
Appl. Math. Inf. Sci. 11, No. 6, 1725-1730 (2017) 1725

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110619

Function Approximation with Deep Neural Network for Image

Classification in Fuzzy Domain

Sasi Gopalan1,∗, Linu Pinto2 , Sheela. C.3 and Arun Kumar M. N. 3

1 Cochin University of Science and Technology, Kochi, Kerala, India
2 Department of Mathematics, Cochin University of Science and Technology, Kochi, Kerala, India
3 Federal Institute of Science and Technology, Kochi, Kerala, India

Received: 9 Jan. 2017, Revised: 10 Oct. 2017, Accepted: 14 Oct. 2017

Published online: 1 Nov. 2017

Abstract: Image Classification and retrieval of image from a large database has a great relevance in the present Scenario. A lot of work

for an efficient method of image retrieval from large database has been made in the recent surveys. Here we propose a mathematical

model based on CBIR system that uses the deep neural architecture for classification where the inputs are fuzzy grassland image

features. Grassland image features varies according to the varieties of grassland images available through satellite images and hence its

classification is a complex process. This paper proposes a new method for classification in which the inputs to the Neural Network are

fuzzified and transformed in such a way that it clusters around a pivot vector there by making the classification task less complicated.

This classification procedure is established theoretically by developing a mathematical model based on Neural Network approximation

with fuzzy inputs. This model brings a transformation from the input image feature space to the output approximation space through

the composition of mapping between the hidden transformation spaces that helps to strengthen the function approximation to the

desired output. The Graphical representation on Fig(i) throws an insight into the mathematical theory of a CBIR system which unifies

the advantages of deep neural architecture and fuzzy approximators. The mathematical concepts such as open balls, metric, limits,

continuity etc are incorporated to establish the necessary and sufficient condition in the fuzzy based neural system for better and clear

image retrieval.
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1 Introduction

Image classification is a complex process and there are
many factors affecting its process. A suitable
classification design is essential to improve the
classification accuracy in image processing. This work
proposes a new mathematical model on fuzzy based
Neural Network system to ensure the approximation of
classified images. Classification can be done in the feature
space by defining a distance measure. Neural network acts
as the best classifier and fuzzy mathematics works as the
best approximators so that a combined neural fuzzy
approximation has been adopted in the proposed work.

For best convergence in the Neuro Fuzzy model, the
mathematical properties such as metric space,
approximation space, convergence, continuity and open
balls are discussed. The relation between these properties

with the deep architecture of neural network is discussed
in this paper and is mentioned in Table1 and Fig 1.

A Neural Network consists of an input layer, one or
more hidden layers and an output layer. Each layer is
made up of units. The input to the layers correspond to the
attributes measured for each training tuple. The weights in
NN act as the activation function to transform the inputs
to next hidden layer. The weights are modified while
training the NN to get the desired output. Output of NN is
evaluated with the help of modified activation functions
and the process is repeated again and again until NN
output coincide with the desired output. Many strategies
have been recently developed to train neural network that
effectively reduces the computation time and leads to
better result[3,5,6,7,8]. But the most approximate
convergence cannot be guaranteed in any of the strategies.
Success of classification depends mainly on the
presentation of data to the NN architecture and hence
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better feature representation implies less error prone
results. In this paper a new method is suggested to
represent the input data. According to [9], there is a lack
of deterministic relationship between input and the
solution. Thus the proposed new representation of input
data provides a way to establish a deterministic
relationship by introducing a measurable space to
strengthen the functional relation inside the model. One of
the main attractions of this work is the development of
such relation by introducing the target function defined in
Section 4.1. Layer by layer unsupervised training
procedure has been done in Deep Belief Networks by [10,
11]. Thus a layer wise mathematical transformation has
been done in this mathematical model to strengthen the
functional representation between the measurable and
approximation spaces.

The deep architecture of non linear operations of NN
helps to approximate any non linear mappings. In [1], it is
shown that the capacity of DNN to approximate any
measurable function with any degree of accuracy.
According to [4] it is clear that there is chances of error in
the back propagation technique. This is mainly due to the
overfitting nature of the network and the network may
converge to local optima instead of global optimum.

Kurt Hornik showed in 1991 that it is not a specific
choice of the activation function, but neural network
architecture itself that gives it the potential of being
universal approximators [2]. Hence studying the
architecture of Deep Neural network by analyzing the
function approximation mathematically, throws light into
the approximation process carried out inside neural
networks. This could further lead to the enhancement of
the mathematical database of data mining through neural
networks providing a way for future research on
developing new strategies that could guarantee the most
appropriate convergence of NN approximation on
classification process.

This paper is organized as follows: Section 1 gives an
introduction, Section 2 explains the basic needs for the
development of the mathematical model. In Section 3,
Deep Neural Network is introduced for the optimization
purpose. In Section 4 convergence criteria for
classification is represented. In Section 5, a distance
measure is introduced to establish the criteria for
convergence. In Section 6 the necessary and sufficient
condition for convergence is established with the concept
of neighborhood, limit, continuity and open balls in the
input feature space. Section 7 deals with conclusion and
directions to future applications.

2 Basic needs of the Model

Defintion 2.1. Let XG be the collection of ′n′ dimensional
vectors with each component as a real number belonging to
[0, 1], then define the collection of images to be classified
as :

XG =
{

νci ∈ Kn/K = [0, 1]
}

where νci symbolizes the image to be classified into
grassland category.

Defintion 2.2. (Fuzzy Model of input features): Each
component of νci represents a function transformation,

µij from a set X to [0, 1] for the j th component of the ith

image in XG . Here X denotes the set of linguistic
variables that represent the image features. Thus the
image features represented by the linguistic variables are
fuzzified by the transformation µij for each component of

ith image. This transformation is well defined as for an
image degree of uncertainty on a component is uniquely
defined. The highest value in the range i.e; ‘1’ represents
the nonexistence of indefiniteness and as the value
decreases the degree of indefiniteness increases.

The relevance of each component in the classification
procedure is determined by the value of µij in the
neighborhood of 1. This evokes an importance to define a
fuzzy measure on distance in neighborhood definition.

Defintion 2.3. (Fuzzy distance Measure in
neighborhood definition): The fuzzy distance measure
on [0, 1] is defined by (X, dǫ ) where X is the set of
linguistic variables x

′s
j

fuzzified by the transformation µij

for the ith image and

dǫ

(

x j, 1
)

=


0 if µi

(

x j

)

= Bǫ− (1)

1 if µi
(

x j

)

= Bc
ǫ−

(1)
where

Bǫ− (1) = {t ∈ [0, 1] /1 − ǫ < t ≤ 1} is the ǫ -
neighborhood of 1 in the space K = [0, 1] and as the ǫ
value get smaller and smaller the fuzziness decreases for
each fuzzy image feature.
Also Bc

ǫ−
(1) = {t ∈ [0, 1] /t < Bǫ− (1)}. Hence Bc

ǫ−
(1)

characterizes those image features that are unclear or it
cannot be fuzzified due to the presence of higher
uncertainty because of noises. Most Grassland images are
that kind images since they are captured by satellites and
contains much noise.
By the definition of metric, (X, dǫ ) is clearly a metric
space.

2.1 Selection of Fuzzy image features

Let Bǫ− (1) be a neighborhood consisting of all image
features very close to 1 and n0 represents the number of
such feature components in the ith image. For better
classification, the dimension of the vector n is selected in
such a way that n0 is sufficiently very large compared to
n − n0 . Hence the selection of fuzzy variables play a great
role in the classification procedure. Most grassland
images are captured by satellite images and contain much
noise and hence those fuzzy image features should be
considered that are less affected by noises and the
fuzzification value falls in the neighborhood Bǫ− (1).
Grassland image features varies according to the varieties
of grassland images available through satellite images and
hence its classification is a complex process. To bring
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uniformity in the image features they are fuzzified in the
input space and a one to one onto map between the
components of the fuzzified image features is done to
cluster around the pivot vector. This kind of feature
organization is more suitable for the grassland
classification and is a better representation of grassland
images as it allows to cluster the vectors that represents
grassland images around the pivot vector
(1, 1, 1, 1, 1.....0, 0) , where 1 occurs in the first n0

components and zeros in the next n − n0 components.
This can improve the entire model accuracy even for the
untrained data. So good feature engineering enhances the
classification procedure.

3 Classification and Optimization by Neural

Network

Artificial Neural Network works as a decision making tool
in a way just like human brain. Information processing
inside neural network directly depends on the architecture
of the Network and the way in which the inputs are
presented to the network. Inputs presented could be linear
or nonlinear depending on the problem and neural
network perform a better classification result in many
such problems. Since Image features modeled as in 2.1
follows a specific pattern, the classification task for Neural
Network becomes less complicated. While Classification
is being carried out, optimization is a challenging factor
and main aim is to reduce the error in the classification
result. For this the entire NN approximation process
should be mathematically analyzed and results should be
developed that could reduce the errors. In this paper the
entire approximation process is mathematically
formulated with Feed forward Neural Network with
multiple hidden layers that supports transformations of
input data to a space where classification could be done
with minimal errors. In image feature space classification

Table 1 NN Hidden Layer Approximation Spaces

Hidden

Layers

(1)

No of Nodes

in each layer

(2)

Hidden

Approximation

space(1) and (2)

Transformations

1 l1 Nl1 Φ1

2 l2 Nl2 Φ2

. . . .

. . .

m + 1 lm+1 Nlm+1
Φm+1

can be mathematically represented by considering the
feed forward Neural Network with multiple hidden layers
as shown in fig (i). The inner product operation in the
multilayered feed forward NN was performed to define

the NN classification as a functionΦm+1. For that purpose
the following are considered. Let there be ′n′ number of
inputs, ′m′ number of hidden layers and ′ f ′ be the
activation function. Then the approximation space of the
proposed model is shown in Table 1.

By using this classification following model can be
developed in an image feature space.

3.1 Mathematical Representation

Consider the composite mapping for classification as
Φm+1 = Φm ◦ Φm−1 ◦ ...... ◦ Φ2 ◦Φ1 with representations

Φk : K lk−1 → K lk

defined as Φk =
(

Φk,1,Φk,2, ......Φk,lk

)

and Φk,p

(

νci
)

=

f
(〈

Φk−1 ◦ ......Φ2 ◦Φ1

(

νci
)

,
[
k−1Wpj

]T 〉)
,

∀ j = 1, 2, 3, ....lk−1, p = 1, 2....lk for k = 1, 2, .....m + 1
where l0 = n,Φ0

(

νci
)

= νci . Then there exist a function

Φm+1

(

νci
)

= f
(〈

Φm ◦ ......Φ2 ◦Φ1

(

νci
)

,
[
mW1j

]T 〉)

∀ j = 1, 2, 3, ....lm .

Remark.The assigned vectors corresponding to the
connections from ith layer to the (i + 1)th layer are
represented by the column matrix [iWpj ]

T . Here
considered ‘n′ inputs to NN as fuzzy components of
vector νci and the activation function squashed the
outputs nearer to 0 or 1. For example in the case of
grassland images NN outputs are squashed nearer to 1 for
grassland images and nearer to 0 for non grassland images

4 Convergence in image classification

It is essential to show the existence of image classification
because of the success of NN approximation for the entire
development of mathematical model.Let g be the function
represents the inner product operation performed in ANN
and the approximation is targeted on g ⊆ Φm+1

4.1 Convergent Criteria-Functional

representation

Let g : Kn → K be a mapping defined as

g(νci ) =


α if µij ∈ Bǫ− (1) ,∀ j = 1, 2, ...n
β if otherwise

,

α ∈ Bǫ− (1) and β ∈ Bc
ǫ−

(1) for a fixed ǫ (negligibly
small). In Particular g(ν∗) = 1∀µij = 1, j = 1, 2, 3....n.
Result Let νci and νck corresponding to ith and kth

image. Then νci and νck are classified into same class iff
g(νci ) = g(νck ).

© 2017 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1728 S. Gopalan et al.: Function approximation with deep neural network...

For the Neural Network classification to give better
approximations, the mapping Φm+1 should converge to
the function g as defined in 4.1 and leads to following
representation of classes in XG .

4.2 Neighborhood points in classification

Let Xg0
and Xg1

be two classes of XG such that

Xg0
=

{
νci /νci ∈ XG,Φm+1(νci ) ∈ Bc

ǫ−
(1)

}

Xg1
=

{

νci /νci ∈ XG,Φm+1(νci ) ∈ Bǫ− (1)
}

Then the vectors in the class Xg0
are mapped to the points x

in the compliment of ǫ- neighborhood of 1 and the vectors
in the class Xg1

are mapped to the points x in the ǫ -
neighborhood of 1.

5 Classification in metric Space

Now inspired from the definition of metric space a notion
of distance has been implemented for the classification of
elements in XG . The classification could be modeled by
defining a metric in the input space and the output space as
follows:
Let dg : XG × XG → [0, 1] be a function defined as,

dg(νci , νck ) =
1

n

n
∑

j=1

���µij − µik
���

.
Let dǫ : K × K → K be a function defined as,

dǫ (Φm+1(νci ),Φm+1(νck )) = ��Φm+1(νci ) − Φm+1(νck )��

Then (dg, XG )&(dǫ, K ) satisfies all the axioms of a metric
space.
Result:Let XG be the collection of n-dimensional vectors
representing images. Let Xg0

and Xg1
be two classes of XG

as defined in 4.2. Then Xg0
∩ Xg1

= φ.
Let νcm ∈ Xg0

∩ Xg1

⇒ Φm+1(νcm ) ∈ Bc
ǫ−

(1)&Φm+1(νcm ) ∈ Bǫ− (1)
⇒ Φm+1(νcm ) ∈ (ǫ, 1]c ∩ (ǫ, 1] which is a contradiction
from 3.1,Φm+1 is well defined.
Hence Xg0

∩ Xg1
= φ

6 Convergence of Neural Network

classification

For the convergence of Neural Network classification to
a better approximation, the concept of continuity between
the metric spaces is considered.

Figure 1 Transformations and Approximations (Geometrical

Representation of Input-Output Relationships)

6.1 Necessary Condition

6.1.1 Existence of Limit:

Let g : Kn → K be a mapping as defined in 4.1 and

ν∗ = (1, 1, 1, 1...., 1, 0, ..0) ∈ Kn

Then limν→ν∗ g(ν) = 1⇔ µij ∈ Bǫ− (1) and

µij → 1,∀ j = 1, 2, ....n0

where ν∗ = (µi1, µi2, µi3, .....µin0
, 0, 0..0) ∈ Kn

With the concept of limit, continuity can be defined on
function, mapping the metric space (dg, XG ) to the metric
space (dǫ,K )

6.1.2 Existence of Continuity

Let XG be the collection of n-dimensional vectors
representing images and dg is a metric on XG , dǫ is a
metric on K = [0, 1]and g be the function as defined in
4.1.
Let mapping ψ : (dg, XG ) → (dǫ,K ) is continuous at ν∗

if for a given ǫ > 0,∃δ > 0, depending on ǫ and ν∗ such
that

dg(νci , ν
∗) < δ ⇒ dǫ (Φm+1(νci ), g(ν∗)) < ǫ

Result: By using 6.1there exist a collection of open balls
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Bgm (ν∗) ⊆ XG such that

Bgm (ν∗) = {νci ∈ XG/µij ∈ Bδ−m
(1)∀ j = 1, 2, ....n0 and

δ1 > δ2 > ...... > δm > ... → 0}
Similarly open balls in K such that:
Bǫm (g(ν∗)) = {Φm+1(νci ) ∈ K/Φm+1(νci ) = α ∈ Bδ−m

(1)
and ǫ1 > ǫ2 > ...... > ǫm > ... → 0}

6.2 Sufficient Condition

If ψ : (dg, XG ) → (dǫ,K ) is continuous at ν∗ then ψ maps
open balls centered at ν∗ in XG to the corresponding open
balls centered at g(ν∗) in K such that |ψ(ν∗) − g(ν∗) | < ǫ .

7 Conclusion and Future Directions

In this work an approximation space is developed with
deep neural networks and the input fuzzy image features
in such a way that it falls in the neighborhood of pivot
vector ν∗ = (1, 1, 1, ....1, 0, ..0) ∈ Kn .The features around
the pivot vector strengthens the approximation process of
the neural network. A mathematical framework
corresponding to the neighborhood helps to collect
maximum targeted data points in the image retrieval
process. Then the transformation of these data points
gives convergence criteria of the model. This shows the
existence of the mathematical database in the fuzzy based
NN approximations. As a future work pattern recognition
can be made by defining a one to one onto map between
the image features using the theory of permutation group
from algebra so that suitable data points can be identified
by Neural Network.
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