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Received: 16 Jun. 2014, Revised: 14 Sep. 2014, Accepted: 16 Sep. 2014
Published online: 1 Mar. 2015

Abstract: In this note, two theorems are presented concerning the wellknown second order linear differential systemẌ+a(t)X =P(t).
While the results are not new, the proofs presented simplifyprevious works since the Gronwall inequality is avoided which is the usual
case. The technique of proof involves the integral test and examples are included to illustrate the results.

Keywords: O̧ualitative property, linear differential system, second order.

1 Introduction

In 2013, Kroopnick [3] considered the second order scalar
linear differential equation of the form

x′′+a(t)x= 0. (1)

In his brief note, Kroopnick [3] gave two new and
elementary proofs proving the stability of solutions and
the boundedness of solutions ast → ∞ for the well known
linear differential equation, equation (1) given various
constraints ona(.). While the results of Kroopnick [3] are
not new (see Sanchez [5, pp. 111-117] for some classical
results), the proofs in [3] are less complex and quite
general.

Kroopnick [3] first proved the following theorem.

Theorem A(Kroopnick [3, Theorem I]). Given equation
(1) wherea(.) is in C1[0,∞) such that

a(t)> 0 and a
′
(t)≥ 0,

then all solutions of equation (1) are bounded ast → ∞
and the absolute values of the amplitudes form a
non-increasing sequence.
Kroopnick [3] second proved the following theorem.
Theorem B(Kroopnick [3, Theorem II]). Given equation
(1) wherea(.) is a continuous function on[0,∞) such that
a(t) > 0 , a

′
(t) ≥ 0 and K > a(t) > k > 0 for some

positive constantsK andk, then all solutions of equation

(1) are bounded ast → ∞ and stable. Furthermore, the
absolute values of the amplitudes form a non-increasing
sequence.
It should be noted that Kroopnick [3] proved both of
Theorem A and Theorem B by the integral test.
In this note, instead of equation (1), we consider the more
general vector linear differential equation of the second
order

Ẍ+a(t)X = P(t), (2)

whereX ∈ ℜn, t ∈ ℜ+, ℜ+ = [0,∞);a(.) : ℜ+ → ℜ and
P(.) : ℜ+ → ℜn are continuous functions. It is worth
mentioning that equation (2) represents the vector version
for the system of real second order linear differential
equations of the form

ẍi +a(t)xi = pi(t),(i = 1,2, ...,n).

This shows that equation (1) is a special case of equation
(2).
It should be noted that equation (1) is known as Hill
equation in the literature. Hill equation used to describe
many phenomena of physical interest. For example, it is
significant in investigation of stability and instability of
geodesic on Riemannian manifolds where Jacobi fields
can be expressed in form of Hill equation system (Gallot
et al [2]). This fact has been used by some physicists to
study dynamics in Hamiltonian systems (Pettini and
Valdettaro [4]). Besides, equation (1) is frequently
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954 C. Tunç, O. Tunç: A Note on Certain Qualitative Propertiesof...

encountered as mathematical models of most dynamics
process in electromechanical system of physics and
engineering (Ahmad and Rama Mohana Rao [1]). Here,
we would not like to give more details of applications
concerning equations (1) and (2). Therefore, it is worth to
work on the qualitative properties of equation (2).
Furthermore, the motivation of this note has been inspired
by the results established in Kroopnick [3] and those in
([1], [2], [4], [5], [6], [7]). The aim of paper is to give the
proofs of stability/boundedness solutions which are less
complex and quite general than those in the literature by
the integral test. The paper has a new contribution to the
topic in the literature. This case shows the novelty of this
work. The results to be established here may be useful for
researchers working on the qualitative theory of solutions.

2 Main problems

The first main problem of this paper is the following
theorem.
Theorem 1.In addition to the basic assumptions imposed
on the functionsa(.) and P(.), we assume that the
following assumptions hold: Given equation (2) where
a(.) is in C1[0,∞) such that

a(t)> 0,a
′
(t)≥ 0,

‖P(t)‖ ≤ e(t),q(t) =
e(t)
a(t)

and
q(.) ∈ L1[0,∞) f or all t ∈ ℜ+

.

Then, all solutions of equation (2) are bounded ast → ∞
Furthermore, ifP(t)≡ 0 in equation (2), then all solutions
of equation (2) are bounded ast → ∞ and the absolute
values of the amplitudes form a non-increasing sequence.
Proof.When we multiply equation (2) by 2

a(t) Ẋ(t) it
follows that

2
a(t)

〈Ẋ(t), Ẍ(t)〉+2〈X(t), Ẋ(t)〉=
2

a(t)
〈Ẋ(t),P(t)〉. (3)

Integrating estimate (3) from 0 to t and then applying
integration by parts to the first term on the left hand side
of (3), we have

2
∫ t

0

1
a(s)

〈Ẋ(s), Ẍ(s)〉ds+2
∫ t

0
〈X(s), Ẋ(s)〉ds=

2
∫ t

0

1
a(s)

〈Ẋ(s),P(s)〉ds,

and then

1
a(t)

‖ Ẋ(t) ‖2 +

∫ t

0

a
′
(s)

a2(s)
‖ Ẋ(t) ‖2 ds+ ‖ X(t) ‖2

=‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2

∫ t

0

1
a(s)

〈Ẋ(s),P(s)〉ds

(4)

≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2

∫ t

0

‖ P(s) ‖
a(s)

‖ Ẋ(s) ‖ ds

≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2

∫ t

0

e(s)
a(s)

‖ Ẋ(s) ‖ ds

=‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2

∫ t

0
q(s) ‖ Ẋ(s) ‖ ds.

We now apply the mean value theorem for integrals to the
term

2
∫ t

0
q(s) ‖ Ẋ(s) ‖ ds.

Then

1
a(t)

‖ Ẋ(t) ‖2 +

∫ t

0

a
′
(s)

a2(s)
‖ Ẋ(t) ‖2 ds+ ‖ X(t) ‖2

≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2 ‖ Ẋ(t∗) ‖

∫ ∞

0
q(s)ds,

where 0< t∗ < t.

Hence, it is clear that

1
a(t)

‖ Ẋ(t) ‖2 + ‖ X(t) ‖2

≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2 +2 ‖ Ẋ(t∗) ‖

∫ ∞

0
q(s)ds.

(5)
Since all terms in estimate (5) are positive, boundedness
follows. Otherwise, the left hand side of (5) would
become infinite ast → ∞ while the right hand side of (5)
remained fixed which is impossible. Further, when
P(t) ≡ 0 in equation (2), by the Sturm comparison
theorem ([5, pp. 114-115)]), all solutions oscillate when
we compare equation (2) to the equationẌ +a0X = 0 on
the interval[0,∞) anda(0) = a0.
When P(t) ≡ 0 in equation (2), consider now two
successive critical points t1 and t2, where
Ẋ(t1) = Ẋ(t2) = 0, and integrate this time estimate (3)
from t1 to t2 rather than 0 tot. In that case estimate (4)
becomes

∫ t

0

a
′
(s)

a2(s)
‖ Ẋ(t) ‖2 ds+ ‖ X(t2) ‖

2=‖ X(t1) ‖
2
. (6)

It now follows from estimate (6) that‖ X(t2) ‖≤‖ X(t1) ‖
which proves that the absolute values of the amplitudes
are non-increasing. This completes the proof of Theorem
1.
The second main and final problem of this paper is the
following theorem concerns the boundedness of solutions
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whenP(t) 6= 0 andt → ∞ and the stability of the solutions
whenP(t)≡ 0 in equation (2).
Theorem 2.In addition to the basic assumptions imposed
on the functionsa(.) and P(.), we assume that the
following assumptions hold: Given equation (2) where
a(.) andP(.) continuous functions on[0,∞) such that

a(t)> 0,a
′
(t)≥ 0,K > a(t)> k> 0

for some positive constantsK andk, and

‖ P(t) ‖≤ e(t),q(t) =
e(t)
a(t)

,q(.) ∈ L1[0,∞).

Then, all solutions of equation (2) are bounded ast → ∞.

Further, if P(t) ≡ 0 in equation (2), then all solutions of
equation (2) are stable. Furthermore, ifP(t) ≡ 0 in
equation (2), then the absolute values of the amplitudes
form a non-increasing sequence.
Proof. The boundedness of solutions ast → ∞ can be
proved by following the way shown in Theorem 1. We
need only to prove stability. SinceP(t)≡ 0, in view of the
assumptions of Theorem 2, it follows from estimate (4)
that

1
a(t)

‖ Ẋ(t) ‖2 +

∫ t

0

a
′
(s)

a2(s)
‖ Ẋ(t) ‖2 ds+ ‖ X(t) ‖2

=‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2

so that

‖ X(t) ‖2≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2

≤‖ X(0) ‖2 +
1
k
‖ Ẋ(0) ‖2 (7)

and

1
a(t)

‖ Ẋ(t) ‖2

≤‖ X(0) ‖2 +
1

a(0)
‖ Ẋ(0) ‖2

which implies that

‖ Ẋ(t) ‖2≤ a(t) ‖ Ẋ(0) ‖2 +
a(t)
a(0)

‖ Ẋ(0) ‖2

K ‖ Ẋ(0) ‖2 +
K
k
‖ Ẋ(0) ‖2

. (8)

Hence, relations (7) and (8) show that given small initial
conditions, both‖ X(.) ‖ and‖ Ẋ(.) ‖ remain small so the
solutions are indeed stable. The proof of Theorem 2 is now
completed.
Example 1.As a special case of equation (2) forn= 2, we
consider the second order linear differential system

[

ẍ1
ẍ2

]

+(t +1)

[

x1
x2

]

=

[

t(1+ t2)−1

cost(1+ t2)−1

]

, t ≥ 0. (9)

Then, it follows that

a(t) = t +1,a
′
(t) = 1> 0, t ≥ 0,

P(t) =

[ t
1+t2
cost
1+t2

]

, ||P(t)||=

∣

∣

∣

∣

∣

∣

∣

∣

[ t
1+t2
cost
1+t2

] ∣

∣

∣

∣

∣

∣

∣

∣

≤
t +1
1+ t2 = e(t),

∫ ∞

0

e(s)
a(s)

ds=
∫ ∞

0
q(s)ds=

∫ ∞

0

1
1+ s2ds=

π
2
,

that is, q(.) ∈ L1(0,∞). Hence, all the conditions of
Theorem 1 hold. Therefore, all solutions of equation (9)
are bounded ast → ∞ by Theorem 1.
Example 2. As a special case of equation (2) forn = 2,
we consider the second order linear differential system
[

ẍ1
ẍ2

]

+2(t+e−t)

[

x1
x2

]

=

[

t(1+ t2)−1

e−t(1+ t2)−1

]

, t ≥ 0. (10)

Hence, it follows that

a(t) = 2t+2e−t
, a

′
(t) = 2−2e−t ≥ 0, t ≥ 0,

P(t) =

[

t
1+t2
e−t

1+t2

]

, ||P(t)||=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

t
1+t2
e−t

1+t2

] ∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
t +e−t

1+ t2 = e(t),

∫ ∞

0

e(s)
a(s)

ds=
∫ ∞

0
q(s)ds=

∫ ∞

0

1
1+ s2ds=

π
4
,

that is,q(.) ∈ L1(0,∞).
Thus, all the conditions of Theorem 2 hold. Hence, all
solutions of equation (10) are bounded ast → ∞, If
P(t) ≡ 0 in equation (10), then all solutions of equation
(2) are stable.

Remark. Kroopnick [3] proved Theorem A and
Theorem B by the integral test for a scalar homogenous
linear differential equation of second order,
x
′′
+a(t)x= 0. In spite of the results of Kroopnick [3] are

not new, the proofs presented in [3] are new and simplify
previous works since the Gronwall inequality is avoided
which is the usual case. It also is worth mentioning that
the equation discussed in [3] is special case of our
equation,Ẍ + a(t)X = P(t). When we taken = 1 and
P(t) = 0, then our equation and assumptions, the
assumptions of Theorem 1 and Theorem 2, reduce to
those of Kroopnick [3, Theorem 1, Theorem 2]. Since the
Gronwall inequality is avoided here, which is the usual
case, the proofs of this paper are new and the results of
this paper simplify previous works in the literature (see
[1], [5]). Furthermore, our results extend and improve the
results of Kroopnick [3, Theorem 1, Theorem 2] and
those in the literature.

3 Conclusion

A well known linear differential system of second order
has been considered. Certain sufficient conditions have
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been constructed which guarantee that all solutions are
bounded ast → ∞ and stable, and the absolute values of
the amplitudes form a non-increasing sequence. The
technique of proof involves the integral test. Two
examples are included to illustrate the results. Our results
extend and improve some recent results in the literature.
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