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Abstract: In this paper, a numerical method for nonlinear fractional-order differential equations with constant or time-varying delay
is devised. The order here is an arbitrary positive real number, and the differential operator is the Grünwald-Letnikov derivative. The
detailed error analysis for this algorithm is given, meanwhile, the convergence of the iteration algorithm is proved. Compared with the
exact analytical solution, a numerical example is provided to illustrate the effectiveness of the proposed method.
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1 Introduction

Fractional calculus is an old mathematical problem, and
mainly developed as a pure mathematics problem for
nearly three centuries [1]-[3]. Though having a long
history, it was not used in physics and engineering for a
long period. However, in the last few decades, fractional
calculus began to attract increasing attention of scientists
from the viewpoint of application [3]-[6]. Fractional
derivative has proven to be a very suitable tool for the
description of memory and hereditary properties of
various materials and processes. In the fields of
continuous-time modeling, many researchers pointed out
that fractional derivative is very useful in linear
viscoelasticity, acoustics, rheology, polymeric chemistry,
etc [7,12]. Nowadays, the mathematical theories and
practical applications of these operators are well
established, and their applicabilities to science and
engineering are being considered as an attractive topic.

The development of effective and well-suited methods
for numerically solving FDEs has drawn more and more
attention over the last few years. Several numerical
methods based on Caputo or Riemann-Liouville
definition have been proposed and analyzed [13]-[32]. For
instance, based on the predictor-corrector scheme,

Diethelm et al introduced Adams-Bashforth-Moulton
algorithm [17,18,19], and meanwhile some error analyses
and an extension of Richardson extrapolation were also
presented to improve the numerical accuracy. These
techniques elaborated in [17,18,19] take advantage of the
fact that the FDEs can be reduced to Volterra type integral
equations. And therefore, one can apply the numerical
schemes for Volterra type integral equations to find the
solution of FDEs, the readers can refer to [20]-[24] and
the literature cited therein for more details. The technique
presented in [17,18,19] has been further analyzed and
extended to multi-term [25] and multi-order systems [26].
Li et al. [32] studied the error analysis of the fractional
Adams method for fractional-order ordinary differential
equations in more general case. Deng [14] obtained a
good numerical approximation by combining the short
memory principle with the predictor-corrector approach.

However, in practice, delay is very often encountered
in different technical systems, such as automatic control,
biology and hydraulic networks, economics, long
transmission lines, etc. Consequently, delayed differential
equations are used to describe such kinds of dynamical
systems. In recent years, delayed FDEs begin to arouse
the attention of a number of researchers [33]-[35]. It is
well known that finding robust and stable numerical
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methods for solving the delayed FDEs is debatable and
has become an open research question. To the best of our
knowledge, there are very few works devoted in the
literature to this problem so far. Since the
Riemann-Liuville derivative and the Grünwald-Letnikov
derivative are the same in effect [3], this gives an
approximate method for fractional order derivatives.
Therefore, this paper will study the numerical algorithm
for the delayed FDEs based on the Grünwald-Letnikov
definition.

The rest of this paper is organized as follows: In
Section 2, basic definition and preliminaries in fractional
calculus are presented. In Section 3, the numerical
scheme is devised in the case of constant and
time-varying delay, meanwhile, the convergence of the
proposed algorithm is proved. The iteration algorithm is
designed in Section 4. Numerical simulations are
performed in Section 5 to illustrate the effectiveness of
the proposed scheme. Finally, some concluding remarks
are reported in Section 6.

2 Basic definition and preliminaries

There are several different definitions of fractional
integration and differentiation till now [3]. The most
frequently used are the Grünwald-Letnikov (G-L)
definition and the Riemann-Liuville (R-L) definition. For
a wide class of functions, the two definitions G-L and R-L
are equivalent. In this paper, the Grünwald-Letnikov
definition will be used.

Definition 1.[3]. The Grünwald-Letnikov fractional
derivative of order α is defined as follows

aDα
t y(t) = lim

h→0

[ t−a
h ]

∑
j=0

(−1) j
(

α
j

)
y(t − jh),

where [·] denotes the integer part, α ∈ R is the order of the
derivative, a is the initial time, and h is the sampling time.

In [36], Lubich proposed a second order numerical
method for the fractional derivative of order α

aDα
t y(t)≈ 1

hα

[ t−a
h ]

∑
j=0

ω(α)
j y(t − jh), (1)

where

ω(α)
j =

1
2πi

∫
|x|≤1

W2(x)
x j+1 dx =

1
2π

2π∫
0

W2(e−iϕ )e jiϕ dϕ ,

and

W2(x) = (
3
2
−2x+

x2

2
)α .

3 Formulation of the numerical method for
delayed FDEs

The main aim of this paper is to study a numerical scheme
for the approximate solution of delayed FDEs. For this
purpose, we consider delayed FDEs described as follows

aDα
t y(t) = f (t,y(t),y(t − τ)),
(a ≤ t ≤ b,m−1 < α ≤ m) (2)

y(t) = φ(t), t ≤ a,

where α is the order of the differential equation, φ(t) is
the initial value, and m is an integer. By the Grünwald-
Letnikov definition, the discrete form of system (3) can be
written as

h−α
n

∑
j=0

ω(α)
j y(tn− j)+O(h2) = f (tn,y(tn),y(tn − τ)). (3)

Now, the key problem is to establish the approximation
to the delayed term y(t − τ), which contains two cases,
discussed as below.
Case I: when τ is constant
It can be seen that, for any positive constant τ , t j − τ may
not be a grid point tn for any n. Suppose (m+δ )h = τ , and
0 ≤ δ < 1. When δ = 0, y(tn −τ) can be approximated by

y(tn − τ)≈
{

yn−m, i f n > m,
φ(tn − τ), i f n ≤ m,

and when 0 < δ < 1, y(tn − τ) cannot be calculated
directly.

By virtue of Taylor expansion and the numerical
differentiation technique, we have

y(tn − τ)
= y(tn − (m+δ )h) = y(tn−m−1 +(1−δ )h)
= y(tn−m−1)+ y′(tn−m−1)(1−δ )h+O(h2) (4)

≈ y(tn−m−1)+ [
y(tn−m)− y(tn−m−1)

h
+O(h2)](1−δ )h

+O(h2)

= (1−δ )y(tn−m)+δy(tn−m−1)+O(h2).

Let vn be the approximation to y(tn − τ), and the
numerical approximation for the computation of y(t − τ)
are proposed as follows

vn = y(tn − τ)≈ (1−δ )yn−m +δyn−m−1. (5)

It can be seen from (5) that, if m > 0, the numerical
equation is explicit, and thus it can be computed directly.
However, when m = 0 and δ ̸= 1, i.e., τ < h, the first term
in the right-hand side of the above equation is (1− δ )yn.
It still needs to predict, for this case, vn is calculated as

vn = (1−δ )y(l)n +δyn−1

where l = 1,2, · · · is the iteration number.
Case II: when τ is time varying
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If τ is time varying, i.e., τ = τ(t), then the approximation
in this case is more complicated. Let vn is the
approximation to y(tn − τ), and the linear interpolation of
{y j} at point t = tn − τ(tn) is employed to approximate
the delay term. Let τ(tn) = (mn + δn)h, where mn is a
positive integer and δn ∈ [0,1), then

vn = (1−δn)yn−mn +δnyn−mn−1. (6)

It should be noted that when τ is constant, for given
h and τ , at the beginning of the programme, we can judge
whether m = 0 or m > 0. However, when τ is time varying,
m is also time varying, that is, at one moment it may equal
to 0, but at another moment it may greater than 0. If mn =
0, the first term in the right-hand side of (6) still needs to
predict, otherwise, when mn > 0, it does not need. So in
each step of the computing, it needs to test weather mn =
0 or not firstly, then computation of the first term in the
right-hand side of Eq.(6) depends on whether it requires
predicting or not in different steps.

By the above discussions, the numerical scheme for the
FDEs (3) can be depicted as:

n

∑
j=0

ω(α)
j yn− j = hα f (tn,yn,vn), (7)

vn =


(1−δ )yn−m +δyn−m−1, i f n > m,m > 0,
(1−δ )y(l)n +δyn−1, i f n > m,m = 0,
φ(tn − τ), i f n ≤ m,

(8)

where l = 1,2, · · · is the iteration number and
n = 1,2, · · · ,N.

Theorem 1.Suppose the function f (t,y,u) satisfies the
following Lipschitz conditions

| f (t,y1,u)− f (t,y2,u)| ≤ L1|y1 − y2|, (9)

| f (t,y,u1)− f (t,y,u2)| ≤ L2|u1 −u2|, (10)

then for the fractional order differential equation (3), the
local truncation error of the numerical scheme (7), (8) is
O(h2+α).

Proof. Since the numerical scheme (7) can be written as

ω(α)
0 yn +

n

∑
j=1

ω(α)
j yn− j = hα f (tn,yn,vn), (11)

we have

ω(α)
0 (yn − y(tn))+ω(α)

0 y(tn)+
n

∑
j=1

ω(α)
j yn− j (12)

= hα [ f (tn,yn,vn)− f (tn,yn,y(tn − τ))
+hα f (tn,y(tn),y(tn − τ)). (13)

Suppose
y j = y(t j), j = 0,1, · · · ,n−1,

then Eq.(13) can be rewritten as

ω(α)
0 (yn − y(tn))+

n

∑
j=0

ω(α)
j y(tn− j) = (14)

f (tn,y(tn),y(tn − τ))+ [ f (tn,yn,vn)− f (tn,yn,y(tn − τ)).

From Lubich numerical expression of fractional derivative
(1), we have

1
hα ω(α)

0 (yn − y(tn))+α Dα
t y(t)

= hα [ f (tn,yn,vn)− f (tn,yn,y(tn − τ))] (15)

+hα f (tn,y(tn),y(tn − τ))+O(h2),

Eliminating the identical term in the above equation, we
have

1
hα ω(α)

0 (yn − y(tn))

= f (tn,yn,vn)− f (tn,yn,y(tn − τ))+O(h2). (16)

From the assumptions (9) and (10), we get

(ω(α)
0 −Lhα)|yn − y(tn)| ≤ O(h2+α). (17)

Thus, for sufficient small h, the local truncation error is
O(h2+α), which completes the proof.

4 Design of the numerical algorithm

It is obvious that(7), (8) is an implicit nonlinear algebraic
equation with respect to yn. In order to solve yn, we
construct the iteration algorithm as follows:

y(l)n =
1

ωα
0
[hα f (tn,y

(l−1)
n ,v(l−1)

n )−
n

∑
j=1

ω(α)
j yn− j], (18)

v(l−1)
n =


(1−δ )yn−m +δyn−m−1, i f n > m,m > 0,
(1−δ )y(l−1)

n−m +δym−1, i f n > m,m = 0,
φ(tn − τ), i f n ≤ m,

(19)

y0 = φ(a),y(0)n = 1, (20)
l = 1,2, · · · ,n = 1,2, · · · ,N. (21)

where l is the iteration number. If |y(l)n − y(l−1)
n | < ε (ε is

the given error, e.g. ε = 10−6), we would consider yn as
y(l)n .

Theorem 2.Suppose the function f (t,y,u) satisfies the
Lipschitz conditions (9), (10), then the iteration algorithm
(18)-(21) is convergent.
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Proof. Since

|y(l)n − y(l−1)
n | (22)

=
hα

ω(α)
0

| f (tn,y(l−1)
n ,v(l−1)

n )− f (tn,y
(l−2)
n ,v(l−2)

n )|

≤ hα

ω(α)
0

{
| f (tn,y(l−1)

n ,v(l−1)
n )− f (tn,y

(l−2)
n ,v(l−1)

n )|

+| f (tn,y(l−2)
n ,v(l−1)

n )− f (tn,y
(l−2)
n ,v(l−2)

n )|
}

≤ hα

ω(α)
0

{
L1|y(l−1)

n − y(l−2)
n |+L2|v(l−1)

n − v(l−2)
n |

}
≤ hα

ω(α)
0

{
L1|y(l−1)

n − y(l−2)
n |+L2(1−δ )|y(l−1)

n − y(l−2)
n |

}
≤ hα

ω(α)
0

(L1 +L2)|y(l−1)
n − y(l−2)

n |

≤ · · · ≤

(
hα

ω(α)
0

L

)l−1

|y(1)n − y(0)n |

then for sufficient small h satisfying
(

hα

ω(α)
0

L
)
< 1, when

l → ∞, we have |y(l)n − y(l−1)
n | → 0, that is, the iteration

algorithm (18)-(21) is convergent.
Now, we summarize the computing procedure for the

iteration algorithm as follows
(1) For given initial value y0 = φ(a), time length h, and
the tolerate error ε , N = b−a

h , n = 1, let tn = a + nh,

compute ω(α)
0 .

(2) If m > n, break. Otherwise, compute τ = τ(tn), ω(α)
n ,

sum =
m
∑
j=1

ω(α)
n yn− j.

(3) Let l = 1,y(l−1)
n = c, compute vn.

(4) Compute y(l)m = [sum−hα f (tn,y
(l−1)
n ,vn)]/ω(α)

0 .

(5) If |y(l)n − y(l−1)
n | < ε , then yn = y(l)n ,n = n + 1, and

return to the step (2). Otherwise, turn into the next step.
(6) Let l = l +1, compute vn,
y(l)m = [sum − hα f (tn,y

(l−1)
n ,vn)]/ω(α)

0 , and return to the
step (5).

5 A numerical example

In this section, the following delayed FDE is considered:

Dα
t y(t) = 2

Γ (3−α) t
2−α − 1

Γ (2−α) t
1−α +2τt − τ2

−τ − y(t)+ y(t − τ), α ∈ (0,1),
y(t) = 0, t ≤ 0.

Notice that the exact solution to this equation is

y(t) = t2 − t.

In accordance with delay τ being constant or time-varying,
the numerical results are displayed in Table 1 and Table
2 respectively, where EA denotes the absolute numerical
error and ER denotes the relative numerical error. From the
numerical results we can see that the computing errors are
in general acceptable for engineering.

Table 1. Numerical solution, exact solution and the error
estimate at time t = T when h = 1/20

T y(tn) yn EA ER
2 2 2.0034 0.0034 0.0017
4 12 12.0032 0.0032 0.0003
6 30 30.0029 0.0029 0.0001
8 56 56.0029 0.0029 0.0001
10 90 90.0032 0.0032 0.0000

Table 2. Error behavior at time t = T with analytical value
with α = 0.9,τ = 0.1e−10t

T E h = 1/10 h = 1/20 h = 1/40
2 EA 3.4859e-2 1.4422e-2 5.2452e-3

ER 1.7429e-2 7.2110e-3 2.6226e-3
10 EA 3.0599e-2 1.2563e-2 4.7581e-3

ER 3.3956e-4 1.3959e-4 5.2868e-5
20 EA 2.9195e-2 1.2820e-2 8.0554e-3

ER 7.6829e-5 3.3737e-5 2.1198e-5

6 Conclusions

In this paper, a numerical algorithm is formulated based
on Grünwald-Letnikov derivative for fractional-order
differential equations with time delay. The error analysis
of the numerical scheme is carried out, meanwhile, a
numerical example with constant delay and time varying
delay is proposed to testify the effectiveness of the
proposed scheme. This algorithm can be used not only in
the simulation of delayed fractional-order differential
equations but also in the simulation of delayed
fractional-order control systems.
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