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Abstract: We recast the Harmonic Oscillator using fractional differential equations. to be more developed By applying the 
Hamiltonian formulation with fractional derivatives to the resulting Harmonic Oscillator. the canonical conjugate-
momentum coordinates are defined and converted into operators that fulfill the commutation relations, which correspond to 
the classical theory's Poisson-bracket relations. The equations of motion are redefined in terms of the generalized brackets 
when these are generalized. We present a generalized dissipative two-dimensional anisotropic harmonic oscillator equation 
of motion with fractional derivatives. The novel method was evaluated on a single example and found to be consistent 
agreement with the classical fractional method. 
Keywords: canonical quantization, Poisson Bracket, Dissipative Two-Dimensional Anisotropic Harmonic Oscillator, 
Riemann- Liouville fractional derivative. 
 
 
1 Introduction  

Ordinary differentiation and integration are generalized to any order in fractional calculus. The fractional derivatives are 
the infinitesimal generators of a family of translation invariant convolution semigroups that occur as attractors everywhere. 
Several applications of fractional calculus are based on replacing the time derivative in an evolution equation with a 
fractional order derivative. Several recent studies confirm that fractional derivatives appear to exist for crucial 
mathematical reasons.Over the last few decades, the fractional calculus [1–3] has begun to be used in a variety of domains, 
including engineering, physics, and biology, and numerous noteworthy discoveries have been published [4–19]. In recent 
years, there has been a lot of emphasis on fractional variational ideas [20–30] and their applications [31–36]. The fractional 
Lagrangian and Hamiltonian formalisms are still in their infancy for constrained systems [37]. Here, we shall look at the 
most fundamental models of this type: Scott-Blair and Kelvin-Voigt fractional models [38,39]. When fractional 
constitutive relations are employed to solve issues of vibrations of continuous structures (such as beams, bars, and so on), 
fractional differential equations equivalent to the equation of a forced, harmonic, damped oscillator are created [40,41]. 
The novel ideas presented in this manuscript have the following characteristics.  

• Because the proposed method is a powerful instrument for discovering fractional new formlism, we recommend that 
readers consider the following points: 

• The methodologies utilized in this study are applicable to a wide range of lagrangian density models. 
• The method is extended to high order fractional derivatives. 
• According to the findings of this study, the fractional calculus, due to the fractional derivative order and the 

fractional operator itself, allows for more flexible models than the traditional classical calculus. This characteristic 
is critical in obtaining a new formulation of the generalized Riemann-Liouville fractional derivative of a 
dissipative two-dimensional anisotropic harmonic oscillator. 
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• The proposed method can generate a wide range of accurate solutions to generalized type differential differential 
equations with fractional derivative. 

This paper is a generalization of for classical fields with RiemannLiouville fractional derivatives. The Poisson bracket and 
commutation relations are introduced for the damped harmonic oscillator. Motion equations are stated in terms of Poisson 
brackets, whereas Two-Dimensional Anisotropic Harmonic Oscillator equations are written in terms of commutators.  
The following is how this document is structured: The definitions of fractional derivatives are briefly covered in Section.2. 
Section. 3 presents the lagrangian density formulation of the dissipative two-dimensional anisotropic harmonic oscillator.  
In Section 4, we look at fractional motion equations in terms of Euler-Lagrangian density. Section 5 is dedicated to 
fractional derivatives and fractional Hamiltonian density. Section 6 discusses the Lagrangian Fractional formulation of a 
dissipative anisotropic two-dimensional harmonic oscillator in fractional 3 derivative forms. Section 6 discusses the 
fractional version of the Three-Dimensional Isotropic Oscillator equation in terms of the Poisson bracket formulation. In 
Section 4, we look at how the Fractional Harmonic Oscillator with Fractional Derivative can be used. The work concludes 
with some closing notes (section8).  
2 Fractional derivative definitions 

In this part of study, we briefly present some properties and fundamental definitions used in this work. The Riemann- 
Liouville fractional derivative is given by: 

The right Riemann- Liouville fractional derivative is defined as : 
 

 
where Γ denotes the Gamma function, and 	𝛼		is the order of the derivative such that 𝑛 − 	1 < 	𝛼 < 	𝑛. If 𝛼 is an integer, 
these derivatives are defined in the usual sense, i.e. 
 

 

 

 

2 - The lagrangian density formulation of the dissipative two-dimensional anisotropic harmonic oscillator. 

Consider the following Lagrangian which is given by  

 
According to Eq.(7), the equations of motion is then  

Which clearly describes the Two-Dimensional Anisotropic Harmonic Oscillator dissipative. Using the 
transformation 𝑥! = ∑ 𝑞!𝑒

"#$
%&%

!'(  . The lagrangian is then transformed as  

																										 𝐷𝑎 𝑥
𝛼𝑓(𝑥) =

1
Γ(𝑛 − 𝛼)

.
𝑑
𝑑𝑥
0
𝑛

1 (𝑥 − 𝜏)𝑛−𝛼+1𝑓(𝜏)𝑑𝜏																																																(1)
𝑥

𝑎
 

 

																																			 𝐷𝑥 𝑏
𝛼𝑓(𝑥) =

1
Γ(𝑛 − 𝛼)

.−
𝑑
𝑑𝑥
0
𝑛

1 (𝜏 − 𝑥)𝑛−𝛼+1𝑓(𝜏)𝑑𝜏.																																												(2)
𝑥

𝑎
 

 

																																									𝑓(𝑥) = '
𝑑
𝑑𝑥
)
𝑛

𝑓(𝑥)																																																																																																												(3) 

 																											 𝐷𝑎 𝑡
𝛼𝑓(𝑥) = +

𝑑
𝑑𝑥
-
𝑛

𝑓(𝑡)																				𝛼 = 1,2, . .																																																																					(4) 

   
												

															𝐷𝑡
1 = 𝑑

𝑑𝑡
																																																																																																																																						(6) 

 

𝐿 = ∑ $1
2
𝑚𝑞̇𝑖2 − 2𝜋2𝑚𝑣𝑖2𝑞𝑖2. 𝑒𝜆𝑖𝑡2

𝑖=1                                                                      (7) 

 
											∑ (𝑞̈𝑖 + 𝜆𝑖𝑞𝑖 + 4𝜋2𝑣𝑖2𝑞𝑖) = 02

𝑖=1                                                                            (8) 
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The teams 𝑥̇!𝑥! does not influence the equations of motion 𝐹!:.
)*#
)$
= 0 = 𝑥̇!𝑥!0 implies that 𝐹! =

+#
,

%
. Thus, we have 

the following equivalent lagrangian: 

Here the subscript (i) means sum over (𝑥( = 𝑥, 	𝑥% = 𝑦).The dissipative Two-Dimensional Anisotropic Harmonic 
Oscillator is described by this lagrangian. The equations of motion are 

 

The angular frequency of the dissipative Two-Dimensional Anisotropic Harmonic Oscillator is	𝜔+ = 2𝜋𝑣+ and 
𝜔- = 2𝜋𝑣-. 

3 Equations for fractional motion in terms of Euler-Lagrangian density 

 
The dynamics of a physical system are described in the Lagrangian as a function of the locations and velocity of all degrees 
of freedom that comprise the system. Pathways in the configuration space can be used to extract the dynamics. For a given 
direction, the position and velocity at each time, as well as the Lagrangian value, are calculated. The continuous structure 
of the Lagrange density is given by the dynamic field variables, generalized coordinate 𝒒 and its second-order derivatives, 
and generalized velocities 𝐷+. /

0 𝐷+1 /
0𝒒. 

For this Lagrangian density in fractional form, the Euler-Lagrange equation can be given as 

 
Using the variational principle, we can write: 
 

Using Eq. (12), the variation of ℒ is: 
 

 
Substituting Eq. (12) into Eq. (13), and using the following commutation relation 
 

													𝐿 = ∑ 1
2
𝑚𝑥̇𝑖2 +

1
8
𝑚𝜆𝑖2𝑥𝑖2 −

1
4
𝑚𝜆𝑖𝑥̇𝑖𝑥𝑖 −2

𝑖=1 2𝜋2𝑚𝑣𝑖2𝑥𝑖2                                                     (9) 

 

															𝐿 = ∑ 1
2
𝑚𝑥̇𝑖2 +

1
8
𝑚𝜆𝑖2𝑥𝑖2 −2

𝑖=1 2𝜋2𝑚𝑣𝑖2𝑥𝑖2                                                                      (10) 

 

																		𝑥̈ + %4𝜋2𝑣𝑥2 −
𝜆𝑥2

4
, 𝑥 = 0                                                                                           (10.1) 

 																	𝑦̈ + %4𝜋2𝑣𝑦2 −
𝜆𝑦2

4
, 𝑦 = 0                                                                                            (10.2) 

 

             		ℒ = ℒ$	𝒒, 𝐷𝑎 𝑥𝜇
𝛼 𝒒, 𝐷𝑥𝜇 𝑏

𝛽𝒒, 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝒒	, 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝒒/																																								(11) 

 

															"
𝜕ℒ
𝜕𝒒

+
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝒒

+
𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽𝒒

+
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝐷𝑎 𝑥𝜇
𝛼 𝒒

+
𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽 𝐷𝑎 𝑥𝜇
𝛼 𝒒/ = 0																	(12) 

 

                          𝛿𝑆 = ∫𝛿ℒ		𝑑4𝑥=0   																																																																																																													(13) 
 

𝛿ℒ

=

⎣
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝒒

𝛿𝒒 +
𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽𝒒
𝛿 𝐷𝑥𝜇 𝑏

𝛽𝒒 +
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝒒

𝛿 𝐷𝑎 𝑥𝜇
𝛼 𝒒

+
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝐷𝑎 𝑥𝜇
𝛼 𝒒

𝛿 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝐷𝑎 𝑥𝜇
𝛼 𝒒 +

𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽 𝐷𝑎 𝑥𝜇
𝛼 𝒒

𝛿 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽 𝐷𝑎 𝑥𝜇
𝛼 𝒒

⎦
⎥
⎥
⎥
⎤

𝑑3𝑥				(14) 
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we 
get, 

Integrating by parts the second and the third and the fourth and the fifth  terms in Eq. (17) , This lead to Euler – Lagrange 
equations. 
 

	
Taking 𝑥! = ∑ 𝑞!𝑒

"#$
%&%

!'( . as a specific instance, the Euler – Lagrange reduce to the original relations like: 
 

 
4 Fractional derivatives and fractional Hamiltonian density    

The Lagrangian, which is a function of all degrees of freedom in the system, is used to represent the dynamics of a physical 
system. The dynamics are derived by following pathways in coordinate space. At each time step, the position and velocities 
of a given path are determined, as well as the Lagrangian value. The continuous system is described as < 𝐷2 $

3𝑥, 𝐷2 $
3𝑦= with 

Lagrangian density specified on dynamical field variables, generalized coordinate [𝑥, 𝑦] and		< 𝐷2 $
3𝑥, 𝐷2 $

3𝑦= 

We introduce the generalized momenta as: 

The Hamiltonian depending on the fractional time derivatives reads as 

																			"
𝛿 𝐷𝑎 𝑥𝜇

𝛼 𝒒 = 𝐷𝑎 𝑥𝜇
𝛼 𝛿𝒒

𝛿 𝐷𝑥𝜇 𝑏
𝛽𝒒 = 𝐷𝑥𝜇 𝑏

𝛽𝛿𝒒
-																																																																																																															(15) 

 
													"

𝛿 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝒒 = 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝛿𝒒

𝛿 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝒒 = 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝛿𝒒
.																																																																																																	(16) 

 
 

 

							"

⎣
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝒒

𝛿𝒒 +
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝒒

𝛿 𝐷𝑎 𝑥𝜇
𝛼 𝒒 +

𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽𝒒
𝛿 𝐷𝑥𝜇 𝑏

𝛽𝒒

+
𝜕ℒ

𝜕 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝒒
𝛿 𝐷𝑎 𝑥𝜇

𝛼 𝐷𝑎 𝑥𝜎
𝛼 𝒒 +

𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝒒
𝛿 𝐷𝑥𝜇 𝑏

𝛽 𝐷𝑥𝜎 𝑏
𝛽𝒒
⎦
⎥
⎥
⎥
⎤

𝑑4𝑥 = 0																													(17) 

 
 
 
 

 
								

⎣
⎢
⎢
⎢
⎡
𝜕ℒ
𝜕𝒒

− 𝐷𝑎 𝑥𝜇
𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑥𝜇

𝛼 𝒒
− 𝐷𝑥𝜇 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽𝒒

+ 𝐷𝑎 𝑥𝜇
𝛼 𝐷𝑎 𝑥𝜎

𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑥𝜇

𝛼 𝐷𝑎 𝑥𝜎
𝛼 𝒒

+ 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑥𝜇 𝑏
𝛽 𝐷𝑥𝜎 𝑏

𝛽𝒒 ⎦
⎥
⎥
⎥
⎤

= 0																																	(18)	

 
 
 
 

 

						

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕ℒ
𝜕𝑥𝑖

− 𝐷𝑎 𝑡
𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑡

𝛼𝑥𝑖
− 𝐷𝑡 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑡 𝑏
𝛽𝑥𝑖

− 𝐷𝑎 𝑥𝑖
𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑥𝑖

𝛼 𝑥𝑖
− 𝐷𝑥𝑖 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑥𝑖 𝑏
𝛽𝑥𝑖

+ 𝐷𝑎 𝑡
𝛼 𝐷𝑎 𝑡

𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑡

𝛼 𝐷𝑎 𝑡
𝛼𝑥𝑖

+ 𝐷𝑡 𝑏
𝛽 𝐷𝑡 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑡 𝑏
𝛽 𝐷𝑡 𝑏

𝛽𝑥𝑖

+ 𝐷𝑎 𝑥𝑖
𝛼 𝐷𝑎 𝑥𝑖

𝛼 𝜕ℒ
𝜕 𝐷𝑎 𝑥𝑖

𝛼 𝐷𝑎 𝑥𝑖
𝛼 𝑥𝑖

+ 𝐷𝑥𝑖 𝑏
𝛽 𝐷𝑥𝑖 𝑏

𝛽 𝜕ℒ

𝜕 𝐷𝑥𝑖 𝑏
𝛽 𝐷𝑥𝑖 𝑏

𝛽𝑥𝑖 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0																									(19) 

 
 
 
 
 

 

														ℒ = ℒ[𝑥, 𝑦	, 𝐷𝑎 𝑡
𝛼𝑥		, 𝐷𝑎 𝑡

𝛼𝑦		]																																																																																																										(20) 
 

																

⎩
⎪
⎨

⎪
⎧𝜋𝑥1 =

𝜕ℒ
𝜕( 𝐷𝑎 𝑡

𝛼𝑥)

𝜋𝑦1 =
𝜕ℒ

𝜕( 𝐷𝑎 𝑡
𝛼𝑦)

,					,																																																																																																																					(21) 
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Calculating the total differential of this Hamiltonian, we get 

By 
comparison with the variation in L (i.e. Eq. (14), we may describe the variation of Hamiltonian induced by variations of 
independent variables in terms of fractional derivative as follows in (𝜋-(	, 𝑥	, 𝜋+

(, 𝑦, 𝐷2 +#
3𝑥	, 𝐷2 +#

3𝑦 ). 

Thus, the total differential of the Hamiltonian takes the form 

 
When we compare (23) and (24), we get Hamilton's equations of motion after some basic manipulations using the 
fractional Hamilton equations. 

 
These formulas can be rewritten using the Euler-Lagrange method, and they will take the form 

 
These new coordinates are the same as the standard canonical coordinates for integer-order derivatives. 
5 The Lagrangian Fractional formulation of a dissipative anisotropic two-dimensional harmonic 
oscillator. 

These formulas are generalized in this section so that they can be applied to continuous systems with first  order fractional 
derivatives. The method is used to a dissipative two-dimensional anisotropic harmonic oscillator with a fractional 
Lagrangian density. 

To rewrite the electromagnetic Lagrangian density in fractional form, we start with the definition 

            H=	𝜋𝑥1% 𝐷𝑎 𝑡
𝛼𝑥* + 𝜋𝑦1% 𝐷𝑎 𝑡

𝛼𝑦* − ℒ[𝑥, 𝑦	, 𝐷𝑎 𝑡
𝛼𝑥		, 𝐷𝑎 𝑡

𝛼𝑦		]																																																										(22)                                                 
 

𝑑𝐻 =

⎣
⎢
⎢
⎢
⎡𝜋𝑥1𝑑* 𝐷𝑎 𝑡

𝛼𝑥/ + 𝐷𝑎 𝑡
𝛼𝑥[𝑑𝜋𝑥1] + 𝜋𝑦1𝑑* 𝐷𝑎 𝑡

𝛼𝑦/ + 𝐷𝑎 𝑡
𝛼𝑦*𝑑𝜋𝑦1/ 	−

𝜕𝐿
𝜕𝑡
𝑑𝑡 −

𝜕𝐿
𝜕𝑥
𝑑𝑥		

−
𝜕𝐿
𝜕𝑦
𝑑𝑦 −

𝜕𝐿
𝜕( 𝐷𝑎 𝑡

𝛼𝑥)
𝑑: 𝐷𝑎 𝑡

𝛼𝑥; −
𝜕𝐿

𝜕( 𝐷𝑎 𝑡
𝛼𝑦)

𝑑: 𝐷𝑎 𝑡
𝛼𝑦;

								 ⎦
⎥
⎥
⎥
⎤
															(23) 

 
 
 
 

𝑑𝐻 =

⎣
⎢
⎢
⎢
⎡
𝜕𝐻
𝜕𝑥

𝑑𝑥 +
𝜕𝐻
𝜕𝑦

𝑑𝑦 +
𝜕𝐻
𝜕𝜋𝑦1

𝑑𝜋𝑦1 +
𝜕𝐻

𝜕- 𝐷𝑎 𝑥𝑖
𝛼 𝑥2

𝑑- 𝐷𝑎 𝑥𝑖
𝛼 𝑥2 +

𝜕𝐻
𝜕	𝜓∗ 𝑑	𝜓

∗ +
𝜕𝐻
𝜕𝜋𝑥1

𝑑𝜋𝑥1	

+
∂H

∂- 𝐷𝑎 𝑥𝑖
𝛼 𝑦	2

d- 𝐷𝑎 𝑥𝑖
𝛼 𝑦	2

⎦
⎥
⎥
⎥
⎤
																(24) 

 
 
 
 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝜕𝐻
𝜕𝜋𝑦1

= 𝐷𝑎 𝑡
𝛼𝑦																																																																																																																																															.

𝜕𝐻
𝜕𝜋𝑥1

= 𝐷𝑎 𝑡
𝛼𝑥																																																																																																																																													
															

𝜕𝐻
𝜕2 𝐷𝑎 𝑥𝑖

𝛼 𝑥4
= −

𝜕𝐿
𝜕2 𝐷𝑎 𝑥𝑖

𝛼 𝑥4
									 .

𝜕𝐻
𝜕2 𝐷𝑎 𝑥𝑖

𝛼 𝑦4
= −

𝜕𝐿
𝜕2 𝐷𝑎 𝑥𝑖

𝛼 𝑦4
														 .

	
	

																																																																																																										

(25)	 

 
 
 
 
 
 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝜕𝐻
𝜕𝜋𝑦1

= 𝐷𝑎 𝑡
𝛼𝑦																																																																																																											.

𝜕𝐻
𝜕𝜋𝑥1

= 𝐷𝑎 𝑡
𝛼𝑥																																																																																																								.

	
𝜕𝐻
𝜕𝑥

= − 𝐷𝑎 𝑡
𝛼 𝜕𝐿
𝜕4 𝐷𝑎 𝑥𝑖

𝛼 𝑥6
− 𝐷𝑎 𝑥𝑖

𝛼 𝜕𝐿
𝜕4 𝐷𝑎 𝑥𝑖

𝛼 𝑥6
𝜕𝐻
𝜕𝑦

= − 𝐷𝑎 𝑡
𝛼 𝜕𝐿
𝜕4 𝐷𝑎 𝑥𝑖

𝛼 𝑦6
− 𝐷𝑎	 	𝑥𝑖

𝛼 𝜕𝐿
𝜕4 𝐷𝑎 𝑥𝑖

𝛼 𝑦6

																																																								

																																										(26) 
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and employ the following relationship: 

The Lagrangian formulation is as follows: 

Taking the derivative with regard to 𝒙𝒊	from the Euler-Lagrange equation Eq.(19), we get: 

The damped oscillator has an angular frequency of  4𝜋%𝑣+% −
"6,

7
, where 𝜔	is the angular frequency of the conservative 

system. Furthermore, if 𝜆 = 0, the previously mentioned Lagrangian is simplified to the Lagrangian of simple harmonic 
motion. 

In view of equation (26), we obtain generalized Hamilton equations  as: 

These equations are the same as the Euler equation (29). Therefore, both the methods yield the following equation. Eq. (5.) 
can be written as follows: 

 

6 The fractional form of the Three-Dimensional Isotropic Oscillator equation in terms of the 
Poisson bracket formulation. 

Hamiltonian mechanics can be expressed in terms of Poisson brackets. In this section, an extension of the Poisson bracket 
has been described, which is important for generalizing fractional mechanics involving Riemann-Liouville derivatives. The 
Poisson brackets of Hamilton's equations of motion are then calculated as 

 

In the same method, other Poisson bracket relations can be found: 

𝐿 = ∑ 1
2
𝑚𝑥̇𝑖2 +

1
8
𝑚𝜆𝑖2𝑥𝑖2 −2

𝑖=1 2𝜋2𝑚𝑣𝑖2𝑥𝑖2                                                                                    (27)                                                                                

 
      𝑥̇𝑖 = 𝐷𝑎 𝑡

𝛼𝒙𝒊 

 

𝐿 =#
1
2
𝑚' 𝐷𝑎 𝑡

𝛼𝑥𝑖.
2
+
1
8
𝑚𝜆𝑖2𝑥𝑖2 −

2

𝑖=1

2𝜋2𝑚𝑣𝑖2𝑥𝑖2																																																																																	(28) 

 
𝐷𝑎 𝑡
2𝛼𝒙 + (4𝜋2𝑣𝑥2 −

𝜆𝑥2

4
/ 𝑥 = 0                                                                                                   (29.1) 

𝐷𝑎 𝑡
2𝛼𝑦 + (4𝜋2𝑣𝑦2 −

𝜆𝑦2

4
/ 𝑦 = 0                                                                                                  (29.2)           

 
 
 

𝐷𝑎 𝑡
2𝛼𝒙 + (𝜔𝑥)𝑥 = 0                                                                                                                    (30.1)    

𝐷𝑎 𝑡
2𝛼𝑦 + /𝜔𝑦0𝑦 = 0                                                                                                                   (30.2)                   

 
 
 𝐷𝑎 𝑡

2𝛼𝒙𝒊 + )4𝜋2𝑣𝑖2 −
𝜆𝑖
2

4
0 𝑥𝑖 = 0																																																																																																																(31) 

 
 Substituting (𝑥𝑖 = ∑ 𝑞𝑖𝑒

𝜆𝑖𝑡
2*2

𝑖=1 .) into (5.1) we get ∑ (𝑞̈𝑖 + 𝜆𝑖𝑞𝑖 + 4𝜋2𝑣𝑖2𝑞𝑖) = 02
𝑖=1  

 
 

𝐷𝑎 𝑡
𝛼𝑥 = {𝑥, 𝐻} = +

𝑥, 1
2m
/𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥28 +

/𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −
1
4
𝑚𝜆𝑦2𝑦28

: = ;𝑥, 𝑃𝑥
2

2m
< = 𝑃𝑥

m
                           (32)                                                                                                                                 
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The given equation is the same as the equation obtained using Poisson brackets (Eq. (21) in fractional form. 

If {𝑥, 𝑃+} = F𝑦, 𝑃-G = 1, similarly 

Also 

 
The common quantization rules that can be utilized for canonical quantization are as follows: 

Position and momentum operators are indicated by 𝑥, 𝑦, 𝑃+and 𝑃-, respectively. Then the Heisenberg equations are read as: 

  
And 

 

The Eq.(37)agree with Eq.(33). 

And 

𝐷𝑎 𝑡
𝛼𝑦 = {𝑦, 𝐻} = +𝑦, 1

2m
/
0𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥2: +

0𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −
1
4
𝑚𝜆𝑦2𝑦2:

;< = =𝑦, 𝑃𝑦
2

2m
> = 𝑃𝑦

m
                    (33) 

 
 
 

𝐷𝑎 𝑡
𝛼𝑃𝑥 = {𝑃𝑥 , 𝐻} = ,𝑃𝑥,

1
2m

0
1𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥29 +

1𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −
1
4
𝑚𝜆𝑦2𝑦29

;< = 

																																		>𝑃𝑥 ,
4𝜋2𝑚2𝑣𝑥2𝑥2

2m
− 1

4
𝑚𝜆𝑥2𝑥2? = −4𝜋2𝑚𝑣𝑥2𝑥 +

1
4
𝑚𝜆𝑥2𝑥                                    (34) 

                 

                             

 
 
 

𝐷𝑎 𝑡
𝛼𝑃𝑦 = (𝑃𝑦 , 𝐻+ = ,𝑃𝑦 ,

1
2m

0
1𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥2: +

1𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −
1
4
𝑚𝜆𝑦2𝑦2:

;< = 

																																							>𝑃𝑦 ,
4𝜋2𝑚2𝑣𝑦 2𝑦2

2m
− 1

4
𝑚𝜆𝑦2𝑦2? = −4𝜋2𝑚𝑣𝑦2𝑦 +

1
4
𝑚𝜆𝑦2𝑦                               (35) 

                                     

                             

 
 
 

[𝑥, 𝑃𝑥] = [𝑥, 𝑃𝑥] = 𝑖𝓀; [𝑥, 𝑥] = [𝑦, 𝑦] = [𝑃𝑥 , 𝑃𝑥] = *𝑃𝑦 , 𝑃𝑦+ = 0 

  

𝐷1 〈𝑥〉 =
𝑖
𝓀
〈)
1
2m

,-𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −
1
4
𝑚𝜆𝑥2𝑥26 + -𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −

1
4
𝑚𝜆𝑦2𝑦268 , 𝑥:〉 

									= 𝑖
𝓀
〈<𝑃𝑥

2

2m
, 𝑥=〉 = 〈𝑃𝑥〉

𝑚
        (                                                                                                        36) 

          

                                      

 
 
 

𝐷1 〈𝑦〉 = 𝑖
𝓀
〈) 1
2m
,-𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥27 + -𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −

1
4
𝑚𝜆𝑦2𝑦278 , 𝑦:〉 =

𝑖
𝓀
〈;𝑃𝑦

2

2m
, 𝑦<〉 = 〈𝑃𝑦 〉

𝑚
                                                                                                                            (37)  

 
 

𝐷1 〈𝑃𝑥〉 =
𝑖
𝓀
〈* 1
2m
-.𝑃𝑥2 + 4𝜋2𝑚2𝑣𝑥2𝑥2 −

1
4
𝑚𝜆𝑥2𝑥26 + .𝑃𝑦2 + 4𝜋2𝑚2𝑣𝑦2𝑦2 −

1
4
𝑚𝜆𝑦2𝑦268 , 𝑃𝑥:〉 =

𝑖
𝓀
〈[2𝜋2𝑚𝑣𝑥2𝑥2, 𝑃𝑥]〉 = −4𝜋2𝑚𝑣𝑥2〈𝑥〉 +

1
4
𝑚𝜆𝑥2 〈𝑥〉                                                                       (38)       
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Which also agrees with equation (35). 

The classical equations of motion are obeyed by the expectation values, as expressed by equations (38,39). These equations 
are for predicted values	(𝑥, 𝑦)and hold true for every particle state. Then, using equations (33,35), we have 

 

This is in full agreement with equation (5) therefore,{𝑥, 𝑃+} = F𝑦, 𝑃-G = 1		implies [𝑥, 𝑃+] = <𝑦, 𝑃-= = 𝑖𝓀. 

7 Applications of the Fractional Harmonic Oscillator with Fractional Derivative 
 
In this part, the Harmonic Oscillator will be studied using fractional calculus. A few examples are provided below. 

• This method can also be used to find the relationship between the order of fractional differentiation in an equation 
of motion and an oscillator's 𝜔!-factor. The fractional calculus approach looks to be more appropriate for the 
stated system's physical characteristics. The use of fractional derivatives produced good agreement with the 
model, indicating that the fraction oscillator template may be used to represent substantially damped vibrations. 

• This technique can also be used to investigate how the fractional-order derivative influences the dissipative 
processes in other oscillatory physical systems, such as the order fractional Harmonic Oscillator.  

• The fractional derivative technique combines the use of fractional calculus skills to describe free vibration with 
damping. The fractional calculus has various applications in the modern theory of dissipative process modeling. A 
fractional oscillator is an oscillator whose motion equation includes fractional derivatives (or integrals). 

• The use of fractional derivatives to the study of the effect of classical chaos on the harmonic oscillator is a 
fundamental tool that is widely used in all branches of Physics to comprehend more realistic systems, from 
classical to quantum and relativistic regimes. We know that the harmonic oscillator is integrable in Newtonian 
mechanics, whether driven, damped, or multidimensional. On the other hand, such an approach can be used to 
investigate how relativistic, one-dimensionally driven oscillators exhibit chaotic behavior. 
 

8 Conclusions  

In this paper, we analyze the fractional Hamiltonian using the Riemann-Liouville derivative and derive the Euler equations. 
Poisson brackets are an important aspect of Hamiltonian mechanics. The entire Hamiltonian mechanics can be stated in 
terms of Poisson-bracket. In light of this, a generalization of the Poisson-bracket (fractional version) is proposed. 
Hamilton's canonical equations (fractional case) have been represented using fractional Poisson brackets. A fractional 
dissipative two-dimensional anisotropic harmonic oscillator is also given in terms of Poisson brackets. 
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