30}. Thusx ∈ δC impliesSx∈ {0,2,4,12} ⊂ C
andTx∈ {0,2.25,4.5,13.5}⊂C.

We haveSC= [0,2]∪ [4,12] and we also haveTC=
[0,2.25]∪ [4.5,13,5], both sets being closed in(X, ps).

The condition thatSy, Ty∈ C implies thaty ∈ [0,5]∪
[25,30].

As p(x,y) = max{x,y}, we have

max{p(Sx,TSy), p(Tx,STy)}

= max{p(0.4x,0.18y), p(0.45x,0.18y)}

= max
{

max{0.4x,0.18y},max{0.45x,0.18y}
}

= max{0.45x,0.18y}. (16)

Similarly

min{p(x,Sy),p(x,Ty)}= min{p(x,0.4y), p(x,0.45y)}

= min{max{x,0.4y},max{x,0.45y}}

= max{x,0.4y}. (17)

We useh= 0.48< 1/2.
We consider the following cases.

Case (i).Let x,y ∈ [0,5] or x,y ∈ [25,30] with y < 2.5x.
This means 0.18y< 0.45x and 0.4y< x. Hence from (16)
we have

max{p(Sx,TSy), p(Tx,STy)}= max{0.45x,0.18y}

= 0.45x.
(18)

Similarly, from (17), we have

min{p(x,Sy), p(x,Ty)}= max{x,0.4y}= x. (19)

Comparing (18) with (19), and recalling that
h= 0.48< 1/2, we have

max{p(Sx,TSy), p(Tx,STy)}< hmin{p(x,Sy), p(x,Ty)}.
(20)

Case (ii). Let x,y ∈ [0,5] with y ≥ 2.5x. This implies
0.18y≥ 0.45x and 0.4y≥ x.

From (16) we have

max{p(Sx,TSy), p(Tx,STy)}= max{0.45x,0.18y}

= 0.18y.
(21)

From (17) we have

min{p(x,Sy), p(x,Ty)}= max{x,0.4y}= 0.4y. (22)

Comparing (21) with (22), and recalling that
h= 0.48< 1/2, we have in this case

max{p(Sx,TSy), p(Tx,STy)}< hmin{p(x,Sy), p(x,Ty)}.
(23)

The situation wherex,y∈ [25,30] with y≥ 2.5x is not
possible.
Case (iii). We now considerx∈ [0,5],y∈ [25,30]. In this
case, we have

0.45x≤ 0.45×5= 2.25< 4.5= 0.18×25≤ 0.18y. (24)

The equation (24) impliesx< 0.4y.
From (16) we have

max{p(Sx,TSy), p(Tx,STy)}= max{0.45x,0.18y}

= 0.18y.
(25)

From (17) we have

min{p(x,Sy), p(x,Ty)}= max{x,0.4y}= 0.4y. (26)

Comparing (25) with (26), and recalling that
h= 0.48< 1/2, we have in this case

max{p(Sx,TSy), p(Tx,STy)}< hmin{p(x,Sy), p(x,Ty)}.
(27)

Case (iv).Finally, we consider wheny∈ [0,5] and
x∈ [25,30]. In this case we have

0.18y< 0.18×5= 0.9< 11.25= 0.45×25≤ 0.45x.
(28)

The equation (28) implies 0.4y< x.
From (16) we have

max{p(Sx,TSy), p(Tx,STy)}= max{0.45x,0.18y}

= 0.45x.
(29)

From (17), we have

min{p(x,Sy), p(x,Ty)}= max{x,0.4y}= x. (30)

Comparing (29) with (30), and recalling that
h= 0.48< 1/2, we have in this case

max{p(Sx,TSy), p(Tx,STy)}< hmin{p(x,Sy), p(x,Ty)}.
(31)

Thus in all possible cases we have

max{p(Sx,TSy), p(Tx,STy)}< hmin{p(x,Sy), p(x,Ty)}.

We note that, becauseS(0) = T(0) = 0, the pointz= 0
is a common fixed point of the mappingsSandT. We also
note thatp(z,z) = 0.
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