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Abstract: In this paper we consider landmark-based image registration using radial basis function interpolation schemes. More
precisely, we analyze some landmark-based image transformations using compactly supported radial basis functions such as
Wendland’s, Wu’s, and Gneiting’s functions. Comparisons of interpolation techniques are performed and numerical experiments show
differences in accuracy and smoothness of them in some test cases. Finally, a real-life case with medical images is considered.
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1 Introduction

Image registration is an important challenging topic in
image processing and information sciences. It consists
mainly in finding a suitable transformation between two
images (or image data), calledsourceand target images,
taken either at different times or from different sensors or
viewpoints. The scope is to determine a transformation
such that the transformed version of the source image is
similar to the target one. There is a large number of
applications demanding image registration, including
astronomy, biology, computer vision, genetics, physics,
medicine, robotics, to name a few. For an overview, see
e.g. [8,9,12–14,17–19,22,23,26] and references therein.
In medicine, for example, registration is required for
combining different modalities (X-ray, computer
tomography (CT), magnetic resonance imaging (MRI)
and positron emission tomography (PET) images, for
instance), monitoring of diseases, treatment validation,
comparison of the patient’s data with anatomical atlases,
and radiation therapy. In particular, thelandmark-based
image registrationprocess is based on two finite sets of
landmarks, i.e. sparse data points located on images,
usually not uniformly distributed, where each landmark
of the source image has to be mapped onto the
corresponding landmark of the target image
(see [17, 18, 22]). The landmark-based registration
problem can be formulated in the context of multivariate
scattered data interpolation, and solved by different

techniques, among which radial basis functions (RBFs)
play a preminent role (see, e.g., [7, 24]). The use of RBF
transformations, in particular of the thin plate splines, for
point-based image registration was first proposed by
Bookstein [3], and it is still common (see [20,21] and the
software package MIPAV [16]).

Since using globally supported RBFs, as for example
the thin plate spline or the Gaussian, a single landmark
pair change may influence the whole registration result, in
the last decade several methods have been presented to
circumvent this disadvantage, such as Wendland’s
compactly supported radial basis functions
(CSRBFs) [10], elastic body splines (EBSs) [15], the
modified inverse distance weighted method
(IDWM) [ 4, 5], and a spline method [1, 2]. These
interpolation techniques, giving rise to compactly
supported or local mappings, handle well images locally
deformed. Moreover, they are in general stable and the
computational effort to determine transformations is low
and, therefore, also a large number of landmarks can be
used.

In this paper we focus on properties and performances
of CSRBFs. In particular, we consider in this context
compactly supported transformations given by
Wendland’s, Wu’s, and Gneiting’s functions. These
methods are also compared with Gaussians and thin plate
splines, which are globally supported but are still among
the most widely used methods in applications. Numerical
experiments point out differences in accuracy and
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smoothness of the considered methods. We think that the
comparison can be useful to users in the choice of the
appropriate transformation for their scopes.

The paper is organized as follows. Section 2
introduces the landmark-based registration problem. In
Section 3 we briefly recall radial basis functions, like
Gaussians, multiquadrics, inverse multiquadrics and thin
plate splines to construct globally supported
transformations. In Section 4 Wendland’s, Wu’s and
Gneiting’s functions are presented to define compactly
supported transformations. Finally, Section 5 contains
several numerical results obtained in some test and real
examples: special emphasis is devoted to comparing
accuracy of CSRBFs schemes.

2 The landmark-based image registration
problem

For simplicity, in this section and in the following, we limit
the presentation to the 2D case, but all definitions can be
easily extended to the 3D one.

Let SN = {x j ∈ R
2, j = 1,2, . . . ,N} be a given set of

landmarks in the source imageS and let
TN = {t j ∈ R

2, j = 1,2, . . . ,N} be the given set of
corresponding landmarks in the target imageT. The
registration problem reads as follows.

Problem 1.Let the landmark setsSN and TN be given.
Find a transformationF : R2 →R

2 within a suitable space
F of admissible functions, such that

F(x j) = t j , j = 1,2, . . . ,N. (1)

Each coordinateFk of the transformation function is
calculated separately, i.e. the interpolation problem
Fk : R

2 → R is solved for eachk = 1,2, with the
corresponding conditions

Fk(x j) = t jk, j = 1,2, . . . ,N. (2)

In order to have a class of basis functions that
generate non-singular interpolation matrices for any set of
distinct points, we introduce the concept of strictly
positive definite functions [7]. We suppose that the
interpolantFk : R2 → R has the form

Fk(x) =
N

∑
j=1

c jkΨ(x−x j), (3)

c jk being the coefficients to be found. A necessary
condition to have unique solvability of the interpolation
problem (2) is given by the following result [7].

Theorem 1.The interpolation problem (2), where Fk is of
the form (3), has a unique solution if the functionΨ is
strictly positive definite onR2, that is

N

∑
i=1

N

∑
j=1

cic jΨ(xi −x j)> 0, (4)

for any N pairwise different pointsx1,x2, . . . ,xN ∈R
2, and

c = [c1,c2, . . . ,cN]
T ∈ R

N, c 6= 0.

Moreover, we remark that Theorem1 is also satisfied
for a strictly conditionally positive definite functionΨ of
orderv if the quadratic form (4) holds and

N

∑
i=1

ci p(xi) = 0,

for any polynomialp of degree at mostv−1.

3 Radial basis functions

In this section we consider globally supported radial basis
functions, which are well-known in the field of
approximation theory and scattered data interpolation
(see [7, 24]), and widely used in landmark-based image
registration as well (see, e.g., [18] and references therein).

Using radial basis functions, the general coordinate
Fk(x), k = 1,2 of the transformation function is assumed
to have the form

Fk(x) =
N

∑
j=1

c jkΦ(||x−x j ||2)+
U

∑
i=1

bikπik(x), (5)

whereΦ(||x− x j ||2) is a radial basis function depending
only on the Euclidean distancer = ||x−x j ||2, andc jk and
bik are coefficients to be determined. The spaceP2

v−1 ≡

Pv−1(R
2) = span{πik}

U
i=1, where theπik are a basis of

polynomials up to degreev − 1, has dimension
U = (2+ v−1)!/(2!(v−1)!), which must be lower than
N. Therefore, in order to compute the coefficients
c= (c1k,c2k, . . . ,cNk)

T andb = (b1k,b2k, . . . ,bUk)
T in (5),

it is required to solve the following system of linear
equations

{

Mc+Qb = t,
QTc = 0,

(6)

where M = {Φ(||xi − x j ||2)} is a N × N matrix,
Q = {πik(x j)} is a N × U matrix, and t denotes the
column vector of thek-th coordinate of the target
point-landmarks t j corresponding to the image
point-landmarks x j . Equations (6) are obtained by
requiring thatF satisfies the interpolation conditions (1)
and the side conditions∑N

j=1c jkπik(x j) = 0, for
i = 1,2, . . . ,U , i.e.QTc= 0.

The most popular choices forΦ in landmark-based
registration are

Φ(r) = r2 logr, (thin plate spline)
Φ(r) = e−α2r2

, (Gaussian)
Φ(r) = (r2+ γ2)µ/2, (generalized multiquadric)

whereα,γ ∈ R
+ and µ ∈ Z. The Gaussian (G) and the

inverse multiquadric (IMQ), which occurs forµ < 0 in
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the generalized multiquadric function, are strictly positive
definite functions, whereas the thin plate spline (TPS) and
the multiquadric (MQ), i.e. forµ > 0 in the generalized
multiquadric function, are strictly conditionally positive
definite functions of orderµ . The addition of a
polynomial term of a certain order along with side
conditions, in order to guarantee existence and
uniqueness of the solution in the linear equation system
(6), is required only for strictly conditionally positive
definite functions. It allows us to have a nonsingular
interpolation matrix. For thin plate spline the order of the
polynomial is one and for multiquadric depends on the
exponent µ , the minimal degree beingv = µ − 1.
Polynomials have global support and therefore the
polynomial part influences globally the registration result.

An important feature of some radial basis functions is
the presence of a shape parameter, which allows us to
control their influence on the registration result [10]. On
the other hand this property could be seen as a drawback,
because the user needs to give the parameter value. Also
for this reason the thin plate spline is usually considered
more suitable than other RBFs for image registration,
since this process of image registration must sometimes
be automatic.

The thin plate spline seems to be preferable to other
radial basis functions for image registration also for other
reasons. The thin plate spline minimizes a functional
which represents the bending energy of a thin plate
separately for each componentFk, k = 1,2, of the
transformation F. Thus, the functionalJ(F) can be
separated into a sum of similar functionals that only
depend on one componentFk of F, and the problem of
findingF can be decomposed into two problems.

Note that the interpolation matrices generated by
radial basis functions are dense, since they are globally
supported, and ill-conditioned [7], especially those
generated by Gaussian. Ill-conditioning could happen
even if it is required to interpolate a relatively small
number of landmarks, since the landmarks may be very
close to each other.

Another possible disadvantage of the use of RBFs is
given by the number of floating-point operations, which
can be very time consuming, especially if the number of
landmarks is large or the registration of 3D images is
needed.

4 Compactly supported radial basis functions

In this section we consider the most popular families of
CSRBFs such as Wendland’s, Wu’s and Gneiting’s
functions (see [7, 11, 24, 25]). Wendland’s functions have
been introduced in image registration context with the
motivation that their influence around a landmark is
limited, in 2D and 3D images on a circle or a sphere,
respectively [10]. This property allows us the registration
of medical images where changes occur only locally.

Here we propose also the use of Wu’s and Gneiting’s
functions (see [6]).

4.1 Wendland’s functions

Wendland’s functions are obtained by using the truncated
power functionϕs(r) = (1− r)s

+ (where(x)+ is defined
asx for x > 0 and 0 forx ≤ 0), which is strictly positive
definite and radial onRm for s ≥ ⌊m/2⌋ + 1, and
repeatedly applying the operatorI given by
(I ϕ)(r) =

∫ ∞
r tϕ(t)dt, r ≥ 0 (see, e.g., [24]). Then,

Wendland’s functions are given by

ϕm,h = I
hϕ⌊m/2⌋+h+1,

Specifically, they are all supported on the interval
[0,1] and have a polynomial representation there. In
addition to this, the following theorem states that any
other compactly supportedC2h polynomial function that
is strictly positive and radial onRm will not have a
smaller polynomial degree. Finally, they have minimal
degree with respect to a given space dimensionm and
smoothness 2h [24].

Theorem 2.The functionsϕm,h are strictly positive definite
and radial onRm and are of the form

ϕm,h(r) =

{

pm,h(r), r ∈ [0,1],
0, r > 1,

with a univariate polynomial pm,h of degree
⌊m/2⌋+3h+1. Moreover,ϕ ∈C2h(R) are unique up to a
constant factor, and the polynomial degree is minimal for
given space dimension m and smoothness2h.

Though there exist recursive formulas to compute the
functionsϕm,h for all m and h, here for convenience we
only give explicit forms ofϕm,h, for h= 0,1,2,3.

Theorem 3.The functionsϕm,h, h= 0,1,2,3, have the form

ϕm,0(r)
.
= (1− r)s

+ ,

ϕm,1(r)
.
= (1− r)s+1

+ [(s+1) r +1] ,
ϕm,2(r)

.
= (1− r)s+2

+

[(

s2+4s+3
)

r2+(3s+6) r +3
]

,

ϕm,3(r)
.
= (1− r)s+3

+

[(

s3+9s2+23s+15
)

r3+
+

(

6s2+36s+45
)

r2+(15s+45) r +15
]

,

where s= ⌊m/2⌋ + h+ 1, and the symbol
.
= denotes

equality up to a positive constant factor.

Since Wendland’s functions are compactly supported,
the interpolation matrices can be made sparse by
appropriately scaling the support of the basic function. In
the following we can consider only Wendland’s functions
depending on a shape parameterδ ∈ R

+. We list some of
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the most commonly used functions inR2 along with their
degree of smoothness, i.e.

ϕ2,0(r)
.
= (1−δ r)2

+ , C0

ϕ2,1(r)
.
= (1−δ r)4

+ (4δ r +1) , C2

ϕ2,2(r)
.
= (1−δ r)6

+

(

35(δ r)2+18δ r +3
)

, C4

ϕ2,3(r)
.
= (1−δ r)8

+

(

32(δ r)3+25(δ r)2+8δ r +1
)

. C6

We remark that the functionsϕ2,k, k= 0,1,2,3, are strictly
positive definite and radial not only onR2 but also onRm,
for m≤ 3 (see [24]).

Referring to the image registration context we can
define bivariate Wendland’s transformations as follows.

Definition 1.Given a set of source landmark points
SN = {x j ∈ R

2, j = 1,2, . . . ,N}, with associated the
corresponding set of target landmark points
TN = {t j ∈ R

2, j = 1,2, . . . ,N}, a Wendland’s
transformation F : R

2 → R
2 is such that each its

component
Fk : R2 → R, k= 1,2

assumes the following form

Fk(x) = Fk(x1,x2) =
N

∑
j=1

c jkϕ2,h(||x−x j ||2), (7)

with x = (x1,x2) andx j = (x j1,x j2) ∈ R
2.

From Definition 1 it follows that the transformation
function Fk : R2 → R is calculated for eachk = 1,2, and
the coefficientsc jk in (7) is to be obtained by solving two
systems of linear equations.

4.2 Wu’s functions

Another way to construct strictly positive definite radial
functions with compact support is due to Wu [25]. He
starts with the function

ψ(r) =
(

1− r2)s
+
, s∈ N,

which is not strictly positive definite and radial onRm.
Nevertheless, using convolution Wu obtains the function

ψs(r) = (ψ ∗ψ)(2r) =
∫ +∞

−∞

(

1− t2)s
+

[

1− (2r − t)2
]s

+
dt

=
∫ 1

−1

(

1− t2)s
+

[

1− (2r − t)2
]s

+
dt,

which is strictly positive definite and radial onR.
Moreover, the functionψs is a polynomial of degree
4s+1 on its support, such thatψs ∈C2s(R).

Now, a family of strictly positive definite radial
functions is constructed by the operatorD , namely
(Dψ)(r) =−1

r ψ ′(r).

Definition 2.With ψs(r) = [(1− ·2)s
+ ∗ (1− ·2)s

+](2r) we
define

ψk,s = D
kψs.

The functionsψk,s are strictly positive definite and
radial on R

m for m ≤ 2k+ 1, and are polynomials of
degree 4s− 2k+ 1 on their support. Moreover, while in
the interior of the supportψs ∈ C2(s−k), on the boundary
the smoothness increases andψs ∈ C2s−k. Then, we can
consider the following Wu’s functions along with their
smoothness degree, i.e.

ψ0,3(r)
.
= (1−δ r)7

+

(

5+35δ r +101(δ r)2

+147(δ r)3+101(δ r)4+35(δ r)5+5(δ r)6
)

, C6

ψ1,3(r)
.
= (1−δ r)6

+

(

6+36δ r +82(δ r)2

+72(δ r)3+30(δ r)4+5(δ r)5
)

, C4

ψ2,3(r)
.
= (1−δ r)5

+

(

8+40δ r +48(δ r)2

+25(δ r)3+5(δ r)4
)

, C2

ψ3,3(r)
.
= (1−δ r)4

+

(

16+29δ r +20(δ r)2+5(δ r)3
)

. C0

Thus, concerning the image registration context we
can consider the following definition, which involves
Wu’s transformations.

Definition 3.Given a set of source landmark points
SN = {x j ∈ R

2, j = 1,2, . . . ,N}, with associated the
corresponding set of target landmark points
TN = {t j ∈ R

2, j = 1,2, . . . ,N}, a Wu’s transformation
W : R2 → R

2 is such that each its component

Wk : R2 → R, k= 1,2, (8)

assumes the following form

Wk(x) =Wk(x1,x2) =
N

∑
j=1

c jkψs,3(||x−x j ||2), (9)

with x = (x1,x2) andx j = (x j1,x j2) ∈ R
2.

This means that the transformation functionWk : R2 → R

is calculated for eachk = 1,2, and the coefficientsc jk are
to be obtained by solving two systems of linear equations.

4.3 Gneiting’s functions

Starting with Wendland’s functions and applying the
turning bands operator, Gneiting in 2002 obtained a
family of compactly supported functions [11].
Following [7], we can start with a functionϕm that is
strictly positive definite and radial onRm for m≥ 3, and
applying the turning bands operator results

ϕm−2(r) = ϕm(r)+
rϕ ′

m(r)
m−2

, (10)

which is strictly positive definite and radial onRm−2. For
example, starting with the Wendland function
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ϕ4,1(r) = (1 − r)l+1
+ [(l +1)r +1] and applying the

turning bands operator we obtain the functions

τ2,l (r) = (1− r)l
+

(

1+ lr −
(l +1)(l +4)

2
r2
)

, (11)

which are strictly positive definite and radial onR2

provided l ≥ 7/2. We list some specific functions from
this family for various choices ofl . All of the functions
are in C2(R).

τ2,7/2(r)
.
= (1−δ r)7/2

+

(

1+ 7
2δ r − 135

8 (δ r)2
)

, C2

τ2,5(r)
.
= (1−δ r)5

+

(

1+5δ r −27(δ r)2
)

, C2

τ2,15/2(r)
.
= (1−δ r)

15
2
+

(

1+ 15
2 δ r − 391

8 (δ r)2
)

, C2

τ2,12(r)
.
= (1−δ r)12

+

(

1+12δ r −104(δ r)2
)

. C2

With regard to the image registration context we can
define Gneiting’s transformations as follows.

Definition 4.Given a set of source landmark points
SN = {x j ∈ R

2, j = 1,2, . . . ,N}, with associated the
corresponding set of target landmark points
TN = {t j ∈ R

2, j = 1,2, . . . ,N}, a Gneiting’s
transformation G : R

2 → R
2 is such that each its

component
Gk : R2 → R, k= 1,2, (12)

assumes the following form

Gk(x) = Gk(x1,x2) =
N

∑
j=1

c jkτ2,l (||x−x j ||2), (13)

with x = (x1,x2) andx j = (x j1,x j2) ∈ R
2.

As for Wendland’s transformation, from Definition4 it
follows that the transformation functionGk : R2 → R is
calculated for eachk= 1,2, and the coefficientsc jk are to
be obtained by solving two systems of linear equations.

We point out that in scattered data interpolation, in
some cases, accuracy achieved using Gneiting’s functions
is better than that obtained using Wendland’s functions
(see [7]).

5 Numerical experiments

In this section, we compare the performances of the above
methods when they are applied to give image
transformations. In particular, we considerC2 CSRBFs
given by Wendland’s (We2), Wu’s (Wu2) and Gneiting’s
(Gn2) transformations. Moreover, to get a more complete
picture, we show also the registration results obtained by
Gaussian (G) and thin plate spline (TPS), which are
widely used in this context.

In order to test the different CSRBF transformation
schemes, we obtain several numerical results on some test

cases. Here, for brevity, we refer only to two examples
in [10, 15], which simulate typical medical cases where
image portions scale or shift. These image portions
represent rigid objects embedded in elastic material
changing their position or form. The approach we propose
can cope with local differences between corresponding
images. In general these differences may be caused by the
physical deformation of human tissue due to surgeries or
pathological processes such as tumor growth or tumor
resection. However, the aim is here to determine a
transformation function, which connects the points of the
source and target images, so that the target image is
affected by the slightest possible deformation. This study
and the related comparisons among the different
transformation functions are made, in the test cases, also
analyzing the behaviour of the root mean squares error
(RMSE), which is obtained by computing the distances
between the displacements of grid pointsx ∈ X and the
transformed values. It assumes the following form

RMSE=

√

∑x∈X ‖x−F(x)‖2
2

∑x∈X 1
,

where‖·‖2 is the Euclidean norm.
Finally, we present some experimental results

obtained by applying Gaussian, thin plate spline,
Wendland’s, Wu’s and Gneiting’s functions to real image
data. More precisely, we consider two X-ray images of
the cervical of an anonymous patient taken at different
times. The considered real example is very similar to that
taken by Modersitzki in [18].

5.1 Test example 1: square shift and scaling

We denote byX the set of 40× 40 corner points of a
regular grid superimposed on the source images (see
Figure1). The grid is transformed using 64 (Cases 1 and
2: square shift and scaling, respectively) landmarks and,
in the case of square shift, also 4 quasi-landmarks, i.e.
landmarks which have the same positions in both source
and target images, to prevent an overall shift. The choice
of considering two test cases with pair landmark sets is
justified by the necessity of testing the interpolation
schemes on different situations. In both cases, source and
target image landmarks, shown in the images in Figure1,
are marked by a circle (◦) and a star (⋆), respectively.

Thus, to verify the goodness of the considered
CSRBF transformations, we make a comparison of
registration results using also Gaussian and thin plate
spline transformations. More precisely, in Table5.1 we
report the RMSEs obtained by choosing fixed values of
the shape parameters, i.e. takingα = 2.0 and δ = 0.1.
These values are suitably selected in order to have a good
compromise between accuracy and stability.

A complete error analysis is, in general, quite difficult
since all the considered interpolation schemes are known
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Fig. 1: Source and target landmarks: square shift (Case 1, left)
and square scaling (Case 2, right).

Table 5.1:RMSEs for values ofα = 2.0 andδ = 0.1.

Case 1 Case 2

G 1.3768E−1 2.0206E−1

TPS 1.0310E−1 2.0929E−1

We2 1.0911E−1 1.8856E−1

Wu2 1.0924E−1 1.9318E−1

Gn2,l = 5 1.0911E−1 1.6670E−1

Gn2,l = 7/2 1.0039E−1 1.8307E−1

to be accurate and, in fact, all errors are of the same
orders of magnitude. However, the RMSEs point out that
in Case 1 the best result is obtained by using Gneiting’s
CSRBF withl = 7/2, whereas in Case 2 the lowest error
is still given by Gneiting’s function withl = 5. The
goodness of Gneiting’s transformations is also confirmed
by a graph standpoint (see Figures2–3), where shape and
smoothness of the different transformed grids are shown.
In such figures, for brevity, we report a restricted number
of registration results obtained by applying CSRBF-based
interpolation schemes and, for comparison, the most
accurate result that is given by either Gaussian or TPS
transformations.

We note that irregular grids may be obtained using
Gaussian, while smoother results are given by thin plate
spline and compactly supported radial basis functions.
Finally, we point out that the condition numbers of
interpolation matrices generated by Gaussian might turn
out quite large in both cases, namely 1017÷1019.

5.2 Test example 2: circle contraction and
expansion

In this subsection we consider a radial transformation,
that is, a circle contraction. It may be viewed as a very
schematic model for a tumor resection in surrounding
elastic brain tissue. In this model (see [15]) the outer
circle corresponds to the skull bone, which is assumed to
be rigid. The inner circle represents the boundary of the
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(a) TPS
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(b) Gn2,l = 5
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(c) We2
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(d) Wu2

Fig. 2: Case 1: registration results for the shift of a square using
δ = 0.1.
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Fig. 3: Case 2: registration results for the scaling of a square
usingα = 2.0 andδ = 0.1.

tumor, whereas the space between the inner and the outer
circle is assumed to be filled with elastic material, which
corresponds to brain tissue.

The grids are transformed using 20 equidistant
landmarks placed on the inner circle and, to prevent an
overall shift, also 40 quasi-landmarks, i.e. landmarks at
invariant positions, at the outer circle in the source and
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target images. These point-landmarks, shown in Figure4
(a), are marked by a circle (◦) and a star (⋆), respectively.

In these experiments we compare at first the
registration results obtained by using We2 and Gn2 with
l = 7/2 as CSRBFs and TPS for a comparison. In
particular, Figure4 (b)-(d) shows registration results
usingδ = 0.1 as a shape parameter, whereas the related
errors are reported in Table1.

Table 1: RMSEs for values ofα = 2.0 andδ = 0.1.

Case 3

G 1.2287E−1

TPS 7.7354E−2

We2 9.1792E−2

Wu2 9.4400E−2

Gn2,l = 5 7.9795E−2

Gn2,l = 7/2 5.2041E−2
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(d) Gn2,l = 7/2

Fig. 4: Source and target landmarks and registration results for
circle contraction usingδ = 0.1.

Also in this case errors are less and smoother
transformed images are obtained when Gneiting’s
transformations are employed, especially withl = 7/2.

For the circle expansion we found very similar results
to those achieved for square scaling and then we do not
report them. However, we point out that also in this case

the best registration results were obtained using Gn2, with
l = 5.

5.3 Real-life case: an application to medical
images

In this subsection we present some experimental results
obtained by applying Gaussians, thin plate splines,
Wendland’s, Wu’s and Gneiting’s functions to real image
data. More precisely, we consider two X-ray images of
the cervical of an anonymous patient taken at different
times. The considered real example is very similar to that
given by Modersitzki in [18]. In Figure 5 we show the
two images along with landmarks and quasi-landmarks,
setting on the left the source image and on the right the
target one. The size of both images is 512×512 pixels. In
particular, within each of the two images we have
manually selected 6 landmarks within and, moreover, to
fix transformation and to prevent an overall shift, we have
added 12 quasi-landmarks on the boundaries of the source
and target images.

Each result in Figure 6 (a)-(f) represents a
transformed image, obtained using all the considered
RBFs. In accordance with the test examples in
Subsections5.1 and 5.2, for the Gaussian we have used
the parameter valueα = 2.0, for Wendland’s, Wu’s and
Gneiting’s transformations the value isδ = 0.1. We
observe that Gaussian transformation strongly deforms
the image, while using TPS gives less significant
deformations. Better registration results are obtained with
CSRBFs, especially when we use the Gn2. Moreover, we
point out that registration results are better if we use small
values for the parameter, i.e.δ ∈ [0.1,0.5].
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Fig. 5: Source and target cervical images with landmarks and
quasi-landmarks (left to right).

6 Conclusions

In this paper we compared some well established
interpolation methods and some techniques recently
proposed in the context of image registration such as the
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(f) Gn2, l = 7/2

Fig. 6: Real-life case: registration results usingα = 2.0 andδ =
0.1.

CRBFs, specifically Wendland’s, Wu’s and Gneiting’s
functions. To this aim, we briefly recalled all the above
local interpolation schemes and commented their
performances in landmark-based image registration,
taking into account the wide literature on the topic.

In particular, we were interested in pointing out which
scheme may be preferable in a specific situation.
Moreover, since a great number of techniques require the
use of a shape parameter which might greatly influence
registration results, we remark that sometimes may be
necessary a compromise between accuracy and
smoothness.

Here, we used interpolating transformations which
accomplish an exact match of corresponding landmarks.
This implicitly means that the landmark positions are
exactly known. However, if we have to deal with
landmark localization errors, then it would be
advantageous to weaken the interpolation conditions by
introducing an approximation scheme. Further
investigations in this direction are still required and
ongoing.
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