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Abstract: This paper is based on the idea of essential ideals in tes@myring. The concepts of the essential ideals, semi-gaken
ideals and weak essential ideals of a semiring have beenajiezed to ternary semiring and study some of its propertiés also
generalize the Andrunakievich lemma for ternary semirifvg. proved that the intersection of any two ideals of a terisamiring is
weak essential if one is essential and other is weak eskekisa proved that the intersection of any two weak esséid&als of a
ternary semiring is weak essential if one of them is does ootained in any semi-prime ideal of a ternary semiring.
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1 Introduction 2 Preliminary Definitions

In 1934, Vandiver17] introduced a new type of algebraic Definition 1.[2] A non-empty set S together with a binary
system which is commonly known as Semiring. More operation, called addition and a ternary multiplication,
information about the concepts of semiring can be founddenoted by juxtaposition, is said to be a ternary semiring
in [4]-[8]. The idea of a ternary algebraic system was firstif S is an additive commutative semigroup satisfying the
invented in 1924 by Prufer inlp]. Then Lehmer 10 following conditions:

introduced certain ternary algebraic systems called ,. L
: ; - (i) (abc)de= a(bcd)e = ab(cd e (Associative Law)
triplexes which turn out to be commutative ternary groups (i) (a-+ b)cd = acd+ bed (Right Distributive Law)

in 1932. In 1971, Lister in11] investigated the notion of (iiha (b-+ ¢)d — abd-+ acd (Lateral Distributive Law)

ternary ring and studied some properties of a ternary ring.\. I
In )2/003? Dutta and KarJ] inE[)rodpuced the notion 31, a 9 (IV)abt()C+dd) :_an0+ abd (Left Distributive Law) for all
! a,b,c,d,ecT.

Ternary Semiring which generalizes the notion of ternary

ring. More specifipglly, in an orgjered ring the positive Example 12] Let Z be the set of all negative integers
cone forms a semiring where as its hegative cone forms gith zero. Then with the usual binary addition and ternary
ternary semiring. Thus a ternary semiring may bey, islication,Z; forms a ternary semiring.
considered as a counterpart of semiring in an ordered 0
ring. They also define the notion of right ternary Definition 2.[2] An additive subsemigroup | of a ternary
semimodule and right ternary subsemimodule over asemiring S is called ideal of S if S&11,SISC | and
ternary semiring. ISSC I. An ideal | of a ternary semiring S is called
In 2012, Pawar and DeoréJ| proved some results of  k-ideal (subtractive) if for a= I,a+b e I.b e S imply

an essential ideals for semiring. The concepts of essentiaj ¢ |. We denote kS, a ternary semiring ideal in S.
subsemimodules and semi-essential subsemimodules of

semiring given in I] and [12] has been extended to the Definition 3.[3] A proper ideal P of a ternary semiring S
weak essential ideals for semirings i4]. In this paper is called a prime ideal of S if for any three idealsBAC of
we have generalized the notions of an essential ideals$; ABCC P impliesACPorBCPorCCP.
semi-essential ideals and weak essential ideals of a

semiring, so far introduced irt], [12]-[15] to a ternary ~ Definition 4.[9] A ternary semiring S is called a prime
semiring. ternary semiring if the zero idedis a prime ideal of S.
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Definition 5.[ 3] A proper ideal Q of a ternary semiring S
is called a semi-prime ideal of S if I Q implies IC Q
for any ideal | of S.

Definition 6.[ 3] A proper ideal | of a ternary semiring S is
said to be irreducible if for ideals H and K of S,®hK = |
implies that I=H or | =K.

3 Essential Ideal

Definition 7.An ideal | of a ternary semiring S is said to
be an essential ideal of S if1K # 0, for every non-zero
ideal K of S. We denote an essential ideal | of a ternary
semiring Sby k- S.

Proposition 1If 0 # K <- 1 - S andK is k-closure of K.
ThenK is essential ideal in S.

ProofLet L be any non-zero ideal & Sincel is essential
ideal inS, we havel NL # 0. ButK is essential ideal ih.
Thus, we have @ KN (INL) CKNL C KNL. HenceK
is an essential ideal i8.

Lemma 1.Andrunakievich Lemma: If 0 # K<l <S and
K is k-closure of K. theiC® C K.

ProofSinceK is k-closure ofK and 04 K <1 1S, we have

K® C I(K + SSK + KSS + SSKS§
C IKI +1SSKI+ IKSSH+ ISSKSSE K.

Proposition 2If | <S and S is prime ternary semiring.
Then | is also a prime ternary semiring.

ProofLet J,K,L be ideals ofl such thatlKL = 0. LetJ,
K, L bek-closures of], K, L respectively. Thus by lemma

1, PR3 C JKL = 0. ButS'is prime ternary semiring.

Therefore eithed® = 0 orK> = 0 orL° = 0 implies either
J=0o0orK=0o0rL=0.Thusl is a prime ternary semiring.

Proposition 3If | «<- S and | is prime ternary semiring.
Then S itself is a prime ternary semiring.

ProofLet J,K,L be ideals ofS such thatJKL = 0.
Supposel # 0 andK # 0. Thenl NJ # 0 andl NK #£ 0.
Sincel is prime ternary semiring antl<- S. We have
(IN)(INK)(INL) CIKL =0 impliesl NL =0 implies
L = 0. ThereforeSis a prime ternary semiring.

LemmaZ2letl«-J«-S.Thenk- S.

ProofLet L be any non-zero ideal @ such that is also
ideal ofJ. Sincel - JandJ«- S, we havd NL CJNL#0.
Thusl «- S.

Proposition 4If 14, I, I3, ..., Ix be ideals in ternary
semiring S. Thef_, I; <- S if and only if each k- S, for
alli.

Definition 8.The heart HS) of a ternary semiring S is
defined as HIS) = N{l «S: 1 # 0}.

Definition 9.A ternary semiring S is said to be subdirectly
irreducible, if H(S) # 0, i.e. S has a unique minimal ideal.

Proposition 5In  a subdirectly irreducible ternary
semiring S, every non-zero ideal, in particular its heart is
an essential ideal.

4 Semi-Essential Ideal

Definition 10.An ideal | of a ternary semiring S is said to
be a semi-essential ideal of S ifiK # 0, for every non-

zero prime ideal K of S. We denote an semi-essential ideal
| of a ternary semiring S byds- S.

Note 1Every essential ideal in ternary semiriBgs semi-
essential. But the converse is not true in general.

Example 2n Zi, as a ternary semiring, the idegd) is
semi-essential ideal &, but(6) is not essential ideal of

Z12as(6)N (4) = (0).

The following proposition gives a necessary and
sufficient condition for an ideal to be semi-essential.

Proposition 6Let S be a ternary semiring. A non-zero
ideal 1 of S is semi-essential if and only if for each
non-zero prime ideal K of S there existsexK and
s1,S € S such thab # $19X, XSS, S1X$ € 1.

Proof.Suppose that for each non-zero prime idéadf S,
there exists x € K and s, € S such that
0 # 519X, X519, S1X$ € |. But 519X, X519, S1Xs € K.
Therefore G s,9X, X51%, Six$ € | NK. Thusl NK #£ 0,
for each non-zero prime ided of S. Hencel is a
semi-essential ideal &

Conversely, suppose thhats a semi-essential ideal of
S. Thenl NK # 0, for each non-zero prime idekl of S.
Thus 0# 519X, X919, S1X$ € | NK, for eachx € K and
s1,S € Simplies that O£ 519X, X51S, SIX$ € 1.

Lemma 3Let H and K be any two ideals of a ternary
semiring S such that H is ideal of K. If H is semi-essential
ideal of S, then K is semi-essential ideal of S.

Note 2The converse of lemmais not true in general.

Example 3n Zi, as a ternary semiring, the ide@) is
semi-essential ideal dR) and(2) is semi-essential ideal

of Z1». But (4) is not semi-essential ideal &, since
(4)N(3) = (0) and(3) is prime ideal 0fZ;>.

Lemma4let H and K be any two ideals of a ternary
semiring S. If HO K is semi-essential ideal of S, then both
H and K are semi-essential ideals of S.

Note 3The converse of lemmdis not true in general.
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Example 4n Z3g as a ternary semiring, the i_de&E)ind Proposition 9Let S be a ternary semiring such that every

(3) are prime ideals ofZzs. Now (12) N (2) = (12), semi-prime ideal of S is irreducible. If an ideal | of S is

(120 n 3) = (12, (18 n (2) = (18 and semi-essential then | is a weak essential ideal of S.

.((}8) P (3]2; (1%)' tThg,(lZ)l_zgan(:i_(lg) a_rreh'semri]-essetrr]]ti?l ProofLet K be any non-zero semi-prime ideal of ternary
ideals of Zg. But (12) N (18) = (0). This shows that  genirings ThenK is irreducible ideal of. Therefore by

(12) N (18) is not semi-essential ideal k. lemmab, K is prime ideal. Now is semi-essential ideal
of S. Thereford NK # 0, for every non-zero semi-prime

The following proposition gives a condition under idealK of S Hencel is a weak essential ideal &f

which the converse of lemmis true.
Lemma6Let S be a ternary semiring and let H and K
Proposition 7Let H and K be any two ideals of a ternary be any two ideals of S such that K. If H is a weak

semiring S such that H is essential ideal and K is semi-essential ideal of S then K is also a weak essential ideal of
essential ideal of S. Then K is a semi-essential ideal s,

of S. Lemma 7 Let S be a ternary semiring and let H and K be

ProofSinceK is semi-essential ideal & we havek n  @ny two ideals of S such thatHK is a weak essential

essential ideal 0. ThereforeH N (KNJ) # 0 implies that
(HNK)NJ #0. HenceH NK is a semi-essential ideal of Note 6The converse of lemmiais not true in general.
S

Example 7n Zss as a ternary semiring, the idedB), (3)
and (6) are the only non-zero semi-prime idealsZe.

5 Weak Essential Ideal Now (12)N(2) # (0), (12N (3) # (0), (12N (6) # (0),

(T8N (2) # (0), (I8N (3) # (0) and (I8) N (6) # (D).
Thus(12) and(18) are weak essential ideals @fs. But
(12) N (18) = (0). This shows that12) N (18) is not weak

6ﬁssential ideal of.36.

Definition 11.An ideal | of a ternary semiring S is said to

be a weak essential ideal of S ifiK # 0, for every non-

zero semi-prime ideal K of S. We denote an weak essenti

ideal | of a ternary semiring S by, - S. The following proposition gives a condition under
which the converse of lemmais true.

Note 4Every essential ideal in ternary semiriSgs weak

essential. But the converse is not true in general. Proposition 10Let H and K be any two ideals of a ternary

semiring S such that H is essential ideal and K is weak
Example 8n Zgg as a ternary semiring, the ided) of ~ €Ssential ideal of S. ThenHIK is a weak essential ideal

Zs6 is weak essential but not essential. Sif@gn (2) #  ©f S
(0), (9)N(3) # (0) and(9)N (6) # (0), where(2), (3) and  ProofSinceK is weak essential ideal & we havek NJ #

(6) are the only non-zero semi-prime idealsZfs. But 0, for every non-zero semi-prime idehof S. ButH is an
(9)N(12) = (0). essential ideal ob. ThereforeH N (KNJ) # 0 implies that

(HNK)NJ #£0. HenceH NK is a weak essential ideal of
Note 5Also every weak essential ideal in ternary semiring S,

Sis semi-essential. But the converse is not true in generalProposition 11Let H and K be any two ideals of a ternary

Example 8n Z 4 7 as a ternary semiring, the only prime semiring S such that one of them does not contained in any

ideals are of the forri & pZ and pZ & Z, wherep is the semi-prime ideal of S. If both H and K are weak essential
prime number. The idedl = (0) & Z of ’Z@Z is semi- ideals of S. Then K is a weak essential ideal of S.

essential but not weak essential, sihce2Z @ (0) = (0), ProofLet J is non-zero semi-prime ideal & such that
where Z® (0) is semi-prime ideal oBbut not primeideal  (HNK)NJ=0. ThenHN(KNJ)=0impliesthaKNJ =
of S. 0 is semi-prime ideal off. ButH is weak essential ideal

of S, soKNJ=0. AlsoK is weak essential ideal &,

The following proposition gives a necessary and therefore] = 0. HenceH NK is a weak essential ideal of
sufficient condition for an ideal to be weak essential. s,

Proposition 8Let S be a ternary semiring. A non-zero

ideal 1 of S is weak essential if and only if for each g Conclusion

non-zero semi-prime ideal K of S there exists K and

$1,S € S such thad #£ s;HX, XSS, S1x9 € 1. In this paper we have generalized the Andrunakievich
lemma for ternary semiring. Also we investigated certain

LemmaSLlet | be an irreducible ideal of a ternary types of ideals such as essential ideal, semi-essential

semiring S. Then | is semi-prime if and only if I is prime jdeal, weak essential ideal for ternary semiring and given

ideal of S. inter-relation between them with examples.
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