Decision Support System for Zero-day Attack Response

Huy Kang Kim¹, Soo-Kyun Kim² and Seok-Hun Kim³*
¹Graduate School of Information Security, Korea University, Republic of Korea (First Author)
Email Address: cenda@korea.ac.kr
²Department of Game Engineering, Pai Chai University, Republic of Korea
Email Address: kimsk@pcu.ac.kr
³Division of Computer Engineering, Mokwon University, Republic of Korea (Corresponding Author)
Email Address: shkim@mokwon.ac.kr

Received: Received May 02, 2011; Revised July 25, 2011; Accepted September 12, 2011
Published online: 1 January 2012

Abstract: Regardless of the existence of the various information security safeguards, many companies remain vulnerable to the unknown attack, which is known as the zero-day attack. In this study, we develop the decision support system (DSS) using case-based reasoning (CBR) for zero-day attack response. Also, our proposed system divides the unknown attack into atomic attacks for zero-day attack detection. Then, this proposed system analyzes the similarity between the new zero-day attack pattern and the known attack patterns. Finally, it suggests the most similar cases with applying similarity functions and CBR. The effectiveness of our system is further shown in the empirical test.

Keywords: zero-day attack, attack similarity, case-based reasoning, decision support system.

1 Introduction

The unknown attack so called zero-day attack is a buzzword of information security area. It is known that zillions of the new attack patterns are produced every year. The problem associated with the zero-day attack is that attack patterns cannot be easily detected with a signature-based intrusion detection system (IDS), because the new attacks’ countermeasures and attack signatures are not readily known. Hence, it is very difficult for companies to respond to every new attack and variations of the existing known attacks.

To overcome the limitation of the current IDS and to protect assets from the zero-day attacks, we develop the decision support system (DSS) using three methodologies - similarity functions, case-based reasoning (CBR) and atomic attack analysis.

To find the most similar patterns from comparing the new attack’s signature in packet payloads with that of the known attacks, our DSS adopts text mining and string search algorithms of information retrieval and text mining areas.

In order to develop more customized response strategy for a company, additional information such as attacker’s IP address, target system’s information and target application are required. For this, CBR is conducted. CBR is the process of solving new problems based on the solutions of the similar past problems. CBR can be easily implemented to the real world since most companies have the known attack signature database and they manage the previous incident case records. CBR is very effective to respond the zero-day attack because the series of hackings have commonness. The attack targets are mostly predetermined and have commonness with the previous attacks even though conducted attack techniques are changed. Usually, the primary attack targets have valuable information (worth of hacking) or have severe vulnerabilities (ease of hacking). Thus, target system and exploited
applications will not be changed unless the configuration of the existing systems is completely changed or the new valuable server systems which include sensitive data are changed. Hence, if the attack history is well recorded in the case-base, we can estimate the most similar prior attack cases. When the symptom for the zero-day attack is detected, it will be agile response if security officers can respond to the attack based on the information of the most similar case. Actually, many security advisories suggest similar workarounds where the attack type is similar with the known prior case.

Hence, if new attacks are detected and the attacks’ target application are attacked by the previous similar case, then, known workaround for the prior cases are still valid for reacting to the new attacks. If there is attack signature database and case-base of the previous incident, companies can find the most similar attack pattern from the signature database. Then, security officers can search the case related to the same attack pattern and finally they can decide how-to-respond for the new attack based on the past similar cases.

The concept of atomic vulnerability and atomic attack is that any attack can be divided into single or multiple atomic attacks. As the same, vulnerability can be divided into single or multiple atomic vulnerabilities. These atomic vulnerabilities are exploited by the related atomic attacks, and these atomic attack and its vulnerability relationship can be 1:1 or 1:N. Hence, we can define attack as a set of atomic vulnerabilities, which are applied to compromise a certain system with exploiting single vulnerability or multiple vulnerabilities. If the symptom for the zero-day attack is detected, then we divide the unknown attack into several atomic attacks and search for a similar attack case to increase search ability. Even though the IDS does not know all of the atomic attack patterns, if IDS knows some of the atomic attacks then it can detect part of the zero-day attack.

With these mechanisms, we also propose zero-day attack response procedures in this paper. Finally, we estimate our proposed DSS’s performance.

2 Literature Review

2.1 Attack and vulnerability

Attacks and vulnerabilities have been studied by many researchers. Studies on attacks and vulnerabilities can be classified into three approaches. The first approach is the state-transition analysis. The state-transition analysis depicts attacks with a state-transition diagram, which is a set of goals and transitions. Any event that triggers an attack state is considered as an intrusion. State-transition analysis employs the rule-based analysis of the audit trails of multi-user computer systems. In state-transition analysis, an intrusion is identified as a sequence of state changes that lead the computer system from some initial states to a target compromised state. NetSTAT uses state transition diagrams to describe network attacks to support network intrusion analysis [4]. The second approach is based on the probabilistic learning and various machine learning techniques. It can be considered as a variation of the state-transition analysis. Table.1 shows approaches with the probabilistic model and Bayesian network. The third approach is based on simulation methodology. This approach tries to formalize attack events discretely. Several studies apply DEVs (Discrete Event System Specification) formalism.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Application and related paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>modeling attack transition with a probabilistic model</td>
<td>Applied to intrusion detection by examining intrusions manifested as anomalies in UNIX system call traces[5]</td>
</tr>
<tr>
<td>employing Hidden Markov Model as the finite state machine</td>
<td>Applied to intrusion detection by examining intrusions manifested as anomalies in UNIX command execution log[6]</td>
</tr>
<tr>
<td>constructing a Bayestian network for reasoning in the domain of system call execution</td>
<td>Applied to intrusion detection by examining intrusions manifested as anomalies in UNIX system call traces[7]</td>
</tr>
</tbody>
</table>

Table.1 Approaches with the probabilistic model and Bayesian network

Kim et al. [8] introduced the concept of VX (vulnerability expression), CV (compound Vulnerability) and AV (Atomic Vulnerability). Kim et al. assumed that an attack is composed of a sequence of actions that cause state transition, where each action incurs vulnerability that can be exploited. They call each action an atomic vulnerability, which is an undividable cause-unit of cause-effect model. An example is shown as follows.

Atomic Vulnerability: $AV = \{I_{av}, Q_{av}, \delta_{av}, Type\}$

Where,

$I_{av} = \{I_{av1}, I_{av2}, \ldots, I_{avn}\}$, external input of AV

$Q_{av} = Q(\text{initial state}) \cup Q(\text{final state})$, state set of AV

$\delta_{av} : I_{av} \times Q(\text{initial state}) \rightarrow Q(\text{final state})$, AV’s
Even though the above three approaches employ different techniques and tools, there exist commonalities.

An attack or attacks can be decomposed into multiple states, beginning with an initial state (start of attack) and ending with the final state (success of attack – which means the system has been compromised finally). When a state transition occurs, some symptoms appear as the result of the attack. By observing these symptoms, we can estimate the probability that the state can be transitioned to the next state; it can be estimated with a stochastic process or Hidden Markov Model or Bayesian rule.

Still, the three approaches differ in understanding the meaning of state transition. In the third approach, Kim et al. made a hypothesis that a state transition is created by an attack. They assumed that an attack can be decomposed into the atomic level that can cause state transitions. Therefore, an attack can be expressed as the compound of the atomic attacks. This hypothesis is based on the concept developed by Bishop [9]. The other two approaches, which are the first and second approach, did not definitely state that only an attack can change the states. They utilize a model that explains the normal trends and abnormal trends of system calls when attacks occur. In these approaches, the state is just one of the waypoints between ‘beginning of attack’ – where the system is still normal – and ‘end of attack’ – where the system is compromised. Systems can be compromised by a single attack or multiple attacks. However, the latter approaches do not care about the number of attacks or the relationship between attacks that can lead to state transitions. This is because these approaches are developed from based on observation of the real world’s audit trail. However, since not every state transition that invokes system calls can be logged, they can miss some changes in state transition.

In fact, some exploitation can be caused by the combination of multiple attacks, while some are caused by a single attack. The combination of multiple attacks can be both sequential and parallel forms. For example, ‘GoodTech ssh remote exploit attack’ [10] can be done as the following procedure.

- In initial state, server runs a vulnerable version of sshd.
- A hacker begins to do network port scanning at a remote site.
- A hacker attempts to execute ‘telnet target server IP target_port’ for grabbing the version of ssh daemon.
- A hacker sends strings so that the target server can experience buffer overflow on the ssh daemon.
- A hacker changes ‘eip address’ and ‘offset’ for loading a command.
- Finally, a hacker sends a malicious command to the server after the daemon’s memory has been overflowed.

In the above example, among the six procedures, the second procedure can be skipped and the third procedure can be skipped by a hacker. In the third procedure, a hacker just can send strings to make overflow the sshd brute-forcedly without confirmation of versions. So, some hackers skip some of the procedures and directly execute the fourth procedure. However, when hackers fail to overflow the sshd, they need to go back to the second procedure and then execute the third procedure to gain the exact version information of sshd. After that, they execute the fourth procedure once again with the exact information, which was acquired in the third procedure. In any case, the fifth procedure should always be followed by the fourth procedure.

As we can see the above example, attacks can be divided into several sub-attacks. These atomic attacks might have sequential relationships among them, that is, they have dependency between them.

We developed a new approach that could fully explain the 6 procedures. We illustrated a new attack and state transition model as in the Fig.1. Our model encompasses all the different viewpoints of researchers including that of Eskin [5], Warrender et al. [6], Kruegel et al. [7], Kim et al. [8], and Bishop [9].

The common points are fact that an attack can be decomposed into atomic attacks, and the fact that every atomic attack changes the state. However, the symptom caused by this atomic attack is not always observable. Therefore, there is possibility that the attack will not to be detected until the system is fully compromised. IDS can miss the detection of every symptom caused by an atomic attack when the atomic attack does not show remarkable symptoms. (e.g., definitive signatures on packet payload and anomalous action on a process leave logs in the system’s log files.) Moreover, some poorly designed applications or OS cannot properly react to every atomic attack because they might not have adequate functions of audit or defensive...
mechanisms. In addition, attackers can modify their attacks with many evasion techniques described in the study of Cohen [11]. In these cases, interim state transition cannot be shown.

As an attack is divided into atomic attacks, vulnerability can be divided into sub-vulnerabilities, that is, atomic vulnerabilities. These atomic vulnerabilities are exploited by the related atomic attacks. These relations are illustrated in the Fig.2.

2.2 CAPEC, CWE, and CVE

There are other approaches that are based on software engineering. CAPEC (Common Attack Pattern Enumeration and Classification) [12], CWE (Common Weakness Enumeration) [13], and CVE (Common Vulnerability Exposure) [14] by MITRE cooperation. They are the de-facto standards of expressing vulnerabilities and attacks with unique identification indexes.

CAPEC is a measurable catalog of attack patterns along with detail schema and classification taxonomy. CAPEC categorizes attacks and break down attacks into an atomic level. Every attack pattern is divided into undividable attack patterns. These undividable attack patterns have unique CAPEC ID. CAPEC shows the full description, related weakness (CWE) and related known vulnerabilities (CVE) of undividable attack.
CWE is a measurable category of software weaknesses that exist in source code, operational systems, and other software. This weakness has a more specific and detail meaning of vulnerability. Vulnerability can be divided into undividable union weakness. This undividable weakness has unique CWE ID. For each undividable weakness, CWE provides full description about the weakness itself, the related attack (CAPEC) and the related known vulnerabilities (CVE). For examples, CWE-306, which describes ‘No Authentication for critical function’, can be exploited by CAPEC-62, CAPEC-36, CAPEC-12 and CAPEC-40.

CVE is a dictionary of publicly known information security vulnerabilities and exposures. CVE Identifiers are common identifiers publicly known for identifying vulnerabilities. Unique CVE ID is assigned to the each vulnerability. CVE ID enables data exchange between security products and provides a baseline index point for evaluating coverage of tools and services. For the each vulnerability that has CVE ID, CVE shows the attack title, attack description and related reference. Some of the vulnerabilities shown in the CVE list are atomic vulnerabilities by themselves, while other vulnerabilities shown in the CVE list are the combinations of several atomic vulnerabilities.

In conclusion, CAPEC is good for expressing atomic attacks and their relations. CWE is good for expressing atomic vulnerabilities. CVE can be assumed as a set of atomic vulnerabilities.

2.3 Attack graph
Noel et al. [16] introduce the concept of the attack graph. The attack graph shows the relationship between sub-attacks, which is in the form of vertex, and node. Fig.3 shows an example of an attack graph. The Graph theory is applied for the expression of sub-attacks and its condition to transit.

There are several related studies done by Noel and colleagues [15-17]. These studies commonly called as attack graph. The attack graph can be applied to calculate the optimal hardening cost. Reike [18] utilized the attack graph to visualize the enterprise network vulnerabilities.

The attack graph theory adopts the concept that an attack can be divided into smaller ones and the exploitation process can be expressed in the series of state transition.

2.4 Case-based Reasoning
CBR’s overall process is described in the Fig.4. The process of CBR is very simple and comprehensible. CBR also doesn’t need prior-training of data for solving a new problem.
Studies that aim at detecting anomalous attacks with CBR are as follows. Musman et al. [19] developed SoSMART with applying CBR. It relies on string match of rule-base to detect suspicious symptom of attack on the log files. However, not all attacks make application to generate log events. Hong et al. [20] proposed the CBR model for intrusion detection. In their model, CBR and decision tree C4.5 are used for misuse detection, and neural networks are used for anomaly detection. Kim et al. [21] apply CBR to find out similarities between already known hacking patterns and new hacking patterns. With the RFM (Recency, Frequency, Monetary) analysis methodology and CBR, they develop DSS which can minimize false alarms and decrease the time to respond to hacking events.

Similar case retrieval in the CBR process plays an important role in reasoning. Hence, how to design the similarity metrics in the case retrieval process is critical for increasing accuracy. Usually the k-nearest neighbor (k-NN) method or its variants are widely used as the retrieval mechanism.

2.5 Similarity and distance metrics

Information retrieval is a research area of searching for documents, for information within documents, and for metadata about documents, as well as that of searching databases. In the middle of information retrieval process, similarity and distance metrics are usually used to enrich search ability. These metrics are also applied to an Internet search engine application for searching similar words, sentences, and documents. Also, this string similarity metric can be applied to search attack variants by analyzing strings in the attack packets.

Many similarity and distance algorithms have been developed to support the string search and calculation of similarity between documents or sentences. The representative string comparator algorithms are as follows.

1. Edit-distance (Levenshtein distance)
 The edit-distance between two strings is given by the minimum number of operations needed to transform one string into the other, where an operation is an insertion, deletion, or substitution of a single character. A generalization of the Levenshtein distance (Damerau-Levenshtein distance) allows the transposition of two characters as an operation. This algorithm is frequently used in applications that need to determine how similar words are, such as spelling-check programs. The edit-distance can be considered as a generalized version of Hamming distance.

2. Jaro distance and Jaro-Winkler distance
 Jaro-Winkler distance [23] is a variant of the Jaro distance [22] metric. They are mainly used in the area of record linkage (duplicate detection). The higher the Jaro-Winkler distance for two strings is, the more similar the strings are. The Jaro-Winkler distance metric is designed and best suited for short strings such as person names.

3. Smith-Waterman distance
 Smith-Waterman distance [24] is a well-known algorithm for performing local sequence alignment, that is, for determining similar regions between two nucleotide or protein sequences. Instead of looking at the total sequence, the Smith-Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure.

A comparison between metrics is well summarized in the research of Cohen et al. [25]. Cohen et al. investigate the overall performance of several string distance metrics, edit-distance-like functions, token-based distance functions, and hybrid distance functions.

3 Methodologies

3.1 Similarity metrics between a known attack and an unknown attack

Considering the atomic attack analysis, the zero-day attack response procedure can be proposed as follows.

1. When an anomalous symptom happens in network or server systems, then capture packets at that time.
2. Input the captured packets into IDS. IDS can determine whether the captured packet as an attack, which means the known
atomic attacks are included in the captured packets.

A. In this case, find the vulnerability that can be exploited by the found atomic attacks.

B. Find the assets that have those vulnerabilities in A.

Then, how can the organization response to the zero-day attack when a known atomic attack is not found in procedure 2? Now we need algorithms for searching similar attack patterns with the patterns in the captured packets.

As most detecting systems do, when deciding the similarity between attacks, the first important factor is considering the strings in the packet payload. In most cases of variant attacks in the same attack category and same attack target application, the attack signature strings have similar patterns.

For example, Klez worm type A and its variant attack, Klez worm type B, are not much different. From this viewpoint, Table.2 and Table.3 show the variant attacks in RPC and NETBIOS SMB protocol have own attack patterns. We can see that similar strings repeatedly occurred in attack signatures in the packets.

<table>
<thead>
<tr>
<th>Snort ID</th>
<th>category</th>
<th>Attack title</th>
<th>Attack signatures in packet</th>
<th>Related CVE</th>
<th>Disclosure date</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200</td>
<td>RPC</td>
<td>RPC portmap 390113 udp request</td>
<td>00 01 86 A0 00 00 00 03 00 05 F3 E1 00 00 00 01</td>
<td>2007-3618,2000-0719</td>
<td>2000-08-10</td>
</tr>
<tr>
<td>6201</td>
<td>RPC</td>
<td>RPC portmap 390113 udp procedure 4 attempt</td>
<td>00 05 F3 E1 00 00 00 04 00_sub_rqst</td>
<td>2007-3618, 2000-0902</td>
<td>2000-09-07</td>
</tr>
<tr>
<td>6202</td>
<td>RPC</td>
<td>RPC portmap 390113 udp procedure 5 attempt</td>
<td>00 05 F3 E1 00 00 00 05 00_sub_rqst</td>
<td>2007-3618, 2000-0988</td>
<td>2000-10-13</td>
</tr>
</tbody>
</table>

Table.2 Attack signature in the snort ruleset: RPC portmapper

<table>
<thead>
<tr>
<th>Snort ID</th>
<th>category</th>
<th>Attack title</th>
<th>Attack signatures in packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1429</td>
<td>NETBIOS SMB</td>
<td>NETBIOS SMB ISystemActivator WriteAndX unicode alter context attempt</td>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
</tr>
<tr>
<td>1430</td>
<td>NETBIOS SMB</td>
<td>NETBIOS SMB-DS ISystemActivator WriteAndX alter context attempt</td>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
</tr>
<tr>
<td>1431</td>
<td>NETBIOS SMB</td>
<td>NETBIOS SMB-DS ISystemActivator unicode alter context attempt</td>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
</tr>
<tr>
<td>1432</td>
<td>NETBIOS SMB</td>
<td>NETBIOS SMB-DS ISystemActivator WriteAndX unicode little endian alter context attempt</td>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
</tr>
</tbody>
</table>

Table.3 Attack signature in the snort ruleset: NETBIOS SMB ISystemActivator

<table>
<thead>
<tr>
<th>Attack signatures in packet</th>
<th>Hex stream after data preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000FF534D422F0505A0010000000000C00000000000000000000</td>
<td>00 FF534D422F 05 0E A00100000000000000000000000000000</td>
</tr>
<tr>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
<td>00 FF534D422F 05 0E A00100000000000000000000000000000</td>
</tr>
<tr>
<td>0000FF534D422F0505A00100000000000C00000000000000000000</td>
<td>00 FF534D422F 05 0E A00100000000000000000000000000000</td>
</tr>
</tbody>
</table>

Table.4 Example – original NETBIOS related attack signature and preprocessed signature into HEX codes

For the better search performance, we transform the attack signatures into series of hex strings, and it then becomes easier to find the similarity as shown in Table.4. We can find that there are many common features by protocol and target applications. These attack string patterns have various characteristics – duplicated strings pattern, repetitive strings pattern, and so on. So, we assume that there are optimal similarity measure for each specific protocol and application.

To find this optimal similarity function per protocol, we designed an experiment. In addition, we estimate the detection power of zero-day attacks with those similarity functions. We choose the widely used similarity and distance metrics for calculating similarity between attack strings. The
following representative functions are used for this experiment.

1. Jaro distance
2. Jaro-Winkler distance
3. Edit-distance (also known as Levenshtein distance)
4. modified Edit-distance (we set the transposition cost 1 instead of 2)
5. Bag distance (also known as approximate Levenshtein distance) – this distance measure is proposed by Bartolini et al. [27].

<table>
<thead>
<tr>
<th>similarity value S Between attack pattern A and attack pattern B</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>“Completely different attack”</td>
</tr>
<tr>
<td></td>
<td>Attacks A and B have no relationship.</td>
</tr>
<tr>
<td>0<S<1</td>
<td>“similar attack”</td>
</tr>
<tr>
<td></td>
<td>At least the workaround can be similar or the same.</td>
</tr>
<tr>
<td></td>
<td>So, the countermeasure can be referred the previous cases.</td>
</tr>
<tr>
<td>1</td>
<td>Attacks A and B are completely same.</td>
</tr>
<tr>
<td></td>
<td>So, the countermeasure of attack A can be applied attack B without any modifications.</td>
</tr>
</tbody>
</table>

Table.5 Similarity values and their meaning

Now, the zero-day response procedure can be updated as follows.

1. When anomalous symptom occurs in the network or on server systems, capture packets at that time.
2. Input the captured packets into IDS. IDS can detect the captured packet as being an attack, which means the known atomic attacks are included in the captured packets.
 A. In case of this, find the vulnerability set (CVE) that can be exploited by the found atomic attacks.
 B. find the assets that have those vulnerabilities in A
3. When a known atomic attack is not found in procedure®, find the similar attacks based on the string similarity search. The attack string in the captured packets and the strings in the attack signature database (that is, misuse signatures in the ruleset) are compared.
4. Find the vulnerability set (CVE) that can be exploited by the most similar attack set found in procedure®.
5. Find the assets which have those vulnerabilities set (CVE) in procedure®.

3.2 Case-based reasoning

In section 3.1, we show the way to find out the most similar attack patterns with various string similarity metrics. In case that there is no findings by string similarity search, or in case that the queried result need to be improved, we need to search with more specific information which can affect the search accuracy. So, with adding up more specific information such as source IP address and destination IP address and destination port, more accurate result can be derived. Comparing strings in the packet level is important but it is micro view. In a point of macro view, hackers IP address, attack target’s OS and application information are well-fitted information for the organizations.

CBR is very powerful methodology when decision maker need to solve problem from the information of the domain knowledge. For this, as like the other CBR applications, it is required to define a distance measure for case retrieval. Symbolic data for explaining a case are coded into vector form for convenience of calculating distance, and then the distance between cases are measured. Usually Euclidean distance and cosine distance are used to calculate distance of two vectors.

When we describe a case, 5W1H (when, who, where, what, which, how) information are required intuitively. Considering 5W1H, attack case can be coded into the following vector form.

Case vector =
(attack date, attackers’ IP, attackers src port, target IP, target port, target application, target application’s version, target OS, target OS version, target OS architecture, attack pattern string)
The vector is designed for expression of these following assumptions.

- The attacks happened in adjacent time line are similar.
- The attacks from similar IP address range are similar.
- The attacks which seek to exploit the same target servers are similar.
- The attacks which seek to exploit the same OS and same application are similar.

Assuming that there are {Solaris, HP-UX, AIX, Windows, Linux, SGI} OS. When coding the OS symbol information into numeric one, it cause an error to measure distance that if the value is set as {Solaris = 1, HP-UX = 2, AIX=3, Windows =4, Linux = 5, SGI = 6}. It is just a coded value for distinguishing with other symbol values. If we set values from 1 to 5 then that cannot explain the distance between OS. (The value of SGI – the value of Windows is 2, and the value of SGI – the value of Solaris is 5. It does not imply that SGI is more similar with Windows OS rather than Solaris OS.)

For resolving this problem, we limit OS information only for (Solaris, HP-UX, AIX, Windows, Linux, SGI) and set the sub-vector form as follows.

- **Solaris** = (1, 0, 0, 0, 0, 0)
- **HP-UX** = (0, 1, 0, 0, 0, 0)
- **AIX** = (0, 0, 1, 0, 0, 0)
- **Windows** = (0, 0, 0, 1, 0, 0)
- **Linux** = (0, 0, 0, 0, 1, 0)
- **SGI** = (0, 0, 0, 0, 0, 1)

This vector form is quite exact but it cannot be avoided from the curse of dimensionality when considering all OS in the world. Hence, we only consider the top 6 OS at this time. In addition, the OS version information is highly correlated with the OS information and OS architecture. Likewise, the application’s version information is highly correlated with the application information also. Finally, the application information can be derived by port number because the port numbers of the well-known Internet services are static.

The vector for expressing attack case is simplified as below. If not we should consider the vector whose dimension is at least 1024. (The number of port for well-known Internet services)

Simplified Case vector = (attack date, attackers’ IP, target IP, target port, target OS, OS architecture, attack pattern string)

Where,

- **target OS** = {Solaris, HP-UX, AIX, Windows, Linux, SGI}
- **target OS architecture** = {x86, non x86}

Suppose the three attack case as follows.

Case 1 is the attack that is from 118.175.151.128, happened at March-3-2008, the target host’s OS is Solaris 10, architecture is x86, the target program is bind ver. 9.3, and the target host’s IP address is 143.248.1.17. At that time, IDS detected the attack string in the attack packet as “ABCD0980000000100000000000010001202020200261”.

Case 2 is the attack that is from 153.23.4.5, happened at Feb-8-2006, the target host’s OS is HP-UX 11i, architecture is PA_RISC(non x86), the target program is bind ver. 8, and the target host’s IP address is 143.248.3.9. At that time, IDS detected the attack string in the attack packet as “2E2E2F2E2E2F2E2E2F”.

Case 3 is the attack that is from 118.175.151.3, happened at Dec-12-2007, the target host’s OS is Solaris 9, architecture is sparc (non x86), the target program is bind ver. 9, and the target host’s IP address is 143.248.1.1. At that time, IDS detected the attack string in the attack packet as “800007000000000013F000102”. Then these attack cases are coded as follows.

Case 1

- (2008-03-03, 118.175.151.128, 143.248.1.177, 53, {Solaris}, {x86}, ABCD0980000000100000000000010001202020200261)
- (2008-03-03, 118.175.151.128, 143.248.1.177, 53, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, ABCD0980000000100000000000010001202020200261)

Case 2

- (2006-02-08, 153.23.4.5, 143.248.3.9, 53, {HP-UX}, {non x86}, 2E2E2F2E2E2F2E2E2F)
- (2006-02-08, 153.23.4.5, 143.248.3.9, 53, 0, 1, 0, 0, 0, 0, 0, 1, 2E2E2F2E2E2F2E2E2F)

Case 3

- (2007-12-12, 118.175.151.3, 143.248.1.1, {Solaris}, {non x86}, 800007000000000013F000102)
- (2007-12-12, 118.175.151.3, 143.248.1.1, 1, 0, 0, 0, 0, 0, 0, 1, 800007000000000013F000102)
The distance between binary values can easily calculated, but the distance of date, distance of IP address, distance of port and distance of strings should be defined here.

The distance of date can be defined as follows.

\[d(date_1, date_2) = \frac{|topyear - bottomyear|}{365} \times (1 + \frac{1}{|topyear - bottomyear|}) \]

E.g.,
- date1=2008-03-03
- date2=2006-02-08
- date3=2007-12-12

Then topyear = 2008 and bottomyear = 2006

\[d(date_1, date_2) = d(2008 - 03 - 03, 2006 - 02 - 08) \]
\[= \frac{390}{365 \times (2008 - 2006 + 1)} = 0.356 \]
\[d(date_1, date_3) = d(2008 - 03 - 03, 2007 - 12 - 12) \]
\[= \frac{83}{365 \times (2008 - 2006 + 1)} = 0.076 \]

Distance of IP address is defined as follows.

\[d(IPaddress_1, IPaddress_2) = 0 \]
where the IPaddress1 and IPaddress2 are same.
(e.g. 143.248.1.1, 143.248.1.1)
\[\text{is} 0.25, \text{where the IPaddress1 and IPaddress2 are matched up to the C Class IP address range} \] (e.g. 143.248.1.1, 143.248.1.8)
\[\text{is} 0.75, \text{where the IPaddress1 and IPaddress2 are matched up to the A Class IP address range} \] (e.g. 143.248.1.1, 143.2.3.4)
\[\text{is} 1, \text{where the IPaddress1 and IPaddress2 do not have any common segment.} \]

Distance of port is defined as follows.

\[d(port_1, port_2) = 0 \]
where the port1 and port2 are same. (e.g. 1433, 1433)
\[\text{is} 0.5, \text{where the port1 and port2 are highly correlated, the correlated port lists are as follows.} \]

- (80, 8080): http, http’s another port
- (80, 443): http, https
- (8080,443): http’s another port , https
- (119,563): nntp, nntps
- (194,994): irc, ircs
- (1433, 1434): ms-sql-s, ms-sql-m
- (137, 138): netbios-ns, netbios-dgm
- (137, 139): netbios-ns, netbios-ssn
- (138,139) : netbios-dgm, netbios-ssn

\[(161, 162): snmp, snmp-trap \]
\[(143, 220): imap2, imap3 \]
\[(21, 22): ssh, telnet \]
\[(67, 68): bootps, bootpc \]
\[(109, 110): pop2, pop3 \]
\[(109,995) : pop2, pop3s \]
\[(110,995) : pop3, pop3s \]

\[\text{is} 1, \text{others} \]

The distance between attacks strings are calculated with the similarity measure described in section 3.1. Distance of attack strings is defined as follows.

\[d(string_1, string_2) = 1 - \text{similarity}(string_1, string_2) \]

Especially,
\[d(string_1, string_2) \]
\[\text{is} 1, \text{where the string1 and string2 are different completely.} \]
\[\text{is} 0, \text{where the string1 and string2 are same.} \]

Finally, the proposed distance between cases is summarized as follows.

\[D(Case1, Case2) = \sqrt{\sum_{i=1}^{n} (d(date_1, date_2))^2 + (d(attackerIP1, attackerIP2))^2 + (d(targetIP1, targetIP2))^2 + (d(port1, port2))^2 + (d(OS1, OS2))^2 + (d(architecture1, architecture)^2 + (1 - \text{similarity}(string_1, string_2)))^2} \]

Where similarity function is Jaro-Winkler, then
\[Jaro.winkler(ABC980000000010000000000001000120202020261, E2F2E2F2E2F2E2F) = 0.436 \]
\[(1 - \text{similarity}) = 0.564 \]
\[D(Case1, Case2) = \sqrt{0.127 + 0.25 + 2 + 2 + 0.18} = 2.167 \]

Likewise above,
\[D(Case1, Case3) = 1.481 \]
\[D(case1, case) \geq D(case1, case3) \]

So it says, “Case1 is more similar with Case3 rather than Case2.”

With the proposed Euclidean-like distance, the similarity or the distance between attack cases are derived.

This process is automated in our DSS application shown in section 4. To summarize, based on the methodologies described in this section, we propose DSS which works with following logic shown in the Fig.5.
4 Framework and architecture of our DSS
4.1 Proposed zero-day attack response procedures

Our proposed procedures of zero-day attack are composed of four phases. Phase 1 is when zero-day attack is outbreak, and then anomalous symptom is detected. In Phase 2, security administrators capture the inbound and outbound packets on the network. In Phase 3, security administrators can find the most similar attack and case with similarity and distance metrics. In the first part of Phase 3, the strings on the captured packets will be compared with the known attack signature database. After searching the most similar attack signature, security administrators can find the safeguards from the most similar attack. And then, to acquire the prior domain knowledge, security administrator can find the most similar case with similarity and distance metrics. Searching the most similar attack case by CBR is performed. After searching the most similar case, security administrator can find the safeguards from the most similar case on that company. Phase 4 is to make a decision based on results of Phase 3.

These zero-day attack response procedures are summarized in the Fig.6. This DSS application is designed for supporting all methodologies proposed in section 3. Our DSS application mainly works on the phase 3 and phase 4. We assume that the anomalous symptoms can be detected by other monitoring systems which are deployed previously in the organizations. (e.g. MRTG, CPU monitoring system, process monitoring system and log analysis system). For working these procedures well, information asset database is required, which possess the every information asset’s vulnerability information with CVE ID.
4.2 Implemented DSS applications

This DSS is composed of the following 3 components as shown in the Fig.7. The first are databases. DSS has asset inventory database, atomic vulnerability database, atomic attack database, atomic safeguard database, case-base database and attack signature database for similar attack search. Asset inventory database includes vulnerability information; this vulnerability information is routinely updated by Nessus, the most famous vulnerability scanner program [28]. Second, there is DSS engine to find affected system. Third, in presentation layer, the search result will be displayed to security administrators. The screenshot of main GUI of our DSS is presented in the Fig.8. This program is developed with Delphi language, Python scripting language and MySQL database. It supports easy update method for the attack signature update, CWE/CAPEC/CVE database and information asset database.

Vulnerability scanning results of the information assets are parsed and saved into database as shown in Table.6. The gathered IP address, OS, open port information will be referred for CBR. DSS parses the gathers vulnerabilities information and makes it referable from the information asset database as shown in Table.7. It extracts CVE information and then put that information into vulnerability database periodically. Especially, for calculating distance and case relation, the asset database should include IP address, OS version and running applications’ information as shown in the Table.7.

![Fig.6 Proposed zero-day attack response procedures](image)

![Fig.7 Architecture of overall system](image)
Fig. 8: Screenshot of the proposed DSS

<table>
<thead>
<tr>
<th>IP address</th>
<th>DNS name</th>
<th>operating system</th>
<th>open port list</th>
<th>vulnerability list</th>
<th>related reference (CVE ID, CAN ID, Nessus ID)</th>
<th>risk factor</th>
<th>last scan end time</th>
</tr>
</thead>
</table>

Table 6: the parsed data from the vulnerability scanning result

<table>
<thead>
<tr>
<th>IP address</th>
<th>Subnet mask</th>
<th>Gateway</th>
<th>DNS name</th>
<th>operating system</th>
<th>Major DB /application</th>
<th>Asset Value</th>
<th>Vulnerability found</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.248.90.2</td>
<td>255.255.255.0</td>
<td>143.248.90.1</td>
<td>Host1</td>
<td>Windows 2003 server</td>
<td>MS-SQL 2000 server IIS 6.0</td>
<td>$3,000</td>
<td>CVE-1999-0103</td>
</tr>
<tr>
<td>143.248.90.101</td>
<td>255.255.255.0</td>
<td>143.248.90.1</td>
<td>Host2</td>
<td>Windows 2000 server</td>
<td>MS-SQL 2005 server IIS 5.0</td>
<td>$4,850</td>
<td>CVE-1999-0104</td>
</tr>
</tbody>
</table>

Table 7: example data scheme in the information asset database

Fig. 9 is a screenshot of the attack signature database based on snort ruleset. It includes known attack signatures, attack category, reference CVE ID and preprocessed hex streams.

CVE, CWE, and CAPEC database are shown in the Fig.10. CAPEC, CWE database and query tool is built with parsing CAPEC and CWE dictionary files. CVE database is built with processing OSVDB.

Fig. 11 shows the main query interface for searching the most similar attack signature. It supports query function which can resolve various search conditions (year, protocol, attack category and strings similarity function). With this tool, we can simulate that what function shows better result in the specific conditions.
Fig. 9 Attack signature database

Fig. 10 CAPEC, CWE and CVE database and query tool
The Fig.12 is the main GUI of case-database menu. It is supported to input, update and search cases. The Fig.13 is the query interface for searching the most similar case. The distance is calculated with the method described in the section 3. The example result of similar case search is in the Fig.14. With CWE, CAPEC and CVE database, our DSS can simulate the relationship and find the related CWE, CAPEC and CVE where specific CWE or CAPEC id is given.
5 Experiment Result

5.1 Experiment design

We design experiment to estimate the proposed DSS’s accuracy based on the following propositions.

Proposition 1. New attacks (zero-day attacks) can be estimated with the known old attacks.

The number of vulnerability found is enough size to ensure the significance. The known attack data for each year from 1999 are used. The number of vulnerability data is more than 800 for every selected year. We gain the attacks’ disclosure date from the OSVDB, this disclosure date is imported into our attack signature database.

The attacks occurred in the year Y is set as zero-day attack test data. The base data are the attacks occurred in 1999 to Y-1.

That is attacks occurred in Y year is the zero-day attacks in the past years (Y-1, Y-2, …), hence the estimation power can be gained with comparing attack data of specific year into the past years. In case of this, if the similarity search metrics find the attacks in a same attack category and same application, then we regard the attack could be estimated in the past years.

Proposition 2. Each string similarity function has its own strength to comparing string data. We will find which function is suitable for some selected protocols through this experiment.

When the similarity metrics find out the known attacks for given unknown attack, the scoring is given as following rules.

<table>
<thead>
<tr>
<th>Result type</th>
<th>Assessment condition for success/failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>The similarity metrics should find the most similar pattern within a ‘same attack category’ and ‘same target application’, where the similarity value > 0.7</td>
</tr>
<tr>
<td></td>
<td>Or the similar patterns in top 3 similarity value by the similarity metrics should be within a ‘same attack category’ and ‘same target application’, when the best similarity value < 0.7</td>
</tr>
<tr>
<td>Failure</td>
<td>There are no matches which satisfy the success condition</td>
</tr>
</tbody>
</table>

Table 8 Assessment condition for performance estimation

In case of success, mark the similarity value at that time as a measure. In case of failure, mark the similarity value as zero.

We have experimented some representative applications and protocols – HTTP, ORACLE, HTTP, VOIP, MSSQL, SMTP, FTP, TELNET and SNMP.

5.2 Experimental results

Every result is summarized as the following tables. The mark ★ means that these similarity measures estimate the exact protocol and related application. The score without ★ means it only estimate the protocol or attack category only. The number (between 0 to 1) means similarity.
This result shown in the Table 9 is gained as follows.

2. Input attack string in the snort vulnerability ID patterns of the past. (in this case, 1999 to 2006)
3. Score the result after calculation is done by similarity metrics.

Here is the estimated result by various similarity metrics.

Jaro-style metrics (Jaro and Jaro-Winkler) show the better performance rather than Levenshtein-style metrics. In this case, Jaro-Winkler is the winner.

Table 9

<table>
<thead>
<tr>
<th>Snort vul ID</th>
<th>Jaro</th>
<th>JaroWinkler</th>
<th>Editdist</th>
<th>Mod editdist</th>
<th>Bagdist</th>
<th>swdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>7867</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>8528</td>
<td>0.714</td>
<td>0.714</td>
<td>0.219</td>
<td>0.219</td>
<td>0.286</td>
<td>0.25</td>
</tr>
<tr>
<td>8555</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>8749</td>
<td>★0.781</td>
<td>★0.869</td>
<td>★0.344</td>
<td>★0.344</td>
<td>★0.344</td>
<td>★0.512</td>
</tr>
<tr>
<td>9110</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>8545</td>
<td>0.658</td>
<td>0.658</td>
<td>0.448</td>
<td>0.448</td>
<td>0.655</td>
<td>0.279</td>
</tr>
<tr>
<td>9111</td>
<td>0.596</td>
<td>0.633</td>
<td>0.217</td>
<td>0.217</td>
<td>0.304</td>
<td>0.12</td>
</tr>
<tr>
<td>8502</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>8544</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
</tbody>
</table>

Table 9 estimation result: putting Oracle attack patterns of 2007 into IDS with 1999–2006 signatures

Table 10 shows the estimated result when the zero-day attacks are mimicked with attacks on HTTP protocol which is exposed in 2008.

Jaro-style metrics (Jaro and Jaro-Winkler) show the better performance rather than Levenshtein-style metrics. In this case, Jaro-Winkler is the winner.

Table 10

<table>
<thead>
<tr>
<th>Snort vul ID</th>
<th>Jaro</th>
<th>JaroWinkler</th>
<th>Editdist</th>
<th>Mod editdist</th>
<th>Bagdist</th>
<th>swdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>8563-1</td>
<td>0.75</td>
<td>0.775</td>
<td>0.625</td>
<td>0.625</td>
<td>0.625</td>
<td>0.375</td>
</tr>
<tr>
<td>8564-1</td>
<td>0.75</td>
<td>0.85</td>
<td>0.5</td>
<td>0.5</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>7864</td>
<td>★0.718</td>
<td>★0.831</td>
<td>0.5</td>
<td>0.5</td>
<td>0.812</td>
<td>★0.306</td>
</tr>
<tr>
<td>9114</td>
<td>★0.636</td>
<td>★0.709</td>
<td>★0.352</td>
<td>★0.352</td>
<td>★0.574</td>
<td>★0.122</td>
</tr>
<tr>
<td>8562</td>
<td>★0.974</td>
<td>★0.985</td>
<td>★0.923</td>
<td>★0.923</td>
<td>★0.923</td>
<td>★0.864</td>
</tr>
<tr>
<td>8573</td>
<td>★0.819</td>
<td>★0.892</td>
<td>★0.625</td>
<td>★0.625</td>
<td>★0.625</td>
<td>★0.714</td>
</tr>
<tr>
<td>8563,8564</td>
<td>0.952</td>
<td>0.971</td>
<td>0.857</td>
<td>0.857</td>
<td>0.857</td>
<td>0.923</td>
</tr>
<tr>
<td>9112</td>
<td>0.579</td>
<td>0.621</td>
<td>0.313</td>
<td>0.313</td>
<td>0.313</td>
<td>0.167</td>
</tr>
<tr>
<td>8565</td>
<td>0.704</td>
<td>0.822</td>
<td>0.132</td>
<td>0.132</td>
<td>0.170</td>
<td>0.203</td>
</tr>
<tr>
<td>8569</td>
<td>★0.556</td>
<td>★0.556</td>
<td>★0.241</td>
<td>★0.241</td>
<td>★0.414</td>
<td>★0.089</td>
</tr>
<tr>
<td>8539</td>
<td>0.722</td>
<td>0.806</td>
<td>0.533</td>
<td>0.533</td>
<td>0.767</td>
<td>0.367</td>
</tr>
<tr>
<td>9113</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
</tbody>
</table>

Table 10 estimation result: putting HTTP attack patterns of 2008 into IDS with 1999–2007 signatures
Table.11 estimation result: putting SMTP attack patterns of 2007 into IDS with 1999~2006 signatures

Table.11 shows the result of estimation SMTP zero-day attacks in annual base.
For comparing result conventionally, we give additional 1 more score to the result with ★. (in case of ★0.85 we change the score as 1.85.). We illustrate these results as follows.

In case of SMTP, Jaro-Winkler shows the better performance rather than others (See Table.12). Likewise, the experiment for the other protocols is performed as shown in Table .13.

<table>
<thead>
<tr>
<th>Snort vul ID</th>
<th>Jaro</th>
<th>JaroWinkler</th>
<th>Editdist</th>
<th>Mod editdist</th>
<th>Bagdist</th>
<th>Swdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>6337</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6338</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6339</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6340</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6341</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6342</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6343</td>
<td>★0.775</td>
<td>★0.865</td>
<td>★0.649</td>
<td>★0.649</td>
<td>★0.649</td>
<td>★0.787</td>
</tr>
<tr>
<td>6344</td>
<td>★0.853</td>
<td>★0.912</td>
<td>★0.6</td>
<td>★0.6</td>
<td>★0.6</td>
<td>★0.619</td>
</tr>
<tr>
<td>6345</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6346</td>
<td>0.761</td>
<td>0.761</td>
<td>0.517</td>
<td>0.517</td>
<td>0.7</td>
<td>0.349</td>
</tr>
<tr>
<td>6348</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6350</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6351</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6352</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6353</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
<tr>
<td>6354</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
<td>★1</td>
</tr>
</tbody>
</table>

Table.12 overall performance in case of SMTP

<table>
<thead>
<tr>
<th>year</th>
<th>Jaro</th>
<th>JaroWinkler</th>
<th>Editdist</th>
<th>Mod editdist</th>
<th>Bagdist</th>
<th>Swdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1.8993125</td>
<td>1.908625</td>
<td>1.860375</td>
<td>1.860375</td>
<td>1.8718125</td>
<td>1.8596875</td>
</tr>
<tr>
<td>2006</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2005</td>
<td>0.9724</td>
<td>1.0092</td>
<td>0.7254</td>
<td>0.7254</td>
<td>0.8704</td>
<td>0.688</td>
</tr>
<tr>
<td>2004</td>
<td>1.6604286</td>
<td>1.6960476</td>
<td>1.4152857</td>
<td>1.4152857</td>
<td>1.469619</td>
<td>1.475381</td>
</tr>
<tr>
<td>mean</td>
<td>1.633053</td>
<td>1.6534682</td>
<td>1.500265</td>
<td>1.500265</td>
<td>1.5529579</td>
<td>1.5057671</td>
</tr>
</tbody>
</table>

Table.13 overall performance in case of FTP

<table>
<thead>
<tr>
<th>year</th>
<th>Jaro</th>
<th>JaroWinkler</th>
<th>Editdist</th>
<th>Mod editdist</th>
<th>Bagdist</th>
<th>Swdist</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2006</td>
<td>1.9723333</td>
<td>1.9833333</td>
<td>1.9583333</td>
<td>1.9583333</td>
<td>1.9583333</td>
<td>1.9166667</td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>1.8746667</td>
<td>1.8911667</td>
<td>1.8020833</td>
<td>1.8020833</td>
<td>1.8333333</td>
<td>1.4854167</td>
</tr>
<tr>
<td>mean</td>
<td>1.96175</td>
<td>1.968625</td>
<td>1.9401042</td>
<td>1.9401042</td>
<td>1.9479167</td>
<td>1.8505208</td>
</tr>
</tbody>
</table>
After rescaling the mean value as 0 to 1, we summarized the all experiment result in the Fig.15. Each function shows different performance in terms of the characteristics of strings. Every attack string pattern is dependent on the protocol and target application. Fig.15 shows the performance of similarity algorithms for the each protocol and application. Jaro and Jaro-Winkler metrics show better performance rather than other metrics except the case of ‘SHELLCODE’ detection. Also, Edit-distance and modified Edit-distance show better performance rather in case of SHELLCODE detection. Especially, Jaro and Jaro-Winkler have strong estimation power in comparison with other metrics, in case of the estimation for the attacks targeted on the database systems (e.g. ORACLE and MSSQL).

Fig.16 illustrates the selective best-algorithm’s results. The detection power for zero-day attack for HTTP is 63%, where the detection power for the other protocols is more than 80% at least, and up to 99%. However, when considering the variety of web-based attack, we can tell this result shows high
level of accuracy. Also, zero-day attacks targeted for MS-SQL, SNMP, TELNET and FTP are easily detected by the proposed system with a high accuracy more than 94%.

6 Conclusion
6.1 Contribution of this study
Currently existing IDS and security risk analysis methods applied could not show the impact of attack exposure on information assets of companies. In the proposed DSS of this research, we adopt the concept of atomic vulnerability and atomic attack. From this, we suggest a way to measure the direct or indirect impact of the attacks on information assets with applying CVE, CAPEC, and CWE. This is the one of contributions of this research.

We also propose two kinds of methods that can be applied in the verification of the attacks and countermeasure of it when the new unknown attacks are detected. For the first method, we suggest a new way to find the most similar patterns from comparing the new attack’s text strings in packet payload with that of the known attacks. For this, we adopt text mining and string search algorithms of information retrieval and text mining areas. With experimental analysis, we could show that certain functions perform well for certain protocols.

Second, we propose framework that applies CBR in finding countermeasure for the unknown attacks.

In summary, the DSS proposed in this study is especially effective in making zero-day attack response.

6.2 Future work
To find the most similar patterns from comparing the new attack’s text strings in packet payload with that of the known attacks, we adopt text mining and string search algorithms of information retrieval and text mining areas. In our experiment, we focus on which known distance algorithm fits well with the selected well-known protocols. In the future experiment, it is possible to develop more accurate algorithm for distance measure.

Acknowledgement
This research was supported by the Ministry of Knowledge Economy, Korea, under the “ITRC” support program supervised by the National IT Industry Promotion Agency (NIPA-2011-C1090-1001-0004).

References

Huy Kang Kim received his Ph.D. in Industrial and Systems Engineering from Korea Advanced Institute of Science and Technology (KAIST) in 2009. Currently he is an assistant professor in Graduate School of Information Security, Center for Information Security Technologies (CIST) in Korea University. His research interests include Botnet Detection, Intrusion Detection System, Network Forensics and Online Game Security. Contact him at cenda@korea.ac.kr

Soo-Kyun Kim received Ph.D. in Department of Computer Science & Engineering from Korea University in 2006. He joined Telecommunication R&D center at Samsung Electronics Co., Ltd., from 2006 and 2008. He is now a professor at Department of Game Engineering at Pai Chai University, Korea. His research interests include multimedia, pattern recognition, image processing, mobile graphics, geometric modeling, and interactive computer graphics. Contact him at kimsk@pcu.ac.kr

Seok-Hun Kim received Ph.D. in Department of Computer Engineering from Hannam University, Daejeon, Korea in 2006. He joined ParagonBase Co., Ltd., from 2007 and 2010. Since then he has been an adjunct professor in Computer Engineering at Mokwon University, and also employed by TIME SYSTEM Co., Ltd., Korea. His research interests include mobile computing, information security, convergence technology. Contact him at shkim@mokwon.ac.kr