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In this paper we consider solving ill-conditioned square linear systems with noisy right
hand sides. To have meaningful solutions of such systems, we use Tikhonov regulariza-
tion with the GMRES method in three different ways. Our computational experiments
show that solving the noisy system by regularizing the least square problem inside the
GMRES algorithm gives us meaningful solutions and is much faster than regularizing
the original least square model itself or its least square problem within the GMRES
method.
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1 Introduction

Ill-conditioned linear systems frequently arise in many real world applications [3, 5].
Solving such systems are of great interests for many years and various approaches have
been developed to do so. In this paper we deal with the following kind of ill-conditioned
linear systems:

Ax = b, (1.1)

where A is a square ill-conditioned matrix. Therefore, a slight perturbation in vector b

might significantly change the solution norm. For example, let us consider problem ‘heat’
from the regularization tools [5] with n = 1000, ||xs|| = 0.5779 (xs is the exact solution)
and perturb the right hand vector as b0 = b + 1e− 3 ∗ rand(1000, 1). Then the computed
solution by MATLAB backslash command is 7.9689e + 019 with ||Ax− b0|| = 1.2009
and ||Ax− b|| = 1.1999, and by brute force GMRES is 5.2250e + 009 with ||Ax− b0|| =
0.0303 and ||Ax− b|| = 0.0028. As we see, this slight perturbation results to a huge
change in the solution norm for both methods. We also know that GMRES method is one
of the widely used iterative methods and having problem with this ill-conditioned system.

For the rest of the paper, we suppose that the original right hand side is not at hand and
let us denote the noisy right hand side by b0. Thus the system we deal with throughout the
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paper is

Ax = b0. (1.2)

Various approaches have been utilized to deal with such noisy ill-conditioned systems with
the iterative methods. For example, a very famous and effective approach is the so called
Tikhonov regularization, which has been widely used in the literature [3, 5, 9, 12]. In the
Tikhonov regularization, one deals with the following minimization problem

min
x
||Ax− b0||2 + ρ2||x||2, (1.3)

where ρ is the so called regularization parameter. The exact value of ρ is not known in prior,
and several strategies have been proposed for selecting the regularization parameter, like
the Morozov [10] and Mallows [8] criteria, the Generalized Cross Validation (GCV) [2]
and the L-curve method [4]. In [1] the authors have presented a numerical scheme for
Tikhonov regularization of ill-conditioned linear systems based on Lancosz bidiagonal-
ization and Gauss quadrature. In their work, they assume that an estimate of the norm
of error is available. This allows them to determine the regularization parameter using
the discrepancy principle. Truncated SVD (TSVD) is another commonly used method of
regularization of ill-conditioned linear systems. The idea of TSVD has been treated as a
problem of determining the numerical rank of the matrix A. All of the computed singu-
lar values smaller than some threshold value are treated as zeros which were corrupted by
rounding errors into small non-zero quantities [6, 7, 9].

Obviously (1.3) is a strictly convex minimization problem and the necessary and suffi-
cient optimality condition is

(AT A + ρ2I)x = AT b0. (1.4)

Now (1.4) can be solved using any iterative methods like GMRES and conjugate gradient
methods.

In this article, we use Tikhonov regularization technique in three different ways by the
GMRES method. First we solve system (1.4) using GMRES method. In the second case,
we consider the least square model of (1.2), but regularize the least square problem within
the GMRES method. Finally, we consider the noisy linear system (1.2) and regularize the
least square problem within the GMRES method. Our computational results show that
the last approach generates meaningful solutions in much faster time than the first two
approaches and even better than the conjugate gradient method.

2 GMRES Method

In this section we briefly describe the GMRES method [11]. The GMRES method is
an important iterative method for solving linear systems such as (1.2). It starts with an
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initial guess of the solution, then generates approximate solutions from the affine subspace
x0 + Km(A, r0) which minimizes the Euclidean norm of the residual

||b0 −Axk|| = min
x∈x0+Km(A,r0)

||b0 −Ax||,

where r0 = b0−Ax0 is the initial residual and Km(A, r0) is the Krylov subspace generated
by A, r0 as

Km(A, r0) = span{r0, Ar0, . . . , A
m−1r0}.

The GMRES method is based on the Arnoldi process which constructs an orthonormal basis
of Krylov subspace Km(A, r0). First we present this algorithm, which uses the modified
Gram-Schmidt process.

Algorithm 1: Arnoldi process (Gram-Schmidt process)

Step 1: Choose a vector v1 such that ||v1|| = 1 and an integer m ≤ n.

Step 2: For k = 1, . . . , m do
vk+1 = Avk,
For i = 1, . . . , k do
hi,k = (vk+1)T vi,

vk+1 = vk+1 − hikvi.

end
hk+1,k = ||vk+1||.
vk+1 = vk+1/hk+1,k.
end

Now let the matrix H̄m be the upper Hessenberg matrix whose nonzero entries are
the scalars hij and Vm denotes the n ×m matrix whose columns are the elements of the
orthogonal {v1, . . . , vm} basis constructed by the Algorithm 1. From Arnoldi process, it
follows that

AVm = Vm+1H̄m. (2.1)

Now we would like to solve the least-squares problem

min
x∈Km(A,r0)

||b0 −A(x0 + x)|| = min
x∈Km(A,r0)

||r0 −Ax||. (2.2)

If we set x = Vmy, then (2.2) is equivalent to minimize the following function

min
y∈Rm

||βv1 −AVmy||,

where we set β = ||r0|| for convenience. From (2.1) we have that

||βv1 −AVmy|| = ||Vm+1(βe1 − H̄my)|| = ||βe1 − H̄my||.
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The last equality follows from the fact that Vk+1 is an orthonormal matrix. Therefore, it is
sufficient to solve the following problem instead of (2.2):

min
y∈Rm

||βe1 − H̄my||. (2.3)

Now the GMRES algorithm can be outlined as follows:

Algorithm 2: Generalized minimal residual(GMRES) method

Step 1: Choose a starting point x0 ∈ Rn and a dimension m of Krylov subspace. Com-
pute r0 = b0 −Ax0 and v1 = r0/||r0||.

Step 2: Perform m steps of Algorithm 1 to generate matrix H̄m and the orthogonal matrix
Vm.

Step 3: Form the approximate solution: xk = x0 + Vmym, where ym minimizes (2.3).

3 Tikhonov Regularization and GMRES Method

As we see from the previous section, one should solve least square problems within
the GMRES method. Therefore, we either can regularize the original least square problem
or regularize the least square problem within the GMRES method. Thus we consider the
following cases:

• In the first approach, we solve (1.4) using GMRES and conjugate gradient methods.
• In the second approach, we consider the least square problem without any regular-

ization term and regularize the least square problem within the GMRES algorithm.
Namely, the GMRES method is applied to the system

AT Ax = AT b0, (3.1)

while the following regularized least square problem is solved within the GMRES
method:

min
ym∈Rm

||H̄mym − βe1||2 + ρ2||ym||2. (3.2)

• Finally, in the third approach instead of the least squares problem, we consider the
noisy system (1.2). Then we apply the GMRES method to this system, while using
the regularized least square problem within the GMRES method. Obviously the
computational cost of this approach is much less than the previous two approaches.
Therefore, if this approach generates meaningful solutions, then it seems to be the
right choice for dealing with noisy ill-conditioned linear systems.
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4 Computational Experiments

In this section we present several examples showing the computational behavior of
the discussed approaches and the conjugate gradient method. Test problems are taken
from [5]. For all algorithms we use the regularization parameter equal to 1e − 5, however
it should be noted again that a desired value can be obtained using the L-curve method.
Our experiments are done on a Pentium 4 laptop with 1GBs of RAM using MATLAB 7.1.
The order of numbers in parenthesis in Table 4.1 are the first, the second, the third, and
the conjugate gradient approaches. Our computational experiments show that solving the
system Ax = b0 using the regularized GMRES method give meaningful solutions like the
other approaches in much shorter time.

5 Conclusions

In this article, we have considered singular square linear systems that are very sensitive
to slight perturbation in problem data. To have meaningful solutions of such systems, we
have used the Tikhonov regularization technique in three different ways by the GMRES and
conjugate gradient methods. Our computational results show that solving the noisy systems
by using the regularization within the GMRES method generates meaningful solutions like
the other methods in much shorter time.
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