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Abstract: Vehicle routing problems are well-known combinational optimization problems with considerable economic significance.
Considering the vehicle routing problem with limited capacity on tree is a problemthat often naturally arises in railway, river, and
rural road networks. In this paper, we describe an artificial immune system that is distributed, robust, dynamic, diverse and adaptive. It
captures many features of the vertebrate immune system and proposedan intelligent artificial system which hybrid genetic and immune
algorithm to solve the vehicle routing problem with limited capacity on tree. Computational results show the proposed technique to be
very competitive with the best-known heuristic routing procedures providing some new best-known solutions.
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1 Introduction

The vehicle routing problem (VRP) is a fundamental
problem in combinatorial optimization with wide-ranging
applications in practice. It forms the core of logistics
planning and has been extensively studied by the
operations research community. The last two decades
have seen enormous improvements in the research
communitys ability to solve these problems, due to better
algorithms as well as better computational capabilities.
Toth and Vigo [1] provide an update survey of problem
variants, exact solution techniques, and heuristics for the
vehicle routing problem. Vehicle routing problems are
well-known combinational optimization problems with
considerable economic significance. An important variant
of the VRP arises when a fleet of vehicles characterized
by different capacities and costs is available for
distribution activities. Since it was first proposed by
Dantzig and Ramser [2], hundreds of papers have been
devoted to the exact and approximate solution of the
many variants of this problem, such as the Capacitated
VRP (CVRP), in which a homogeneous fleet of vehicles
is available and the only constraint is the vehicle capacity,
or the VRP with Time Windows (VRPTW), where

customers may be served within a specified time interval
and the schedule of the vehicle trips needs to be
determined. In vehicle routing problem, customers with
known demands are serviced by a homogeneous fleet of
limited capacity vehicles. A fixed numberk of identical
vehicles, each with a capacityQ, is available at the central
depot. Routes are assumed to start and end at the central
depot. There areM customers (plus the depot), each
customer provides a time interval during which a
particular task must be complete such as loading or
unloading the vehicle. The objective is to minimize the
number of tours or routes, and then for the same number
of tours, to minimize the total traveled distance. The total
load on any vehicle associated with a given route does not
exceed the vehicle capacity. The VRP is an NP-complete
problem, preventing the use of exact algorithms for
certain instances of the problem, and thus requiring the
use of heuristic approaches.

This paper proposes one artificial intelligent system
based on genetic and immune algorithm to solve VRP
with limited capacity on tree, name ASIG-VRPCT. The
concept of ASIG-VRPCT is from genetic and artificial
immune systems are used genotypic-based distances to
move from the infeasible region to the feasible region of a
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problem. We examine the basic problem including
capacity constraints only, which has received greater
attention in the literature, as well as the more recently
studied variants including time window constraints.
Moreover, we briefly review a related variant known as
the Site-Dependent VRP (SDVRP), where there are
compatibility relations between customers and vehicle
types. Additional case studies and applications related to
the solution of Heterogeneous VRPs can be found in
Semet and Taillard [3], Rochat and Semet [4], Brandao
and Mercer [5], Prins [6], Wu et al. [7] and
Tavakkoli-Moghaddam et al. [8]. In addition, Engevall et
al. [9] use a game-theoretic approach to model the
problem of allocating the cost of the heterogeneous fleet
to the customers. The ASIG-VRPCT is an algorithm with
unsupervised of the solution. Although this may look like
a limitation, the results achieved show a good
performance of the proposed method.

The remainder of this paper is organized as follows.
Section 2 presents an overview of a few algorithms to
solve VRP; Section 3 introduced the Artificial immune
system and in Section 4, the AIS-based hybrid genetic
algorithm is presented; in Section 5 introduced the basic
concepts of the proposed AIS-based hybrid genetic
algorithm, ASIG-VRPCT, is detailed; the computational
results are presented in Section 6. Finally, some
conclusions and future research direction are presented in
Section 7.

2 Related Works

Hybrid genetic algorithms (HGAs) have, over the last
decade, become almost standard tools for function
optimization and combinatorial analysis: according to
Goldberg et. al., real-world business and engineering
applications are typically undertaken with some form of
hybridization between the GA and a specialized search
[10]. The reason for this is that HGAs generally have an
improved performance, as has been demonstrated in such
diverse areas as vehicle routing [11] and multiple protein
sequence alignment [12]. Genetic algorithms [13],[14] are
proposed by Lai and Jianag, are adaptive heuristic search
methods that mimic evolution through natural selection.
They work by combining selection, recombination and
mutation operations. The selection will drive the
population toward better solutions while recombination
uses genes of selected parents to produce offspring that
will form the next generation. Mutation is used to escape
from local minima.

The VRP is a hard combinatorial problem. Naddef
and Rinaldi [15], Baldacci et al. [16], proposed exact
algorithms which can only solve relatively small
instances and their computational times are highly
variable. To this day, heuristics remain the only reliable
approach for the solution of practical instances. In
contrast to exact algorithms, heuristics are better suitedto
the solution of VRP variants involving side constraints

such as time windows by Cordeau et al. [17], pickups and
deliveries in Desaulniers et al. [18], periodic visits
proposed by Cordeau et al. [19], etc.

In recent years several powerful heuristics have been
proposed for the VRP and its variants, based on local
search, population search and learning mechanisms
principles. Local search includes descent algorithms by
Ergun et al. [20], Osman [21] in simulated annealing,
deterministic annealing by Golden et al. [22] and Li et al.
[23], tabu search in Osman [21]; Taillard [24]; Gendreau
et al. [25]; Xu and Kelly [26]; Rego and Roucairol [27]
and Cordeau et al. [28]. The two best known types of
population search heuristics are evolutionary algorithms
proposed by Prins [29], Berger and Barkaoui [30] and
adaptive memory procedures by Tarantilis and Kiranoudis
[31].

The field of VRP heuristics is very active, as
witnessed by the large number of recent articles listed in
the previous paragraph. This chapter summarizes some of
the most important new developments in the area of VRP
heuristics and presents comparative computational
results. Several surveys have recently been published on
VRP heuristics proposed in Laporte and Semet [32];
Cordeau and Laporte [33].

From recent surveys, most metaheuristics proposed so
far present some variability in average and best
performances. Besides, reported average performance
results can hardly support any claims acknowledging a
dominating heuristic over the others [45-50]. No single
method consistently matched the best-known minimum
number of tours over all problem instances examined.
Moreover, computational cost represents a sensitive issue
to be satisfactorily addressed as well. As a result, a more
robust, cost effective and stable algorithm still remains
elusive. The main contribution of this paper is an attempt
to design such a new technique. A version of a
route-directed hybrid genetic and immune algorithm for
the VRPCT is proposed.

3 Artificial Immune System (AIS)

In recent years, interest has been growing in the use of
other biologically inspired models: in particular the
immune system, as witnessed by the emergence of the
field of Artificial Immune Systems (AIS). An artificial
immune system is a type of optimization algorithm
inspired by the principles. AIS can be defined as a
computational system inspired by theoretical
immunology, observed immune functions, principles and
mechanisms in order to solve problems [34]. It is used to
solve constrained global optimization [35]. Farmer et al.
[36] were the first to suggest a way of representing the
immune system in computer. Hajela et al. [37],[38]
described the procedure for improving the performance of
a constrained genetic search to simulate the mechanics of
a biological immune system. Their objects are using the
immune system capabilities to enhance the convergence
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of a GA approach, and handling the design of constraints
in the GA based optimization. Nareli et al. [35] and
Carlos et al. [39] proposed an artificial immune based
method for handling constraints in GA. Their approach
produced highly competitive results better than those of
penalty function approaches for various function
optimizations.

The key immune procedure in the artificial immune
system is the immune response. It is composed of
interaction between the antigen and the antibody. Like the
majority of GA applications, Hajela et al. [37],[38] had
used a binary encoding for the strings representing the
immune components (antigens and antibodies). The
fitness of an individual was determined by its ability to
recognize either a specific or a broad group of antigens,
given by a function that measured the number of
matching bits between a pair of strings, z=sumti, where
ti = 1 if there was a match in the ith location of the two
strings, otherwiseti = 0. The degree of recognition,
known as the affinity between the immune cell and the
antigen, is measured via a function that quantifies the
strength of the match between the two. A simple immune
components relationship can be seen in Fig. 3.1.

6.3cm

Figure 3.1: A simple immune components relationship

The proposed algorithm, the candidates n, the
populations are divided into antigens and antibodies
according to whether they satisfy minimize the number of
tours or routes, distance and limited capacity. All feasible
individuals are denominated as antigens and the
remaining infeasible individuals as antibodies. The
AIS-based algorithm drives the antibodies (infeasible
individuals) towards the antigens (feasible) through
evolution inspired by the immune principle, where the
infeasible individuals with some form of penalty function.
At the same time, the antigen part will also be driven to
better position via crossover operator along with the local

search algorithm. This idea is based on the model in
Forrest [40].

4 AIS-based hybrid genetic algorithms

Evolutionary algorithms are a wide class of
metaheuristics, also inspired from a natural metaphor,
with Genetic Algorithms (Gas) being one of the best
known. Basically, they mimic the way species evolve and
adapt to their environment, according to the Darwinial
principle of natural selection. Under this paradigm, a
population of solutions (often encoded as bit or integer
strings, known as chromosomes) evolves from one
generation to the next through the application of operators
that are similar to those found in nature, like selection of
the fittest, genetic crossover and mutation. Through the
selection process, only the best solutions are allowed to
become parents and to generate offspring. The mating
process, known as crossover, then takes two selected
parent solutions and combines their most desirable
features to create one or two offspring solutions. It is
repeated until a new population of offspring is obtained.
Finally each offspring is randomly perturbed by a
mutation operator. Starting from a randomly or
heuristically generated initial population, this cycle is
repeated for a number of generations, and the best
solution found is returned at the end.

GA is the most suitable method for NP complete and
NP hard optimized problems [41],[42]. Despite the
success of the GA in global optimization technique, the
GA is used to solve the unconstrained problems [41]. An
additional mechanism is required to incorporate
constraints of a type into the fitness function. Various
constraint handling methods are described in [43].
Penalty functions remain the most efficient technique for
optimization problems. Constrained problem is
transformed into unconstrained problems by adding
penalty term with objective function. The performance of
a penalty function depends on the type of functions
adopted and on the values defined for its parameter
(namely, penalty factor). It is difficult to decide suitable
penalty parameters. Unsuitable penalty parameters result
in poor performance even though the other parts of
algorithms are designed well.

Our proposed approach incorporates an emulation of
AIS with GA and uses genotypic-based distances to move
from the infeasible region of a problem. In our approach,
GA is hybridized by incorporating three heuristic
schemes. In the first scheme, artificial immune search
mechanism is used to handle the constraints instead of
penalty function. This mechanism is based on similarities
between chromosomes, so no additional evaluation on
fitness function is required. The second scheme is to use
the local search function along with crossover to drive the
antigen into the better position. With this second hybrid
approach, local search function is applied to each newly
generated offspring to move it to a local optimum before
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inserting it into the new population. In the third approach,
clone selection algorithm with hyper-mutation is used to
preserve the diversity. The selected clone cells are subject
to an affinity maturation process, which improves their
affinity to the selective antigens. Also, we use the search
engine of the genetic algorithm to conduct the search
towards the global optimum. In our algorithm both
antigen and antibodies re represented as binary strings
and a matching rule is used to estimate the similarity
between an antigen and an antibody.

4.1 Vehicle Routing Problem with limited
Capacity on Tree

The vehicle routing problem with limited capacity can be
modeled as a rooted treeT = (N0,E), the root of T
(representing the depot) is a unique node inN0. The set of
nodes other than the depot is denoted byN. Edge setE
and (i, j)∈ E, i is closer to the root thanj, then i is the
parent of j and j is a child of i. Nodei is an ancestor of
node j if i lies on the unique simple path from the root to
j. We will use the convention that the tree is represented
topologically downward. Therefore, a node is below its
ancestors and above its descendants. A leaf node of the
graph is a node that does not have children. A sub-treeS
is a connected sub-graph ofT . The root of a sub-treeS,
denoted byrs, is the node inS that is closet to the depot.
The weight of a sub-tree is the sum of weights of the
edges in the sub-tree.

Given a subset of nodesL ⊂ N0, the minimal covering
sub-tree is the union of all paths from each node in L to the
depot. Observe that the covering sub-tree is rooted at the
depot. The covering sub-tree is the minimum set of edges
that need to be traversed in order to visit each node inL.

Without loss of generality, we assume that the degree
of the depot is 1. Consider the situation where there is no
fixed cost associated with the use of a vehicle. Observe
that a route that includes the depot as a non-terminal node
can be broken up into multiple routes, each route
originating and terminating at the depot with no change in
the objective value. Thus, in this situation, the problem
may simply be decomposed into multiple smaller
problems, one for each sub-tree incident to the depot
node. Figure 4.1 illustrates this situation. On the other
hand, when there is a fixed cost associated with a route,
we add a new node and connect it to the depot by an edge
whose cost equals the fixed cost. We make this new node
the depot. Finally, we wet the demand of the old depot
node to zero and solve the ASIG-VRPCT on this network
where the depot has degree 1.

.
A tour for each vehicle consists of a path from the

depot to the first node in the vehicle tour, a set of arcs
connecting nodes in the vehicle tour in increasing order of
node index, and a path from the last node in the tour back
to the depot.

7.3cm

Figure 4.1: A tree in which the degree of the depot is greater
than 1 can be split into multiple sub-trees

The following four sets of binary variables in our
formulation. The decision variables are shown in Table 1.

Table 1.The decision variables

The VRPCT model uses the following data that is
available as input which is shown in Table 2.

We may now state our formulation as follows,
assuming that nodes are indexed in depth first order.

Minimize
n

∑
i=1

Si(wi + zi)+
n−1

∑
i=1

n

∑
j= j+1

Li jxi j, (1)
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Table 2. Input Parameters

Sub jecttoDi +
n

∑
j=i+1

D jyi j ≤C∀i ∈ N, (2)

yi j + y jk − yik ≤ 1∀i, j,k ∈ N, i < j < k, (3)

xi j − yi j ≤ 0∀i, j ∈ N, (4)

w j +∑ i = 1j−1xi j = 1∀ j ∈ N, (5)

zi +∑ j = i+1nxi j = 1∀i ∈ N, (6)

wi,xi j,yi j,zi ∈ 0,1∀i, j ∈ N, i < j, (7)

The objective function is to minimize the distance of
all traversed arcs. Constraint (2) is the vehicle capacity
constraint. Although there is no explicit concept of a
vehicle in the formulation, capacity constraints are
captured by summing demand over nodes that are n the
same vehicle. Constraint (3) creates a clique among nodes
in the same vehicle, if nodesi and j are in the same
vehicle, and nodesj andk are in the same vehicle, then
nodesi andk must be in the same vehicle. Constraint (4)
enforces that nodei cannot precede nodej unless they are
both in the same vehicle. Constraint (5) and (6) force the
demand at a node to be served by exactly one vehicle.
Constraint (7) enforces that all variables are binary. An
interesting observation is that the integrality ofx, w andz
variables can be relaxed (i.e., 0≤ x,w,z ≤ 1) without
affecting the integrality of the solution. However, we
observed that in practice, the problem was solved faster if
all variables were specified to be binary.

4.2 Clone selection algorithm

The clone selection principle describes the basic features
of an immune response to an antigenic stimulus [44]. The
clone selection algorithm is shown to be capable of
solving complex machine-learning tasks, like pattern
recognition and multi-modal optimization. It establishes
the idea that only those cells that recognize the antigen
are selected to proliferate. The selection cells are
subjected to an affinity maturation process, which
improves their affinity towards the selective antigens. The
feature of the clone selection theory is that, the new cells
are copies of their parents (clone) subjected to a mutation
mechanism with high rates (somatic hypermutation). In
this section, the clone selection principle is used for
driving the antibody population to an antigen population
with heuristic mutation between antigen and antibody. In
this mutation, for each antibody, we have selected the
path which is not satisfying the constraints and then
replaced it with the path present in the randomly selected
antigen. The steps for clone selection algorithm are as
follows:

1.The population is divided into antigens and antibodies.
2.An antigen (Ag) is selected randomly from the antigen

population (α).
3.The a1 best antibodies are selected from the antibody

population (β ), based on an affinity measure with
antigen and these immune cells (where population
size isPn) are cloned.

4.Each cell in clone population is submitted to a
hypermutation scheme, where the hypermutation is
inversely proportional to the affinity of the antibody;
the higher affinity cells are mutated with lower
mutation probability. A high mutation probability is
followed in lower affinity cells. This step helps for
preserving the diversity. The maturated antibody
population is denominated as Anti.

5.The affinity of each mutated cell to the antigen (selected
in step 2) is evaluated. The low affinity population in
Pn is replaced by the high affinity population present
in Anti. The replacement is done as follows: if both are
infeasible then choose the individual with high affinity.
The proposed algorithm is shown in Figure 4.2.

4.3 Chromosome representation

We have used the chromosome representation, which is
shown in Figure 4.3. Each individual is represented by
means of k bits, where k is the number of destined nodes.
Each bit in the chromosome corresponds to path in the
routing, from root to each node. For the given problems,
chromosome representation is depicted in Figure 4.3.
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Figure 4.2: Clone Selection algorithm

Figure 4.3: Chromosome representation

4.4 Routing table

For a given graph,G = (V,E), the proposed algorithm
assumes that a routing table, which hasR possible routes.
Figure 4.4 shows the routing table relation with
chromosome.

6.2cm

Figure 4.4: Routing table relations with chromosome

Gene G j = 1, then the algorithm first find out the
integer values in 0,1,2,.,R-1 which is the routing tabless
(s→ v j) route number.Using that route number, the path
route froms to v j is selected from the routing table. For

example, a gene, 100101, the correct row entry numbers
of routing tabless→ v j,s→ v3 ands→ v6. In Figure 4.4,
G j = 1, the integer value, 2 is given by the algorithm, and
hence the corresponding path routes→ v4 → v j is
selected.

4.5 Mutation and crossover

Crossover is used to cross breed the individuals. Using
crossover operator, information between two
chromosomes are exchanged which mimic the mating
process. We have adopted m point crossover with the
probability of 0.54, which is shown in Figure 4.5. A pair
of high fitted parents is selected from the population
randomly based on fitness function values and the
crossover operator chooses m cutting points randomly
and alternatively interchanges each segment between two
parents. The random number, m is chosen with range of
1-6. The operation for 4 point crossover is depicted in
Figure 4.5. Using the output of crossover offspring finds
the local maximum offspring. Those resultant offspring
are added into population for next generations.

The mutation operator introduces new genetic
material by randomly selecting and changing the single
gene. Two mutation operators namely single gene
mutation operator, gene segment shifting operators are
used for avoiding the local minimum. Gene shifting
probability is 0.004 and mutation probability is 0.05.

1.5cm

Figure 4.5: ’4’ point crossover operation

5 ASIG-VRPCT algorithm

The proposed ASIG-VRPCT algorithm is shown in
Figure 5.1. The algorithm describes the genetic operation
with affinity measure between antigen and antibody. First
we randomly generate an initial population with
population sizeP. In jectvaccine( ) is used to add a single
copy of a feasible solution into the initial population.
Then, we divided the population into two groups. All
feasible solutions are grouped into antigens and infeasible
solutions are name as antibodies. If most of the
individuals are infeasible, then we have applied the best
individual in the population as the antigens, where best
refer to the individual with the lowest amount of
constraint violation.

In initialize( ) function, a sample of antibodies of size
β is selected from the antibody pool and an antigen (Ag)
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Figure 5.1: ASIG-VRPCT algorithms

is chosen at random from the antigen population with our
replacement. InSimilarityMeasure( ), each antibody in
the sample is compared against the antigen selected, and
we have computed the similarity measureK between the
antibody and antigen as follows

K = ∑ i = 1Lti, (8)

Whereti = 1 if there is a matching at positioni=1,2,,L
(L is the length of the chromosome) toti = 0 if there is no
match.K represents a distance measured at the genotypic
level (i.e. at the level of the chromosome encoding). The
antibody (Ab) with highest score has the match score
added to its fitness value (i.e. add theK value to the
antibodys affinity). The affinity of other antibodies
remains unchanged. The antibodies are then returned to
the antibody population and process (selection,
f itness f unction) is repeated four times of antibody
population. Based on these values, the crossover
operation among antibodies is performed with the
probability of 0.54. The offspring produced by crossover
is improved. Crossover operation between the antigens is
performed with the probability of 0.54. Mutation
operation between the antigens is performed with the

probability of 0.05. Mutation operation between
antibodies is also performed with the probability 0.05.

Clone selection with hypermutation algorithm is
applied to the antibodies. IncrossoverAb( ), we randomly
choose m and apply m point crossover operator with the
probability 0.54 based on the fitness function over
antigens. In mutation( ), we have performed mutation
operation among antigens with the probability of 0.05.
Here both mutation and crossover helps to move the
antigens to a better position. The converged solution is
minimized the number of tours or routes, and then for the
same number of tours, to minimize the total traveled
distance. Finally we run the dynamic algorithm for
adapting the changes at run time. In this work,
hybridizing of GA is carried out as following:

1.Embedding the local search function to move solutions
towards local optima after each generation which
results in a significant improvement in the overall
performance;

2.Incorporating the AIS based method for handling
constraints;

3.Using the clone selection method for maintaining a good
balance between diversity and convergence;

4.It follows the search engine of the genetic algorithm to
conduct the search towards the global optimum for
chromosomes and embeds the dynamic algorithm into
the GA for handling dynamism.

6 Simulation and results

Our simulation built on IBM Pentium IV personal
computer equipped with 2.8 GHz CPU, 4 GB RAM,
500GB HDD, and Windows XP OS. The performance of
ASIG-VRPCT Algorithm was compared with VLSVRPs
algorithm [23] and DVRP [29] algorithm. The parameter
list is shown in Table 3. Figure 6.1 shows the effect of
number of generation with travel distance which depicts
the convergence property of various algorithms. For
Figure 6.1, we can observe that after 160 generations,
algorithms converge to optimized solutions.

Table 3.Parameter list

Figure 6.2 depicts the routing number versus group
size. The routing number generated by our algorithm
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compared with that of other algorithms. The group size is
30, the routing number for ASIG-VRPCT yields better
performance than that of other algorithms (VLSVRPs and
DVRP). When the group size is greater than 60,
ASIG-VRPCT yields better performance than other
algorithms. This is because of the fast convergence
property of ASIG-VRPCT in large solution space.

Figure 6.1Convergence property of algorithms

Figure 6.2Routing number versus group size

In our simulation, the execution time required by each
algorithm is presented in Figure 6.3. As seen in Figure
6.3, ASIG-VRPCT required less execution time because
of applying hybrid genetic algorithm to solve the VRP.
Artificial immune algorithm for handling constraints,
clone selection method is helpful for increasing the
convergence speed and to obtain the optimized results.

7 Conclusion

In this paper, we proposed an artificial immune based
hybrid genetic algorithm for solving the vehicle routing
problem with limited capacity on tree. Instead of penalty
function, we have used artificial immune based algorithm

Figure 6.3Routing number versus group size

for dealing the infeasible chromosomes, which avoids the
difficulties faced by penalty methods. Random point
crossover technique helps to speed up the convergence.
Hypermutation with clone selection method effectively
move the solution to global optimized solution.
Experimental results show that our algorithm yield
solutions comparable to that of best previously known
heuristics.
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