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Abstract: We analyze the quantum properties of the light generated by a two-level laser with an open cavity and coupled to a vacuum

reservoir via a single-port mirror. The two-level laser consists of two-level atoms available in an open cavity and pumped from the lower

to the upper level by means of electron bombardment. We seek to carry out our analysis by putting the noise operators associated with

the vacuum reservoir in normal order. Applying the large-time approximation scheme, we have obtained the steady-state solutions of

the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode

operators. Using the resulting steady-state solutions, we have calculated the mean photon number, the variance of the photon number,

and the quadrature variance for cavity light. It is found that the two-level laser generates coherent light for γ + γc ≪ ra and chaotic

light for γ + γc = ra. Moreover, we have established that a large part of the total mean photon number is confined in a relatively small

frequency interval. We have also established that the mean photon number in the presence of spontaneous emission is less than that in

the absence of spontaneous emission. In other words, the effect of spontaneous emission is to decrease the mean photon number.

Keywords: Photon statistics, Power spectrum, Quadrature variance, Spontaneous emission.

1 Introduction

A two-level laser is a source of coherent or chaotic light
emitted by two-level atoms inside a cavity coupled to a
vacuum reservoir via a single-port mirror. In one model of
such a laser, two-level atoms initially in the upper level are
injected at a constant rate into a cavity and removed after
they have decayed due to spontaneous emission [1,2]. In
another model the two-level atoms available in a cavity are
pumped to the upper level by some convenient means such
as electron bombardment [3].

There has been a considerable interest to study the
quantum properties of the light generated by a two-level
laser [4,5,6,7,8,9,10,11,12]. It is found that the light
generated by this laser operating well above threshold is
coherent and the light generated by the same laser
operating below threshold is chaotic [3,8]. In the quantum
theory of a laser, one usually takes into consideration the
interaction of the atoms inside the cavity with the vacuum
reservoir outside the cavity. There may be some
justification for the possibility of such interaction for a
laser with an open cavity into which and from which
atoms are injected and removed. However, there cannot
be any valid justification for leaving open the laser cavity

in which the available atoms are pumped to the upper
level by means of electron bombardment. Therefore, the
aforementioned interaction is not feasible for a laser in
which the atoms available in a closed cavity are pumped
to the upper level by electron bombardment.

Moreover, Beyene Bashu. and Fesseha Kassahun [13]
have studied the squeezing and the statistical properties of
the light produced by a two-level laser with the atoms
placed in a closed cavity and driven by coherent light.
They have shown that the maximum quadrature squeezing
of the light generated by the laser, operating below
threshold, is found to be 50% below the vacuum-state
level.

We seek here to analyze the quantum properties of the
light emitted by two-level atoms available in an open
cavity and pumped to the upper level at a constant rate by
electron bombardment. Thus taking into account the
interaction of the two-level atoms with a resonant cavity
mode and the damping of the cavity mode by a vacuum
reservoir, we obtain the photon statistics, the quadrature
variance, and the power spectrum for the light emitted by
the atoms. We carry out this analysis by putting the noise
operators associated with the vacuum reservoir in normal
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Fig. 1: Schematic representation of a two-level atom coupled to

a vacuum reservoir, where γ is the rate of spontaneous emission

decay constant, γc is the stimulated emission, and ra is the rate at

which a single atom is pumped from the lower level to the upper

level by means of electron bombardment.

order and considering the interaction of the two-level
atoms with the vacuum reservoir outside the cavity.

2 Operator dynamics

We consider here the case in which N two-level atoms are
available in an open cavity. Then the interaction of the
cavity mode with one of the atoms can be described at
resonance by the Hamiltonian [8]

Ĥ = ig

(

σ̂†k
a â− â†σ̂ k

a

)

, (1)

where

σ̂ k
a = |b〉kk〈a| (2)

is lowering atomic operator, â is the annihilation operator
for the cavity mode, g is the coupling constant between
the atom and the cavity mode. We assume that the laser
cavity is coupled to a vacuum reservoir via a single-port
mirror. In addition, we carry out our calculation by
putting the noise operators associated with the vacuum
reservoir in normal order. Thus the noise operators will
not have any effect on the dynamics of the cavity mode
operators. We can therefore drop the noise operator and
write the quantum Langevin equation for the operator â as
[3]

dâ

dt
=−κ

2
â− i[â, Ĥ], (3)

where κ is the cavity damping constant . With the aid of
Eqs. (1) and (3), we easily establish that [3]

dâ

dt
=−κ

2
â− gσ̂ k

a , (4)

this holds for free cavity mode with photons.

Furthermore, the master equation for a two-level atom
interacting with a vacuum reservoir is given by [10]

dρ̂

dt
=−i[Ĥ, ρ̂ ]+

γ

2

[

2σ̂ k
a ρ̂σ̂†k

a − σ̂†k
a σ̂ k

a ρ̂ − ρ̂σ̂†k
a σ̂ k

a

]

,

(5)
where γ is the spontaneous emission decay constant and ρ̂
is the density operator. We can rewrite Eq. (5) as

dρ̂

dt
=−i[Ĥ, ρ̂ ]+

γ

2

[

2σ̂ k
a ρ̂ σ̂†k

a − η̂k
a ρ̂ − ρ̂η̂k

a

]

, (6)

where
η̂k

a = |a〉kk〈a|. (7)

Using Eq. (1), we can put Eq. (6) in the form

dρ̂

dt
= g

[

σ̂†k
a âρ̂ − ρ̂σ̂†k

a â− â†σ̂ k
a ρ̂ + ρ̂ â†σ̂ k

a

]

+
γ

2

[

2σ̂ k
a ρ̂ σ̂†k

a − η̂k
a ρ̂ − ρ̂η̂k

a

]

.
(8)

Now applying the relation

d

dt
〈Â〉= Tr(

dρ

dt
Â) (9)

along with Eq. (8) as well as employing the cyclic
properties of the trace operation with the assumption that
the cavity mode operators and atomic mode operators are
commute , we can easily establish that [16,17]

d

dt
〈σ̂ k

a 〉=− γ

2
〈σ̂ k

a 〉+ g
[

〈η̂k
b â〉− 〈η̂k

a â〉
]

, (10)

d

dt
〈η̂k

a〉=−γ〈η̂k
a〉+ g

[

〈σ̂†k
a â〉+ 〈â†σ̂ k

a 〉
]

, (11)

d

dt
〈η̂k

b〉= γ〈η̂k
a〉− g

[

〈σ̂†k
a â〉+ 〈â†σ̂ k

a 〉
]

, (12)

where
η̂k

b = |b〉kk〈b|. (13)

We see that Eqs. (10)-(12) are nonlinear differential
equations and hence it is not possible to find exact
time-dependent solutions of these equations. We intend to
over come this problem by applying the large-time
approximation [8]. Then using this approximation
scheme, we get from Eq. (4) the approximately valid
relation

â =−2g

κ
σ̂ k

a . (14)

Now substitution of Eq. (14) into the aforementioned
equations yields

d

dt
〈σ̂ k

a 〉=−1

2
[γ + γc]〈σ̂ k

a 〉, (15)

d

dt
〈η̂k

a〉=− [γ + γc] 〈η̂k
a〉, (16)
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d

dt
〈η̂k

b〉= [γ + γc]〈η̂k
a〉, (17)

where

γc =
4g2

κ
(18)

is the stimulated emission decay constant. The two-level
atoms available in the cavity are pumped from the lower
to the upper level by means of electron bombardment. The
pumping process must surely affect the dynamics of 〈η̂k

a〉
and 〈η̂k

b〉. If ra represents the rate at which a single atom

is pumped from the lower to the upper level, then 〈η̂k
a〉

increases at the rate of ra〈η̂k
b〉 and 〈η̂k

b〉 decreases at the
same rate. In view of this, we rewrite Eqs. (16) and (17) as

d

dt
〈η̂k

a〉=− [γ + γc]〈η̂k
a〉+ ra〈η̂k

b〉, (19)

d

dt
〈η̂k

b〉= [γ + γc]〈η̂k
a〉− ra〈η̂b〉. (20)

In order to include the contribution of all the atoms to
the dynamics of the two-level laser, we next sum Eqs. (15),
(19), and (20) over the N two-level atoms, so that

d

dt
〈m̂a〉=−1

2
[γ + γc] 〈m̂a〉, (21)

d

dt
〈N̂a〉=− [γ + γc]〈N̂a〉+ ra〈N̂b〉, (22)

d

dt
〈N̂b〉= [γ + γc]〈N̂a〉− ra〈N̂b〉, (23)

in which

m̂a =
N

∑
k=1

σ̂ k
a , (24)

N̂a =
N

∑
k=1

η̂k
a , (25)

N̂b =
N

∑
k=1

η̂k
b , (26)

with the operators N̂a and N̂b representing the number of
atoms in the upper and lower levels. In addition,
employing the completeness relation

η̂k
a + η̂k

b = Î, (27)

we easily arrive at

〈N̂a〉+ 〈N̂b〉= N. (28)

Now taking into account Eq. (28), one can put Eq. (22) in
the form

d

dt
〈N̂a〉=− [γ + γc + ra] 〈N̂a〉+ raN. (29)

We immediately see that the steady-state solution of this
equation is

〈N̂a〉=
raN

γ + γc + ra

(30)

and the steady-state solution of Eq. (23) turns out to be

〈N̂b〉=
γ + γc

ra

〈Na〉. (31)

For ra = 0, we see that 〈N̂a〉= 0 and 〈N̂b〉= N. This result
holds whether the atoms are initially in the upper or lower
level.

Furthermore, applying the definition given by Eq. (2)
and setting for any k

σ̂ k
a = |b〉〈a|, (32)

we have

m̂a = N|b〉〈a|. (33)

We therefore find that

m̂†
am̂a = NN̂a, (34)

in which

N̂a = N|a〉〈a|. (35)

Following the same procedure, one can also establish that

m̂am̂†
a = NN̂b, (36)

with

N̂b = N|b〉〈b|. (37)

In the presence of N two-level atoms, we rewrite
Eq. (4) as [10]

dâ

dt
=−κ

2
â+λ m̂a, (38)

in which λ is a constant whose value remains to be fixed.
Eq. (38) represents the quantum Langevin equation for
cavity mode operator when the cavity mode is interacting
with N two-level atoms. Using Eq. (14), we get

[â, â†]k =
4g2

κ2
(η̂k

b − η̂k
a) (39)

and on summing over all atoms, we have

[â, â†] =
4g2

κ2
(N̂b − N̂a), (40)

where

[â, â†] =
N

∑
k=1

[â, â†]k (41)

stands for the commutator of â and â† when light mode a

is interecting with all the N two-level atoms. On the other
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hand, applying the large-time approximation to Eq. (38),
one can easily verify that

[â, â†] = N
4λ 2

κ2
(N̂b − N̂a). (42)

Thus on account of Eqs. (40) and (42), we see that

λ =± g√
N
. (43)

In view of this result, Eq. (38) can be written as

dâ

dt
=−κ

2
â+

g√
N

m̂a (44)

Furthermore, in order to include the effect of pumping
process, we rewrite Eq. (21) as

d

dt
m̂a =−µ

2
m̂a + Ĝ(t), (45)

in which Ĝ(t) is a noise operator with vanishing mean and
µ is a parameter whose value remains to be determined.
Employing the relation

d

dt

〈

m̂†
am̂a

〉

=

〈

dm̂†
a

dt
m̂a

〉

+

〈

m̂†
a

dm̂a

dt

〉

(46)

along with Eq. (45), we easily find

d

dt
〈m̂†

am̂a〉=−µ〈m̂†
am̂a〉+ 〈m̂†

aĜ(t)〉+ 〈Ĝ†(t)m̂a〉, (47)

from which follows

d

dt
〈N̂a〉=−µ〈N̂a〉+

1

N

[

〈m̂†
aĜ(t)〉+ 〈Ĝ†(t)m̂a〉

]

. (48)

Hence comparison of Eqs. (29) and (48) shows that

µ = γ + γc + ra (49)

and
〈

m̂†
aĜ(t)

〉

+
〈

Ĝ†(t)m̂a

〉

= raN2. (50)

We observe that Eq. (50) is equivalent to

〈

Ĝ†(t)Ĝ(t ′)
〉

= raN2δ (t − t ′). (51)

One can also easily verify that

〈

Ĝ(t)Ĝ†(t ′)
〉

= (γ + γc)N
2δ (t − t ′). (52)

3 Photon statistics

In this section we seek to determine the mean and photon
number variance for the cavity light. To this end, the
mean photon number for the cavity light, represented by
the operators a and a†, is defined by

n̄ = 〈â†â〉. (53)
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Fig. 2: Plots of the mean photon number for the cavity light at

steady state,

Eq. (56) versus ra for κ = 0.8, γc = 0.4, and N = 50.

We note that the steady-state solution of Eq. (44) is

â =
2g√
Nκ

m̂a, (54)

so that introducing Eq. (54) and its adjoint into Eq. (53),
we see that

n̄ =
γc

κN
〈m̂†

am̂a〉. (55)

Now on account of Eq. (34) along with Eq. (30), Eq. (55)
becomes

n̄ =
γc

κ

(

ra

γ + γc + ra

)

N. (56)

We see from this expression that the mean photon number
in the cavity is zero in the absence of the pumping process.
This result also shows that the mean photon number in the
cavity increases with the number of atoms.

We note that for the two-level laser operating well
above threshold (γ + γc ≪ ra), Eq. (56) reduces to

n̄ =
γc

κ
N. (57)

And for the same laser operating at threshold (γ +γc = ra),
we have

n̄ =
γc

2κ
N. (58)

In the absence of spontaneous emission(γ = 0), Eq. (56)
becomes

n̄ =
γc

κ

[

Nra

γc + ra

]

. (59)
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Fig. 3: Plots of the mean photon number for the cavity light at

steady state,

Eq. (56) versus ra and γ for κ = 0.8, γc = 0.4, and N = 50.
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We would like to point out that this result is in complete
agreement with the one obtained in [8]. The plots in Fig.
2 and 3 indicates that the mean photon number for the
cavity light is greater for absence of spontaneous
emission than the presence of spontaneous emission.
Moreover, the plot in Figure 2 indicates that the mean
photon number of the cavity light increases with ra . In
Figure 4, we plot the mean photon number of the cavity
light versus ra for different values of γc . It is not difficult
to see from this figure that the mean photon number of the
cavity light increases with γc. In addition from figure 5,
for fixed γc, γ , and N, the mean photon number of the
cavity light decreases with values of κ .

Furthermore, employing Eq. (54) along with its
adjoint, we readily find

〈ââ†〉= γc

κN
〈m̂am̂†

a〉. (60)

With the help of Eq. (36) , Eq. (60) takes the form

〈ââ†〉= γc

κ
〈N̂b〉. (61)

Using Eq. (54) and its adjoint, one can easily establish that

[â, â†] =
γc

κ

[

〈N̂b〉− 〈N̂a〉
]

. (62)

Furthermore, employing Eqs. (54) and (33), we readily
gets

〈â2(t)〉= 0. (63)
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Fig. 6: Plots of the variance of photon number for the cavity light

at steady state,

Eq. (68) versus ra for κ = 0.8, γc = 0.4, N = 50, and different

values of γ .

On the other hand, assuming the atoms to be initial in
the lower level, the expectation value of the solution of
Eq. (45) happens to be

〈m̂a(t)〉= 0. (64)

Hence the expectation value of the solution of Eq. (44)
turns out to be

〈â(t)〉= 0. (65)

In view of Eqs. (44) and (65), we claim that â(t) is a
Gaussian variable with zero mean. Moreover, the variance
of the photon number for the cavity light can be written as

(∆n)2 = 〈(â†â)2〉− 〈â†â〉2. (66)

Using the fact that â is a Gaussian variable with zero mean,
we readily get

(∆n)2 = 〈â†â〉〈ââ†〉+ 〈â†2〉〈â2〉. (67)

On account of Eqs. (56), (61), (65), and (31), we arrive at

(∆n)2 =
γ + γc

ra
n̄2. (68)

Therefore, for γ + γc ≪ ra, the variance of the photon
number turns out to be

(∆n)2 = 0. (69)

This represents the normally-ordered variance of the
photon number for coherent light [3]. On the other hand,
for the same laser operating at γ + γc = ra, we see that the
variance of the photon number is

(∆n)2 = n̄2, (70)

which represents the normally-ordered variance of the
photon number for chaotic light. In Figure 6, we plot the
variance of photon number of the cavity light versus ra

for different values of γ . It is not difficult to see from this
figure that the variance of the photon number of the cavity
light increases with γ .

4 Power spectrum

It is also interesting to consider the power spectrum of the
cavity light. The power spectrum of a single-mode light
with central frequency ω0 is expressible as

P(ω) =
1

π
Re

∫ ∞

0
dτei(ω−ω0)τ〈â†(t)â(t + τ)〉ss. (71)

Upon integrating both sides of Eq. (71) over ω , we readily
get

∫

P(ω)dω = n̄, (72)

in which n̄ is the steady-state mean photon number. From
this result, we observe that P(ω)dω is the steady-state
mean photon number in the interval between ω and
ω + dω [2].

We now proceed to calculate the two-time correlation
function that appears in Eq. (71) for the cavity light. To this
end, we realize that the solution of Eq. (44) can be written
as

â(t + τ) = â(t)e−
κ
2 τ +

∫ τ

0
e−

κ
2 (τ−τ ′) g√

N
m̂a(t + τ ′)dτ ′.

(73)
On the other hand, the solution of Eq. (45) is expressible
as

m̂a(t+τ)= m̂a(t)e
− µ

2 τ +
∫ τ

0
e−

µ
2 (τ−τ ′)Ĝ(t+τ ′)dτ ′, (74)

so that on introducing this into Eq. (73), we have

â(t + τ) = â(t)e−
κ
2 τ +

g√
N

m̂a(t)e
− κ

2 τ
∫ τ

0
dτ ′e

1
2 (κ−µ)τ ′

+
g√
N

e−
κ
2 τ

∫ τ

0
dτ ′e

1
2 (κ−µ)τ ′

∫ τ

0
dτ ′′e

1
2 µτ ′′Ĝ(t + τ ′′). (75)

Thus on carrying out the first integration, we find

â(t + τ) = â(t)e−
κ
2 τ +

2gm̂a(t)√
N(κ − µ)

[

e−
1
2 µτ − e−

1
2 κτ

]

+
g√
N

e−
κ
2 τ

∫ τ

0
dτ ′e

1
2 (κ−µ)τ ′ ×

∫ τ

0
dτ ′′e

1
2 µτ ′′Ĝ(t + τ ′′).(76)

c© 2022 NSP

Natural Sciences Publishing Cor.



Quant. Phys. Lett. 11, No. 3, 37-44 (2022) / www.naturalspublishing.com/Journals.asp 43

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

λ

z
(
λ
)
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Now multiplying this equation on the left by â†(t) and
taking the expectation value of the resulting expression,
we get

〈â†(t)â(t + τ)〉= 〈â†(t)â(t)〉e− κ
2 τ

+
2g√

N(κ − µ)
〈â†(t)m̂a(t)〉

[

e−
1
2 µτ − e−

1
2 κτ

]

+
g√
N

e−
κ
2 τ

∫ τ

0
dτ ′e

1
2 (κ−µ)τ ′

×
∫ τ

0
dτ ′′e

1
2 µτ ′′〈â†(t)Ĝ(t + τ ′′)〉. (77)

Furthermore, applying Eq. (54) along with its adjoint
and taking into account Eq. (34), we have

〈â†(t)â(t + τ)〉= n̄

[

κ

κ − µ
e−

1
2 µτ − µ

κ − µ
e−

1
2 κτ

]

. (78)

Hence on substituting this into Eq. (71) and carrying out
the integration, we get

P(ω)=
n̄κ

κ − µ

[

µ/2π

(ω −ω0)2 +( µ
2
)2

]

− n̄µ

κ − µ

[

κ/2π

(ω −ω0)2 +(κ
2
)2

]

.

− n̄µ

κ − µ

[

κ/2π

(ω −ω0)2 +(κ
2
)2

]

. (79)

We realize that the mean photon number in the interval
between ω ′= −λ and ω ′= λ is expressible as

n̄±λ =

∫ λ

−λ
P(ω ′)dω ′, (80)

in which ω ′= ω −ω0. Therefore, upon inserting Eq. (79)
into Eq. (80) and carrying out the integration, applying the
relation described by

∫ λ

−λ

dx

x2 + a2
=

2

a
tan−1(

λ

a
), (81)

we easily obtain

n̄±λ = n̄z(λ ) (82)

where z(λ ) is given by

z(λ ) =
2κ/π

κ − µ
tan−1

(

2λ

µ

)

− 2µ/π

κ − µ
tan−1

(

2λ

κ

)

. (83)

From the plot in Figure 7, we easily find z(0.5) = 0.66,
z(1) = 0.86, z(2) = 0.96. Then combination of these
results with Eq. (82) yields n̄±0.5 = 0.66n̄, n̄±1 = 0.86n̄,
n̄±2 = 0.96n̄. We therefore observe that a large part of the
total mean photon number is confined in a relatively small
frequency interval.

5 Quadrature variance

Here we seek to calculate the variance of the plus and
minus quadrature operators defined by

â+ = â† + â (84)

and

â− = i(â† − â). (85)

It can be readily established that [14],

[â−, â+] = 2i
γc

κ
(〈N̂a〉− 〈N̂b〉). (86)

It then follows that [15,16,17],

∆a+∆a− ≥ γc

κ

∣

∣

∣

∣

〈N̂a〉− 〈N̂b〉
∣

∣

∣

∣

, (87)

which takes for γ + γc ≪ ra the form

∆a+∆a− ≥ n̄, (88)

where ∆a+ and ∆a− are the uncertainties in the plus and
minus quadratures.

The quadrature variance of the laser light beam is
expressible as

(∆a±)
2 =±〈(â† ± â)2〉∓ [〈â† + â〉]2. (89)
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On account of Eqs. (63) and (65), Eq. (89) takes the form

(∆a±)2 = 〈â†â〉+ 〈ââ†〉. (90)

Now employing Eqs. (56), (61), and (90), we arrive at

(∆a±)
2 = n̄+

γ + γc

ra

n̄. (91)

This reduces to

(∆a±)2 = n̄ (92)

for γ + γc ≪ ra and to

(∆a±)
2 = 2n̄ (93)

for γ + γc = ra. This represents the normally-ordered
quadrature variance for chaotic light. On the basis of
Eqs. (88) and (92), we assert that the light generated by
the two-level laser is in a coherent state for γ + γc ≪ ra.
This is due to the fact that, a light mode is said to be
coherent state, if the uncertainties in the two quadratures
are equal and satisfy the minimum uncertainty relation
[10].

6 Conclusion

In this paper we analyze the quantum properties of the
light emitted by two-level atoms available in an open
cavity and pumped to the upper level at a constant rate.
We have carried out our analysis by putting the noise
operators associated with the vacuum reservoir in normal
order. Taking into account the interaction of the two-level
atoms with a resonant cavity mode and the damping of
the cavity mode by a vacuum reservoir, we obtain the
photon statistics, the quadrature variance, and the power
spectrum for the light emitted by the atoms.

We have seen that the mean photon number for the
cavity light is greater for absence of spontaneous
emission than the presence of spontaneous emission. In
addition, our results show that the light generated by the
two-level laser is in chaotic state for γ + γc = ra and in
coherent state for γ + γc ≪ ra.
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