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Abstract: We recast the Harmonic Oscillator using fractional differential equations. to be more developed By applying the
Hamiltonian formulation with fractional derivatives to the resulting Harmonic Oscillator. the canonical conjugate-
momentum coordinates are defined and converted into operators that fulfill the commutation relations, which correspond to
the classical theory's Poisson-bracket relations. The equations of motion are redefined in terms of the generalized brackets
when these are generalized. We present a generalized dissipative two-dimensional anisotropic harmonic oscillator equation
of motion with fractional derivatives. The novel method was evaluated on a single example and found to be consistent
agreement with the classical fractional method.

Keywords: canonical quantization, Poisson Bracket, Dissipative Two-Dimensional Anisotropic Harmonic Oscillator,
Riemann- Liouville fractional derivative.

1 Introduction

Ordinary differentiation and integration are generalized to any order in fractional calculus. The fractional derivatives are
the infinitesimal generators of a family of translation invariant convolution semigroups that occur as attractors everywhere.
Several applications of fractional calculus are based on replacing the time derivative in an evolution equation with a
fractional order derivative. Several recent studies confirm that fractional derivatives appear to exist for crucial
mathematical reasons.Over the last few decades, the fractional calculus [1-3] has begun to be used in a variety of domains,
including engineering, physics, and biology, and numerous noteworthy discoveries have been published [4—19]. In recent
years, there has been a lot of emphasis on fractional variational ideas [20—30] and their applications [31-36]. The fractional
Lagrangian and Hamiltonian formalisms are still in their infancy for constrained systems [37]. Here, we shall look at the
most fundamental models of this type: Scott-Blair and Kelvin-Voigt fractional models [38,39]. When fractional
constitutive relations are employed to solve issues of vibrations of continuous structures (such as beams, bars, and so on),
fractional differential equations equivalent to the equation of a forced, harmonic, damped oscillator are created [40,41].
The novel ideas presented in this manuscript have the following characteristics.

» Because the proposed method is a powerful instrument for discovering fractional new formlism, we recommend that
readers consider the following points:
e The methodologies utilized in this study are applicable to a wide range of lagrangian density models.
e The method is extended to high order fractional derivatives.
e According to the findings of this study, the fractional calculus, due to the fractional derivative order and the
fractional operator itself, allows for more flexible models than the traditional classical calculus. This characteristic
is critical in obtaining a new formulation of the generalized Riemann-Liouville fractional derivative of a
dissipative two-dimensional anisotropic harmonic oscillator.
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e  The proposed method can generate a wide range of accurate solutions to generalized type differential differential
equations with fractional derivative.

This paper is a generalization of for classical fields with RiemannLiouville fractional derivatives. The Poisson bracket and
commutation relations are introduced for the damped harmonic oscillator. Motion equations are stated in terms of Poisson
brackets, whereas Two-Dimensional Anisotropic Harmonic Oscillator equations are written in terms of commutators.
The following is how this document is structured: The definitions of fractional derivatives are briefly covered in Section.2.
Section. 3 presents the lagrangian density formulation of the dissipative two-dimensional anisotropic harmonic oscillator.
In Section 4, we look at fractional motion equations in terms of Euler-Lagrangian density. Section 5 is dedicated to
fractional derivatives and fractional Hamiltonian density. Section 6 discusses the Lagrangian Fractional formulation of a
dissipative anisotropic two-dimensional harmonic oscillator in fractional 3 derivative forms. Section 6 discusses the
fractional version of the Three-Dimensional Isotropic Oscillator equation in terms of the Poisson bracket formulation. In
Section 4, we look at how the Fractional Harmonic Oscillator with Fractional Derivative can be used. The work concludes
with some closing notes (section8).

2 Fractional derivative definitions

In this part of study, we briefly present some properties and fundamental definitions used in this work. The Riemann-
Liouville fractional derivative is given by:

oDy f(x) = F;—a)(%y fax(x — D" f(D)dr (1)

(n

The right Riemann- Liouville fractional derivative is defined as :

D) = s (- 5) [ (-0 e @

(n—a)
where I' denotes the Gamma function, and « is the order of the derivative such that n — 1 < a < n. If a is an integer,
these derivatives are defined in the usual sense, i.e.

£ = (%) feo ©)
DEfe = (Y ro) a=12. @

d
D, =7 (6)

2 - The lagrangian density formulation of the dissipative two-dimensional anisotropic harmonic oscillator.

Consider the following Lagrangian which is given by
L=%7, qul'z - Zﬂzmviqu'z) ehit (7)
According to Eq.(7), the equations of motion is then
1@ + Aiq; + 4mPvPq) = 0 ()

Which clearly describes the Two-Dimensional Anisotropic Harmonic Oscillator dissipative. Using the

it
transformation x; = Y2, q;e “/2  The lagrangian is then transformed as
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1 . 1 1 .
L=Y2, mel-z + gml%xiz — JmAxx; — 2mimu;x 9)
; 2
The teams x;x; does not influence the equations of motion Fi:(% =0= xixi) implies that F; = x?‘ Thus, we have

the following equivalent lagrangian:
1 . 1
L= izzlgmxiz +§m/112xi2 — 2m?muv; % x;* (10)

Here the subscript (i) means sum over (x; = x, x, = y).The dissipative Two-Dimensional Anisotropic Harmonic
Oscillator is described by this lagrangian. The equations of motion are

2
%+ (47r2vx2 - %)x =0 (10.1)

2
y+ (4mn,2 -2y =0 (10.2)

The angular frequency of the dissipative Two-Dimensional Anisotropic Harmonic Oscillator is w, = 2rv, and
w, = 21V
y v

3 Equations for fractional motion in terms of Euler-Lagrangian density

The dynamics of a physical system are described in the Lagrangian as a function of the locations and velocity of all degrees
of freedom that comprise the system. Pathways in the configuration space can be used to extract the dynamics. For a given
direction, the position and velocity at each time, as well as the Lagrangian value, are calculated. The continuous structure
of the Lagrange density is given by the dynamic field variables, generalized coordinate q and its second-order derivatives,

and generalized velocities X#Df anf q.
L= L[ q, aDJ(cXH q, xﬂquJ aDJ(clH aD;cl(7 x,,Dg ngfq ’ qufngbﬁq] (11)

For this Lagrangian density in fractional form, the Euler-Lagrange equation can be given as

oL, oL . oL oL . oL
-— =0
0q d.D¢q o,D)q 0.D% oD%, D4 9,Df,. D) . DS q]

b Xo

(12)
Using the variational principle, we can write:
8S = [ 6L d*x=0 (13)

Using Eq. (12), the variation of L is:

5L
[ oL L i oL u ]
| 5% %5 pFq 1" 5 by q° P |
= | uh " |d3x  (14)
| + oL 8 oDS, oD, DS, q +—— aLﬁ 5, Df . DF .Dg q|
| " 9.Dg, oDE JDEq “* 9,0, Dl Deq "l

Substituting Eq. (12) into Eq. (13), and using the following commutation relation
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o) D“ q= D“ oq
6x”Dﬂq DB(Sq (15)
8 D, DL q = DS D% bq
8.,DF ,Diq =D} . Dioq (16)
et we
[ a—L6q a—LSaD,? q+a—L6x Djq |
I 6q 0.Dgq bg ™" I
JI g b o ld*x =0 (17)
l aq5 JDE, D a"q+m6 Df . Df qJ

Integrating by parts the second and the third and the fourth and the fifth terms in Eq. (17) , This lead to Euler — Lagrange
equations.

[612 Do 0L . 0L +.pe pe oL ]
dq  “vo.Dgq 9, Dfq MU 0.DE WDEq _, .
+ D Df —aL B
b Xg~b
| 0.,D} <, D} q |
Taking x; = X2, qielit/ 2. as a specific instance, the Euler — Lagrange reduce to the original relations like:
r0L 0L B L L B 0L
S WDf o= D) = Do — = D ———
axi 0 aDt Xi d tDb Xi 0 anl-xi axiDb X
+ ,DE  Df ok | pf pf %
e oo 5 5 =0 19
a 9 Df Dfx; P P9 DF DPx, (19)
T -+ Dy D} or
L TRt Dx aDa o axin xiDl[ij d

4 Fractional derivatives and fractional Hamiltonian density

The Lagrangian, which is a function of all degrees of freedom in the system, is used to represent the dynamics of a physical
system. The dynamics are derived by following pathways in coordinate space. At each time step, the position and velocities
of a given path are determined, as well as the Lagrangian value. The continuous system is described as [ Dix, Df y] with

Lagrangian density specified on dynamical field variables, generalized coordinate [x, y] and [ Dix, DF y]
L=Llx,y, Dfx , Dy ] (20)

We introduce the generalized momenta as:

R

!”" ~ 0D .
. oL 7 (21)
n —

L 0D y)

The Hamiltonian depending on the fractional time derivatives reads as
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H=rn}[ ,Dfx] + m}[ oDFy] — Llx,y, .DEx , D&y 1 (22)

Calculating the total differential of this Hamiltonian, we get

oL oL
nid| ,Df x| + Dfx[dmi] + mld| ,Dfy| + DEfy[dm}] - opdt —=—dx
dH = | oL oL ey — O 4 pa | (23)
T 3 T 57 naan a X)— a
| ay Y " 9(.Dfx) ' (DY) ey |

By
comparison with the variation in L (i.e. Eq. (14), we may describe the variation of Hamiltonian induced by variations of
independent variables in terms of fractional derivative as follows in (7'[}1, X, 7Ly, aDex, oDy ).

Thus, the total differential of the Hamiltonian takes the form

[aHd OH (O v O 0 . a T
G+ 3+ g 4+ 5Ty 8+
dH = o (24)

)d( DLY)

+—
d( DLy

When we compare (23) and (24), we get Hamilton's equations of motion after some basic manipulations using the
fractional Hamilton equations.

(OH Py
a1 4
om}  “
0H a
ol = ,Dix
J 0H _ oL (25)
6( aD,‘C"ix) 6( aD,‘j‘l.x)
0H daL

a(.Dgy)  9(aDgy)

These formulas can be rewritten using the Euler-Lagrange method, and they will take the form

OH _
1= oY
on;
oH .
ol oDi x
You_ . al e 0L (26)
ox " a(,bex) “Ta(,Dex)
oH oL oL

-— = Df D%,

dy ata(Dy)a"a(Dy)

These new coordinates are the same as the standard canonical coordinates for integer-order derivatives.

5 The Lagrangian Fractional formulation of a dissipative anisotropic two-dimensional harmonic
oscillator.

These formulas are generalized in this section so that they can be applied to continuous systems with first order fractional
derivatives. The method is used to a dissipative two-dimensional anisotropic harmonic oscillator with a fractional
Lagrangian density.

To rewrite the electromagnetic Lagrangian density in fractional form, we start with the definition
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1.5 1
L= izzlzmxiz + gm/l?xiz —2m?mvx;? (27)

and employ the following relationship:
xi = aD ta Xj

The Lagrangian formulation is as follows:

2
1 2 1

L= sz[aDt“xi] +§m/1?xi2 —2m?muv;%x;? (28)
Takin:g tile derivative with regard to x; from the Euler-Lagrange equation Eq.(19), we get:

2 ¥
D¥x+ (4nPv,? =) x =0 (29.1)

12

D2y + (4m?,2 =)y =0 (29.2)

2
The damped oscillator has an angular frequency of 4m?v,? — %, where w is the angular frequency of the conservative

system. Furthermore, if A = 0, the previously mentioned Lagrangian is simplified to the Lagrangian of simple harmonic
motion.

In view of equation (26), we obtain generalized Hamilton equations as:
«DE%x + (w,)x =0 (30.1)
DE%y + (wy)y =0 (30.2)

These equations are the same as the Euler equation (29). Therefore, both the methods yield the following equation. Eq. (5.)
can be written as follows:

D2% . 42,2_ﬁ =0 31
atxl+ =V, 4xl_ ( )

At . ..
Substituting (x; = 32_, g;e ' /2.) into (5.1) we get 2_,(§; + A4,q; + 4w2v,2q;) =0

6 The fractional form of the Three-Dimensional Isotropic Oscillator equation in terms of the
Poisson bracket formulation.

Hamiltonian mechanics can be expressed in terms of Poisson brackets. In this section, an extension of the Poisson bracket
has been described, which is important for generalizing fractional mechanics involving Riemann-Liouville derivatives. The
Poisson brackets of Hamilton's equations of motion are then calculated as

x,ﬁ[sz + 4m?m?v,%x? — imlﬁxz] + b2y p
oDfx = {a, H} = ={x ) =X (32)

[Py2 + 4m?m?v, ty* — iml?,yz]

In the same method, other Poisson bracket relations can be found:
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(sz + 4m?m?v, 2x? — lm)L,ZCxZ) + 2
Dy = {y,H} ={y,5- ! ={ P}
a ] ] 2 2 1
" (Py + 4m?m2v, *y? — Zmlf,yz)
The given equation is the same as the equation obtained using Poisson brackets (Eq. (21) in fractional form.
If {x, B} = {, Py} = 1, similarly
2 200020, 2,2 1 2,2
P +4n m-v,“x —Zm/lxx +
aDngz{Pfo}z le_ =
2m 2 2,2 2.2 _ 1
P,° + 4n"mcv,“y ——m/lyy

ml,zcxz} = —4m’mv,%x + iml,zcx (34)
Also

1

1 (sz + 4m?m?v,2x? — Zml§x2> +

a j— J— —_

aDt Py_{PytH}— Py;zm 1 =
<P2+47rmvyy ——mxlyy)

22m2p.2y2
{Py,% mAsy }= —4m?mu, %y + < m/lyy (35)

The common quantization rules that can be utilized for canonical quantization are as follows:
[x,P] = [x,P] = i#; [x,x] = [y,y] = [P,,B] = [P,,B,] =0

Position and momentum operators are indicated by x, y, P,and P,, respectively. Then the Heisenberg equations are read as:

D' (x) = é([% ((sz + 4n?m? v, % x? —%m/l,zcxz) (P + 4m?m?uv, 2 y? —%mljz,yz)),x])
t G xp =42 (36)
And
D' (y) = i([ﬁ ((sz + 4m?m?v,%x? — %m/ﬁxz) + (Pyz + 4m?m?v,?y? — —mAZy )) y]) =
oy =2 37)

The Eq.(37)agree with Eq.(33).

DY (P,) = ;ﬂ[i ((sz + 4mim?v,2x? — %mA)szZ) + (Pyz +4mimiv,fy? — —ml )> ]> -
~([2m*mv, 22, P,]) = —4m?mu,?(x) + 7 mAL(x) 9

And
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i1 1 1
D*(p)) = %&([ﬂ ((sz + 4m?m?v, 2x? — Zm)l,zcxz) + (Py2 + 4m*m?v, % y? — Zm)lf,yz)),Py]) =
' 1
é([anmvyzyz,Py]) = —4n*mv, *(y) + Zm/'li(y) (39)
Which also agrees with equation (35).

The classical equations of motion are obeyed by the expectation values, as expressed by equations (38,39). These equations
are for predicted values (x, y)and hold true for every particle state. Then, using equations (33,35), we have

DFx = Do = DFx+ (4mv, 2 =122 )x =0 (40)
Dy = D2 = D¥y+ (4,2 —222)y =0 (41)
alt ™Y alt alt ™y v, )Y

This is in full agreement with equation (5) therefore,{x, P,} = {y, Py} =1 implies [x, P] = [y, Py] = iR.
7 Applications of the Fractional Harmonic Oscillator with Fractional Derivative

In this part, the Harmonic Oscillator will be studied using fractional calculus. A few examples are provided below.

e  This method can also be used to find the relationship between the order of fractional differentiation in an equation
of motion and an oscillator's w;-factor. The fractional calculus approach looks to be more appropriate for the
stated system's physical characteristics. The use of fractional derivatives produced good agreement with the
model, indicating that the fraction oscillator template may be used to represent substantially damped vibrations.

e This technique can also be used to investigate how the fractional-order derivative influences the dissipative
processes in other oscillatory physical systems, such as the order fractional Harmonic Oscillator.

e The fractional derivative technique combines the use of fractional calculus skills to describe free vibration with
damping. The fractional calculus has various applications in the modern theory of dissipative process modeling. A
fractional oscillator is an oscillator whose motion equation includes fractional derivatives (or integrals).

e The use of fractional derivatives to the study of the effect of classical chaos on the harmonic oscillator is a
fundamental tool that is widely used in all branches of Physics to comprehend more realistic systems, from
classical to quantum and relativistic regimes. We know that the harmonic oscillator is integrable in Newtonian
mechanics, whether driven, damped, or multidimensional. On the other hand, such an approach can be used to
investigate how relativistic, one-dimensionally driven oscillators exhibit chaotic behavior.

8 Conclusions

In this paper, we analyze the fractional Hamiltonian using the Riemann-Liouville derivative and derive the Euler equations.
Poisson brackets are an important aspect of Hamiltonian mechanics. The entire Hamiltonian mechanics can be stated in
terms of Poisson-bracket. In light of this, a generalization of the Poisson-bracket (fractional version) is proposed.
Hamilton's canonical equations (fractional case) have been represented using fractional Poisson brackets. A fractional
dissipative two-dimensional anisotropic harmonic oscillator is also given in terms of Poisson brackets.
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