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Abstract: In this paper we consider landmark-based image registration using kadies function interpolation schemes. More
precisely, we analyze some landmark-based image transformatiamg csmpactly supported radial basis functions such as
Wendland’s, Wu'’s, and Gneiting’s functions. Comparisons of intetfpridaechniques are performed and numerical experiments show
differences in accuracy and smoothness of them in some test casaly, & real-life case with medical images is considered.
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1 Introduction techniques, among which radial basis functions (RBFs)
play a preminent role (see, e.g7, 24]). The use of RBF
transformations, in particular of the thin plate splines, f

Image registration is an important challenging topic in oint-based image registration was first proposed by

image processing and information sciences. It consist ; 2
maigly ﬁw finding%\ suitable transformation between two ookstein B], and it is still common (see2D, 21] and the
images (or image data), calledurceand target images soﬁware pagkage MIPAVIf]).

taken either at different times or from different sensors or ~ Since using globally supported RBFs, as for example
viewpoints. The scope is to determine a transformationthe thin plate spline or the Gaussian, a single landmark
such that the transformed version of the source image i®air change may influence the whole registration result, in
similar to the target one. There is a large number ofthe last decad_e se\_/eral methods have been presented to
applications demanding image registration, includingCircumvent this disadvantage, such as Wendland's
astronomy, biology, computer vision, genetics, physics,compactly  supported  radial ~ basis  functions
medicine, robotics, to name a few. For an overview, sedCSRBFs) 10], elastic body splines (EBSs)9, the

e.g. B,9,12-14,17-19, 22,23, 26] and references therein. Mmodified inverse  distance  weighted method
In medicine, for example, registration is required for IDWM) [4, 5], and a spline method1[ 2]. These
combining different modalities (X-ray, computer interpolation techniques, giving rise to compactly
tomography (CT), magnetic resonance imaging (MRI)Supported or local mappings, handle well images locally
and positron emission tomography (PET) imageS, forde'formed_. Moreover, they are_ n general Stable and the
instance)’ monitoring of diseases’ treatment Va"dationlcomputauonal effort to determine transformations is low
comparison of the patient's data with anatomical atlasesand, therefore, also a large number of landmarks can be
and radiation therapy. In particular, thendmark-based Used.

image registratiorprocess is based on two finite sets of In this paper we focus on properties and performances
landmarks, i.e. sparse data points located on imagexf CSRBFs. In particular, we consider in this context
usually not uniformly distributed, where each landmark compactly  supported transformations given by
of the source image has to be mapped onto theNendland's, Wu’'s, and Gneiting’s functions. These
corresponding landmark of the target image methods are also compared with Gaussians and thin plate
(see [L7, 18, 22]). The landmark-based registration splines, which are globally supported but are still among
problem can be formulated in the context of multivariate the most widely used methods in applications. Numerical
scattered data interpolation, and solved by differentexperiments point out differences in accuracy and
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smoothness of the considered methods. We think that théor any N pairwise different points;, X2, ..., Xy € R2, and
comparison can be useful to users in the choice of the=[c;,c,,...,cn]" € RN, c#£0.
appropriate transformation for their scopes.

The paper is organized as follows. Section 2 Moreover, we remark that Theoreins also satisfied
introduces the landmark-based registration problem. Irfor a strictly conditionally positive definite functio#® of
Section 3 we briefly recall radial basis functions, like orderv if the quadratic form4) holds and
Gaussians, multiquadrics, inverse multiquadrics and thin
plate splines to construct globally supported N
transformations. In Section 4 Wendland’s, Wu's and Zicip(xi)io
Gneiting’s functions are presented to define compactly =
supported transformations. Finally, Section 5 containsfor any polynomialp of degree at most— 1.
several numerical results obtained in some test and real
examples: special emphasis is devoted to comparing

accuracy of CSRBFs schemes. 3 Radial basis functions

. . . In this section we consider globally supported radial basis
2 The landmark-based image registration functions, which are well-known in the field of
problem approximation theory and scattered data interpolation

(see [, 24]), and widely used in landmark-based image
For simplicity, in this section and in the following, we limi  registration as well (see, e.gLg and references therein).
the presentation to theD2case, but all definitions can be Using radial basis functions, the general coordinate
easily extended to thelBone. F(X), k= 1,2 of the transformation function is assumed

Let A = {x; € R2,j=1,2,...,N} be a given set of  to have the form

landmarks in2 the source} imageS and let N U
In = {tj e R5 ] = 1,2,... )N} be the given set of . _ _ _
correspojnding landmarks in the target image The Fu(x) = Zlc”‘q)(”)(_XJHZ)+i;b'km‘(x)’ ®)
registration problem reads as follows. = -

where ®@(||x — Xj||2) is a radial basis function depending

Problem 1Let the landmark sets/y and 9y be given. only on the Euclidean distance- |x — x; |2, andc;y and

Find a transformatiof : R> — R? within a suitable space

Z of admissible functions, such that g ar((a czc))efficient; to}be detﬁrminﬁd. The Spﬂﬁ\é_l_ = f
. v—1(R?) = spar{my };_,, where ther are a basis o
F(xj) =tj, 1=12,...,N. 1) polynomials up to Idegreev — 1, has dimension

Each coordinatd of the transformation function is Y = (2+V—1)!/(2/(v—1)!), which must be lower than
calculated separately, i.e. the interpolation problemN' Therefore, i (T)rder to compute the gqefﬂments
Fc : R2 5 R is solved for eachk = 1,2, with the ¢~ (Cuk, ok, - - Cnk) - @ndb = (b, Do, .., bui) ™ in (5),
corresponding conditions it is r_equwed to solve the following system of linear

equations

In order to have a class of basis functions that Q'c=0,
generate non-singular interpolation matrices for any et o where M
distinct points, we introduce the concept of strictly
positive definite functions 7). We suppose that the
interpolant/, : RZ — R has the form

= {®(|[xi — xj[l2)} is a N x N matrix,
Q= {mk(xj)} is a N x U matrix, andt denotes the
column vector of thek-th coordinate of the target
point-landmarks t; corresponding to the image
N point-landmarks xj. Equations §) are obtained by
Z Cik¥ (X —Xj) (3) requiring thth satisfie.s. the interpolation conditions) (
= and the side cond|t|onsz'j\‘:1cjquk(xj) = 0, for
i=12....U,ie.Q'c=0.

The most popular choices fap in landmark-based
registration are

Cik being the coefficients to be found. A necessary
condition to have unique solvability of the interpolation
problem @) is given by the following result?].

_ 2 ; -

Theorem 1The interpolation problem2), where F is of &) =r |°292rv (thin plgte spline)
the form @), has a unique solution if the functio# is d(r) = e‘“ ”, (Gaussiain
strictly positive definite oiR?, that is d(r) = (r’ 4+ y?)H/2,  (generalized multiquadric)
N N

Gci¥(xi—x;) >0 (4) wherea,y € RT and u € Z. The Gaussian (G) and the
Z“ i . . ’ inverse multiquadric (IMQ), which occurs fqt < 0 in
@© 2013 NSP

Natural Sciences Publishing Cor.



16

Appl. Math. Inf. Sci.7, No. 6, 2113-2121 (2013)www.naturalspublishing.com/Journals.asp NS 2 2115

the generalized multiquadric function, are strictly pwsit Here we propose also the use of Wu's and Gneiting’s
definite functions, whereas the thin plate spline (TPS) andunctions (seef]).

the multiquadric (MQ), i.e. fou > 0 in the generalized
multiquadric function, are strictly conditionally posii
definite functions of orderu. The addition of a
polynomial term of a certain order along with side
conditions, in order to guarantee existence and ] ] .
uniqueness of the solution in the linear equation systenyVendland’s functions are obtained by using the truncated
(6), is required only for strictly conditionally positive Power functiongs(r) = (1-13 (where(x), is defined
definite functions. It allows us to have a nonsingular @sX for x>0 and 0 forx < 0), which is strictly positive
interpolation matrix. For thin plate spline the order of the definite and radial onR™ for s > [m/2| + 1, and
polynomial is one and for multiquadric depends on therepeatedly gopplylng the operatory given by
exponent i, the minimal degree being = p — 1. (F¢)(r) = ["t¢(t)dt, r > 0 (see, e.g.,Z4]). Then,
Polynomials have global support and therefore theWendland's functions are given by

polynomial part influences globally the registration résul

4.1 Wendland’s functions

An important feature of some radial basis functions is Smh = "B m/2) thi1s
the presence of a shape parameter, which allows us to - _
control their influence on the registration resulf], On Specifically, they are all supported on the interval

the other hand this property could be seen as a drawback,1] and have a polynomial representation there. In
because the user needs to give the parameter value. Algifldition to this, the following theorem states that any
for this reason the thin plate spline is usually consideredother compactly supporte@® polynomial function that
more suitable than other RBFs for image registration,is strictly positive and radial oR™ will not have a
since this process of image registration must sometimesmaller polynomial degree. Finally, they have minimal
be automatic. degree with respect to a given space dimengioand
The thin plate spline seems to be preferable to othesmoothnesst2[24].
radial basis functions for image registration also for othe
reasons. The thin plate spline minimizes a functionalTheorem 2The functiongpm, are strictly positive definite
which represents the bending energy of a thin plateand radial onR™ and are of the form
separately for each componeifi, k = 1,2, of the
transformation F. Thus, the functionalJ(F) can be _ { Pmh(r), re€[0,1],
: - : dmn(r) =
separated into a sum of similar functionals that only ' 0, r>1,
depend on one componehRt of F, and the problem of
finding F can be decomposed into two problems. with a univariate polynomial @n of degree
Note that the interpolation matrices generated by|m/2]+3h+ 1. Moreover,g € C?"(R) are unique up to a
radial basis functions are dense, since they are globallgonstant factor, and the polynomial degree is minimal for
supported, and ill-conditioned 7], especially those given space dimension m and smoothriss
generated by Gaussian. lll-conditioning could happen
even if it is required to interpolate a relatively small Though there exist recursive formulas to compute the
number of landmarks, since the landmarks may be veryfunctions ¢, for all m andh, here for convenience we
close to each other. only give explicit forms ofgmp, forh=0,1,2,3.
Another possible disadvantage of the use of RBFs is
given by the number of floating-point operations, which Theorem 3The functiongm, h="0,1,2,3, have the form
can be very time consuming, especially if the number of

landmarks is large or the registration of 3D images is ¢po(r) = (1_r)§H
needed. ¢m,l(r) - (1_r)i+l[(s+ 1)|'+1]7
Pma(r) = (1—r)52[(+4s+3)r?+ (3s+6)r +3],
: : : fns(r) = (1= (8 + 957+ 235+ 15)r+
4 Compactly supported radial basis functions (65 +365+45) 1

+ (155+45)r + 15|,

In this section we consider the most popular families ofwhere s= |m/2| + h+ 1, and the symbok denotes
CSRBFs such as Wendland’'s, Wu's and Gneiting'sequality up to a positive constant factor.

functions (seeT, 11, 24, 25]). Wendland’s functions have

been introduced in image registration context with the  Since Wendland’s functions are compactly supported,
motivation that their influence around a landmark isthe interpolation matrices can be made sparse by
limited, in 2D and 3D images on a circle or a sphere, appropriately scaling the support of the basic function. In
respectively 10]. This property allows us the registration the following we can consider only Wendland'’s functions
of medical images where changes occur only locally.depending on a shape parameier R™. We list some of
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the most commonly used functionslit? along with their

degree of smoothness, i.e.

$20(r) = (1— 5r)§, c°
Po1(r) = (1— 6r)g (4or+1), c?
P22(r) = (1— 6r)§ (35(3r)?+183r +3) c
¢23(r) = (1—0or)3 (32(6r)3+25(6r)2+8dr+1). CO

We remark that the functionfg x, k=0, 1,2,3, are strictly

positive definite and radial not only d&? but also orR™,
form< 3 (see p4)).

Referring to the image registration context we can g 3(r) =

define bivariate Wendland’s transformations as follows.

Definition 1.Given a set of source landmark points
A= {x; € R%j = 1,2,...,N}, with associated the

corresponding set of target landmark points
AN o= {tj € R%j = 1,2,...,N}, a Wendland’s

transformationF : R? — R? is such that each its
component

FCR?P SR, k=12

assumes the following form

Fe(X) = Fe(x1,%2) (7)

ZCJk¢2h (Ix=xil[2),

with x = (x1,%2) andx;j = (Xj1,Xj2) € R2.

From Definition 1 it follows that the transformation
function F : R2 — R is calculated for eack = 1,2, and
the coefficientgj, in (7) is to be obtained by solving two
systems of linear equations.

4.2 \Wu's functions

Another way to construct strictly positive definite radial
functions with compact support is due to WR5[. He
starts with the function

w(r) = (1-r3)°

which is not strictly positive definite and radial @M.
Nevertheless, using convolution Wu obtains the function

) = (wew)) = [ (@) { ~r-v?] o

—/1t

which is strictly positive definite and radial ofR.
Moreover, the functionys is a polynomial of degree
4s+ 1 on its support, such thgts € CS(R).

Now, a family of strictly positive definite radial
functions is constructed by the operaté?, namely

(2W)(r) = —Y/'(r).

seN,

(2 —t)z}S dt,
+

Definition 2.With @s(r) = [(1—-2)S *
define

(1-?)3](2r) we

’-l’k,s =9 k '~,Us~

The functionsyy s are strictly positive definite and
radial on R™ for m < 2k+ 1, and are polynomials of
degree 4— 2k + 1 on their support. Moreover, while in
the interior of the suppors € C25¥ on the boundary
the smoothness increases apgle C>K. Then, we can
consider the following Wu’s functions along with their
smoothness degree, i.e.

(1—3r)" (5+355r +101(3r)?

+147(3r)° +101(3r)* +35(r)° +5(3r)°),  C°
Yna(r) = (1 8r)5 (6-+363r +82(3r)2

+72(8r)%+30(8r)* +5(0r)°) c
Yoa(r) = (1—3r)3 (8+403r +48(3r)?

+25(3r)3+5(3r)*4) c2
Waa(r) = (1—ar)% (16+293r +20(3r)2 +5(3r)%) . C°

Thus, concerning the image registration context we
can consider the following definition, which involves
Wu'’s transformations.

Definition 3.Given a set of source landmark points
o= {xj € R%j = 1,2,...,N}, with associated the
corresponding set of target landmark points
= {tj e R%j =1,2,....,N}, a Wu’s transformation
W : R? — R? is such that each its component

W RZ SR, k=12, (8)
assumes the following form
Wi (X) = Wk(x1,%2) = Z CikWsa(l[x=xjll2),  (9)

with x = (x1,%2) andx;j = (Xj1,Xj2) € R?.

This means that the transformation functidh: R2 — R

is calculated for eack = 1,2, and the coefficientsj, are

to be obtained by solving two systems of linear equations.

4.3 Gneiting's functions

Starting with Wendland’s functions and applying the
turning bands operator, Gneiting in 2002 obtained a
family of compactly supported functions 17].
Following [7], we can start with a functioy, that is
strictly positive definite and radial oR™ for m > 3, and
applying the turning bands operator results

rdm(r)

m—2"

$m-2(r) = m(r) +

(10)

which is strictly positive definite and radial &™ 2. For
example, starting with the Wendland function

© 2013 NSP
Natural Sciences Publishing Cor.



16

Appl. Math. Inf. Sci.7, No. 6, 2113-2121 (2013)www.naturalspublishing.com/Journals.asp NS 2 2117

Par(r) = (1 - r)'jl[(l +1r+1] and applying the cases. Here, for brevity, we refer only to two examples
turning bands operator we obtain the functions in [10, 15], which simulate typical medical cases where
image portions scale or shift. These image portions
(I+2)(1+4) 2) represent rigid objects embedded in elastic material
—r (11) . / "
2 changing their position or form. The approach we propose
can cope with local differences between corresponding
which are strictly positive definite and radial dR? images. In general these differences may be caused by the
provided| > 7/2. We list some specific functions from physical deformation of human tissue due to surgeries or
this family for various choices df. All of the functions  pathological processes such as tumor growth or tumor
are in C(R). resection. However, the aim is here to determine a
transformation function, which connects the points of the
source and target images, so that the target image is

)

0 (r)=(1-1), <1+Ir

Tp7/2(r) = (1— 6r)1/2 (1+ %6r — %’5(&)2) , c? affected by the slightest possible deformation. This study
To5(r) = (1— 6r)5 (1+508r —27(6r)2) , C2 and the related comparisons among the different

' ) 1%5 15 391/ xr2 ) transformation functions are made, in the test cases, also
Tas2(r) = (1-0r) 7 (1+3dr—3g*(or)?), C analyzing the behaviour of the root mean squares error
12(r) = (1-6r)12(1+120r — 104(3r)?).  C? (RMSE), which is obtained by computing the distances

between the displacements of grid poirts 2~ and the

With regard to the image registration context we cantransformed values. It assumes the following form
define Gneiting’s transformations as follows.

Definition 4.Given a set of source landmark points RMSE — \/er%' X—F(X)|3
= {x; € R%j = 1,2,...,N}, with associated the Sxea 1 ’
corresponding set of target landmark points
M o= {tj € R%j = 12,...,N}, a Gneiting's Wwhere|-||,is the Euclidean norm.
transformationG : R? — R2 is such that each its Finally, we present some experimental results
component obtained by applying Gaussian, thin plate spline,
Ge:RP—>R, k=12 (12)  Wendland’s, Wu's and Gneiting’s functions to real image
) data. More precisely, we consider two X-ray images of
assumes the following form the cervical of an anonymous patient taken at different
N times. The considered real example is very similar to that
Gk(X) = Gk(xa. %) = 3 itz (|IX = Xj[2), (13) taken by Modersitzki in18].
=1
with X = (x1,%2) andx; = (xj1,Xj2) € R2. 5.1 Test example 1: square shift and scaling

As for Wendland's transformation, from Definitioh it \we denote by2 the set of 40« 40 corner points of a
follows that the transformation functioBy : R2 5 Ris regular grid superimposed on the source images (see
calculated for eackh = 1,2, and the coefficientsjc are to  Figyre1). The grid is transformed using 64 (Cases 1 and
be obtained by solving two systems of linear equations. 5. square shift and scaling, respectively) landmarks and,
We point out that in scattered data interpolation, injn the case of square shift, also 4 quasi-landmarks, i.e.
some cases, accuracy achieved using Gneiting’s functiongyndmarks which have the same positions in both source
is better than that obtained using Wendland’s functionsgpq target images, to prevent an overall shift. The choice
(see []). of considering two test cases with pair landmark sets is
justified by the necessity of testing the interpolation
schemes on different situations. In both cases, source and
5 Numerical experiments target image landmarks, shown in the images in Fidire
are marked by a circleo] and a star<X), respectively.
In this section, we compare the performances of the above Thus, to verify the goodness of the considered
methods when they are applied to give imageCSRBF transformations, we make a comparison of
transformations. In particular, we considef CSRBFs  registration results using also Gaussian and thin plate
given by Wendland’s (We2), Wu’'s (Wu2) and Gneiting’s spline transformations. More precisely, in Tal#lel we
(Gn2) transformations. Moreover, to get a more completereport the RMSEs obtained by choosing fixed values of
picture, we show also the registration results obtained bythe shape parameters, i.e. taking= 2.0 andd = 0.1.
Gaussian (G) and thin plate spline (TPS), which areThese values are suitably selected in order to have a good
widely used in this context. compromise between accuracy and stability.
In order to test the different CSRBF transformation A complete error analysis is, in general, quite difficult
schemes, we obtain several numerical results on some tesince all the considered interpolation schemes are known
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02 0 02 04 06 08 1 12 02 0 02 04 06 08 1 12

(@) TPS

Fig. 1: Source and target landmarks: square shift (Case 1, left) 2 "
and square scaling (Case 2, right). .

Table 5.1 RMSEs for values ofr = 2.0 andd = 0.1. o

Case 1 Case 2 o "

G 1.3768E—1 | 2.0206E- 1 W N
TPS 10310E-1 | 2092961 R T TR R R T T TR T
We2 1.0911E-1 | 1.8856E—1 () We2 (d) wu2
Wu2 1.0924E—-1 | 1.9318E-1 ) ) ) ) )

Fig. 2: Case 1: registration results for the shift of a square using
Gn2,l =5 | 1.0911E-1 | 1.6670E-1 5—0.1.
Gn2,l =7/2 | 1.0039E—-1 | 1.8307E-1

to be accurate and, in fact, all errors are of the same
orders of magnitude. However, the RMSEs point out that
in Case 1 the best result is obtained by using Gneiting’s
CSRBF withl = 7/2, whereas in Case 2 the lowest error
is still given by Gneiting’s function withl = 5. The
goodness of Gneiting’s transformations is also confirmed
by a graph standpoint (see Figuies3), where shape and
smoothness of the different transformed grids are shown

In such figures, for brevity, we report a restricted number il s 5] = .

i 7%;—1—4«“ HW‘

0 0z 04 06 08 1 12 02

0 0z 04 08 08 1 12

(b) Gn2,l =5

of registration results obtained by applying CSRBF-based i

interpolation schemes and, for comparison, the most ool ool I

accurate result that is given by either Gaussian or TPS oof H oot i il

transformations. oz W i oz fEEEEER i
We note that irregular grids may be obtained using ° S TR

Gaussian, while smoother results are given by thin plate =~ L= 7 e

spline and compactly supported radial basis functions.

Finally, we point out that the condition numbers of

interpolation matrices generated by Gaussian might turn

out quite large in both cases, namely"16 10'°. Fig. 3: Case 2: registration results for the scaling of a square
usinga = 2.0 andd = 0.1.

(c) We2 (d) Wu2

5.2 Test example 2: circle contraction and
expansion

tumor, whereas the space between the inner and the outer
In this subsection we consider a radial transformation'CirCIe is assumed to be filled with elastic material, which

that is, a circle contraction. It may be viewed as a verycorresponds to brain tissue.

schematic model for a tumor resection in surrounding The grids are transformed using 20 equidistant
elastic brain tissue. In this model (se&5]) the outer landmarks placed on the inner circle and, to prevent an
circle corresponds to the skull bone, which is assumed tamverall shift, also 40 quasi-landmarks, i.e. landmarks at
be rigid. The inner circle represents the boundary of theinvariant positions, at the outer circle in the source and
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target images. These point-landmarks, shown in Figure
(a), are marked by a circle) and a starX), respectively.

In these experiments we compare at first the
registration results obtained by using We2 and Gn2 with
| =7/2 as CSRBFs and TPS for a comparison. In
particular, Figure4 (b)-(d) shows registration results
usingd = 0.1 as a shape parameter, whereas the relate
errors are reported in Table

Table 1: RMSEs for values ofr = 2.0 andd = 0.1.

Case 3
G 1.2287E-1
TPS 7.7354E-2
We?2 9.1792E-2
Wu2 9.4400E- 2
Gn2,l =5 | 7.9795E-2
Gn2,1 =7/2 | 5.2041E-2

-02 0 02 04 08 08 1 12 02 0 02 04 06 08 1 12

(a) Source-target landmarks (b) TPS

02 0 02 04 06 08 1 12

(d) Gn2,l =7/2

the best registration results were obtained using Gn2, with
| =5.

5.3 Real-life case: an application to medical
(i]rnages

In this subsection we present some experimental results
obtained by applying Gaussians, thin plate splines,
Wendland’s, Wu’'s and Gneiting’s functions to real image
data. More precisely, we consider two X-ray images of
the cervical of an anonymous patient taken at different
times. The considered real example is very similar to that
given by Modersitzki in 18]. In Figure 5 we show the
two images along with landmarks and quasi-landmarks,
setting on the left the source image and on the right the
target one. The size of both images is 51212 pixels. In
particular, within each of the two images we have
manually selected 6 landmarks within and, moreover, to
fix transformation and to prevent an overall shift, we have
added 12 quasi-landmarks on the boundaries of the source
and target images.

Each result in Figure6 (a)-(f) represents a
transformed image, obtained using all the considered
RBFs. In accordance with the test examples in
Subsection$.1 and 5.2, for the Gaussian we have used
the parameter valug = 2.0, for Wendland’s, Wu'’s and
Gneiting’s transformations the value 8 = 0.1. We
observe that Gaussian transformation strongly deforms
the image, while using TPS gives less significant
deformations. Better registration results are obtainet wi
CSRBFs, especially when we use the Gn2. Moreover, we
point out that registration results are better if we use kmal
values for the parameter, i.8.c [0.1,0.5].

Fig. 5: Source and target cervical images with landmarks and

Fig. 4: Source and target landmarks and registration results forquasi-landmarks (left to right).

circle contraction using = 0.1.

Also in this case errors are less and smoother

transformed
transformations are employed, especially With 7/2.
For the circle expansion we found very similar results

images are obtained when Gneiting’s6 Conclusions

In this paper we compared some well established

to those achieved for square scaling and then we do nanterpolation methods and some techniques recently
report them. However, we point out that also in this caseproposed in the context of image registration such as the
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