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Abstract: This paper presents an improved version of the modified batferaging optimization algorithm to solve constrained
numerical optimization problems. Four mechanisms aredddg two swim operators, one to favor the exploration ancklaer one
to focus on the exploitation of the search space, where andignaechanism is considered to deal with the stepsize vél)& skew
mechanism for a more suitable initial swarm where bacteradavided in three groups, two of them close to the boundasifethe
search space and one distributed in all the search space|d&l search operator and (4) a decrease in the usage @fpitoaluction
step to deal with premature convergence. 60 well-knownpiegilems from two benchmarks are solved along three expatsnThe
first experiment aims to provide preliminary evidence onghitable behavior of the new mechanism added. The secoratiexgnt
provides an in-depth comparison of the new version agamptévious one based on final results and four performanesunes. The
third experiment compares the performance of the propdgeditam against five state-of-the-art nature-inspiregbathms designed
to deal with constrained continuous search spaces. Thissbow that the proposed algorithm clearly provides aebgierformance
against its predecessor by increasing its ability to rebelfidasible region and generating better solutions, whilaining a competitive
performance against those compared state-of-the-antithigs.

Keywords: Nature-inspired optimization; evolutionary algorithrssiarm intelligence; constrained optimization

1 Introduction Minimize f(x)
subject to:
g(x)<0,i=1,....m
Nowadays, meta-heuristic algorithms are a popular choice hj(x)=0,j=1,...,p

for solving complex optimization problems47].

Evolutionary algorithms (EAs) are based on emulating

the process of natural evolution and survival of the fittest.wherex = [x1,Xo,...,Xs] € R", is the solution vector and
On the other hand, in the mid 1990’'s a new group ofeach decision variabbg, i = 1,...,nis bounded by lower
algorithms emerged, those based on social andind upper limitsl; < x; < U;, which define the search
cooperative behaviors of simple organisms such aspaceS, mis the number of inequality constraints apés
insects, birds, fish and bacteria, among others, to whiclthe number of equality constraints (in both cases, the
are called Swarm Intelligence Algorithms (SIAs)(]. constraints can be linear or nonlinear).Afdenotes the
Originally designed to deal with unconstrained searchfeasible region, then it must be clear tiatC_ S. As it is
spaces, SlIAs and EAs can be extended withcommonly found in the specialized literature of
constraint-handling techniques with the purpose ofnature-inspired algorithms to solve CNOP%25,28] an
solving constrained numerical optimization problemsequality constraint is transformed into an inequality
(CNOPs) p5]. Without loss of generality, a CNOP can be constraint by using a small tolerance as follows:
defined as to: [hj(x)|—e<0,j=1,....p.
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Some of the most popular SIAs in the specialized32], given the Modified Bacterial Foraging Optimization
literature to solve CNOPs is the Particle Swarm Algorithm (MBFOA). MBFOA inherits the four main
Optimization (PSO) algorithm18,29], which simulates  processes used in BFOA. However, they were adapted
the cooperative behavior of bird flocks when looking for with the aim to eliminate one loop and some parameters.
food or refuge. Such cooperation is represented in each
solution (called particle) with a velocity vector whose BFOA has been also combined with other search
values combine the cognitive information of each algorithms such as the Hooke-Jeeves Pattern Search
solution, i.e., its best position reached so far, and theMethod as local search operat@1]. Moreover, BFOA
social information, i.e., the position of the best particle was combined with Armijo rules for local search in the
the swarm. The Atrtificial Bee Colony (ABC)p,26] is proposal called Spiral Bacterial Foraging Optimization
another popular SIA, based on the behavior of honey(SBFO) which is a multi-agent, gradient-based algorithm
bees. Three types of bees, which are variation operatordhat minimizes both the main objective function (local
are considered: employed, onlooker and scouts. Foodost) and the distance between each agent and a
sources are the solutions of the optimization problem andemporary central point (global cost). Random parameter
they are improved by bees. The cooperation is reached byalues were adopted in this proposal to cope with
the information employed bees share with onlooker beepremature convergence, which is a feature of
by means of waggle dances. In this way, the most richswarm-based optimization method$]. Modifications to
food sources are improved with a higher probability with BFOA have been reported as well, such as the elimination
respect to low quality food sources. of the reproduction procesg][ and the combination with
other meta-heuristic algorithms like Genetic Algorithms
Passino, inspired in previous studied],[ proposed (GA) [19], PSO B,20], and Differential Evolution (DE)
Bacterial Foraging Optimization Algorithm (BFOA), a [2].
SIA to originally solve unconstrained numerical
optimization problems36]. Moreover, recent versions of A review of BFOA to solve CNOPs was presented in
BFOA have been adapted to solve CNOR%|[BFOAs [11], where the penalty function was detected as the most
main difference with respect to other representative SIAsused constraint-handling technique. Moreover, such
is the way the cooperative behavior is computed. Inreport concluded that BFOA is particularly sensitive to
BFOA such process is based on attractants and repellanthe step size parameter, which is used in the chemotaxis
among bacteria emulated by a penalty-like mechanisnprocess with the tumble-swim movement. There are
which increases the fitness of bacteria located indifferentways to control the step size: (1) keeping it stati
promising regions of the search space, while decreasinguring the search process (as in the original BFCQ2Y, [
the fitness of bacteria located in poor zones. 13,46,12], (2) using random values$3B,45,12], (3) using
a dynamic variation 35,34,12], or (4) adopting an
This algorithm emulates the behavior of bacterium E.Coliadaptive mechanism{, 31, 12]. However, such proposals
in the search of nutrients in its environment. Eachwere stated mainly for specific optimization problems. On
bacterium tries to maximize its obtained energy per eactthe other hand, there is a recent study of the step size in
unit of time spent on the foraging process while avoiding MBFOA [12] where different approaches were compared,
noxious substances. In fact, bacteria can communicatbeing the dynamic control mechanism slightly superior
among themselves. A swarm of bacteria presents thevith respect to static, random, and adaptive versions.
following process 36:
Motivated by the above mentioned, the aim of this work is
to propose an improved bacterial foraging optimizer to
2.Bacteria locate high-nutrient regions in the map byz?g;\é?ith%'\lSrijs"c\m\grg/cgest%ﬁesswimglza?:p?ospot;]: d ff%recg
aggecrtg?;[:x'isn mroevgei:)nnesnt?/v(imm?fx%nuisvggg)s.tances Oryvrth the sensitivity to thg st'epsize value. Furthermore, th
low-nutrient regions  will die and disperse, |dn|t|al swarm of bacteria is generated in rhree groups
respectively. epending on the boundaries of each decrsrqn varrlable SO
4.Bacteria in high-nutrient regions will reproduce by as to take advanrage of thg random search drrgct|ons u;ed
splitting. They will also attempt to attract other :.” t'rt1e dCtthmotagrs Cy(?le- Flga”?/' thle reprohductron f;tep is
bacteria by generating chemical attractors. imited to favor diversity and a local search opera@i][

5.Bacteria then disperse to seek new nutrient regions iﬁsl ad(.jﬁd In two times of the searcrfr proli:iss. The prolposed
the map. algorithm is tested on two sets of well-known problems

with different features 41], [23] and its behavior is
Those processes were summarized in four steps in BFOAanalyzed with different performance measures taken from
(1) chemotaxis, (2) swarming, (3) reproduction and (4)the specialized literature2f]. Furthermore, the results
elimination-dispersal. Moreover, this algorithm has beenobtained are compared against state-of-the-art
adapted to solve CNOPs ir8(], which in turn was nature-inspired algorithms.

extended in order to solve multi-objective CNORSL[

1.Bacteria are distributed at random in the map of
nutrients.
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Begin direction) and swimming (moving along such direction).
Create a random initial swarm of bacte@igj.k,) ¥i. i =1,.... The tumble, as proposed by Passiid6][ consists of a
Evaluatef (6'(J k1)) Vi, 1=1,....% search directiorp(i) generated at random with uniform
For =1 to Neg DO

- e . . . . .
For k=1 toN, Do distribution as presented in Equatibn
For j=1to N, Do
Fori=1to S Do A(i)
Updatef(6'(j,k,1)) to emulate theswarming process (p(i) [ S A— (1)
Perform thechemotaxis procesgtumble-swim) with JAT (i)A (|)
Eq.1and Eq2 for bacteriad' (j,k,I) controlled byNs o ) o
£ ona For whereA(i) is a uniformly distributed random vector of
Perform thereproduction processby sorting all bacteria size n with elements W|Fh|n 'the f0"0W|ng |nterya|:
in the swarm based of(6'(j + L,k.1)), deleting the§ worst [—1,1]. Once the search direction was generated (i.e. the
Eng oteia.and duplicating the r2mainiSg—& tumble was carried out) each bacteriiinmodifies its
Perform theelimination-dispersal process by eliminating each position by a swimming step as indicated in Equafion
bacteriad'(j,k,1) Vi, i =1,...,S with probability 0< Peg < 1
End For P i . .
End 6'(j+1,k1)=0'(j,k 1) +C(i) (i) (2)

where 0'(j +1,k,1) is the new position of bacteriur

. which is based on its previous positiéh(j,k,1) and its
Fig. 1: BFOA pseudocode. Input parameters are numbekearch directionp(i) scaled by the stepsizé(i). The

of bacteriaS,, chemotaxis loop limif\¢, swim loop limit  swim will be repeatedNs times if and only if the new
Ns, reproduction loop limitNre, number of bacteria for position is better than the previous one, i.e., (assuming
reproductior§ (usuallyS = S,/2), elimination-dispersal  minimization) f0(j + 1,k) < f(6(jkl)).
loop limit Neq, stepsizeC; and probability of elimination  otherwise, a new tumble is computed. The chemotaxis
dispersapeg. loop stops when the chemotaxis loop liml§ is reached

for all bacteria in the swarm.

The document is organized as follows: Secti@
describes the original BFOA and MBFOA. Sectién
introduces the proposed algorithm. Secbpresents the The swarming process is based on a modification to the
set of test problems to resolve, the performance measurgs \ocq landscape by making more attractive the

toltiviﬂuate the re?]ultg, a betrrl]aVIor alr:alyilts of ‘g‘¢ ptrr?p(t)s oundaries of the location of a given bacterium with the
W € new mechanisms, the resutts obtain€d In the ey, , 14 aitract more bacteria to such region. This process

problems, and the analysis of them compared again . P
state-of-the-art algorithms. Finally, Sectibipresents the ues?alil[gﬁ the definition of a set of parameter values by the

general conclusions of this work.

2.1.2 Swarming

. . L . 213R ducti

2 Bacterial Foraging Optimization Algorithm eproduction
The reproduction process consists on sorting all bacteria

2.1 BFOA in the swarm@'(j,k,1),vi, i = 1,...,S, based on their

objective function valud (6'(j,k,1)) and eliminating half

r?f them with the worst values. The remaining half will be

duplicated so as to maintain a fixed swarm size.

Recalling from Sectionl, BFOA is based on four
processes: (1) chemotaxis, (2) swarming, (3) reproductio
and (4) elimination-dispersaBf] and was designed to
solve  unconstrained  numerical  single-objective
optimization problems. The algorithm is detailed in

Figurel. 2.1.4 Elimination-dispersal

The elimination-dispersal process consists on elimigatin
each bacteri@'(j,k,1),Vi,i =1,...,S with a probability
0<Peg<1.

A bacterium i represents a potential solution to the
optimization problem (an-dimensional real-value vector
named ax in Sectionl), and it is defined a®'(j,k,1),
wherej is its chemotaxis loop valué,is its reproduction

loop value, and is its elimination-dispersal loop value. 2.2 Modified BFOA (MBFOA)

2.1.1 Chemotaxis MBFOA was proposed as one of the first attempts of
adapting BFOA for solving CNOPs. In this way, the

In this process, each bacterium in the current swarnoriginal algorithm was simplified and some parameters

performs one movement by tumbling (finding a searchwere eliminated so as to make it easier to use particularly
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in engineering design problem3(. constraints of the problem. Each equality constraint is
converted into an inequality constrainft:hij(x) || -&
< 0, wheree is the tolerance allowed (a very small

value, in the literature this value is usualli & 04).

The modifications made in MBFOA with respect to
BFOA, detailed in 0], are the following:

1.Algorithm simplification : A generational loop@®) is

considered, where three inner processes are carried

out: chemotaxis, reproduction and
elimination-dispersal. Based on the fact that in
MBFOA there are no reproduction and

elimination-dispersal loops, because they are replaced
by the generational loop, a bacteriiinm generation

G and in chemotaxis stepis defined a®'(j,G). With

this change, the nomenclature of the swim movement
is modified as indicated in Equati@n

6'(j+1,6) = 6'(j,G) +C(i)g(i) ®3)

where8'(j + 1,G) is the new position of bacteriutn
(new solution), 68'(j,G) is the current position of
bacterium i and C(i) is the stepsize, which is
computed by considering the limits per each design
variablek [30] as indicated in Equatio#.

C(i)k = Rx (A—\/XF‘:),kz 1,...n
whereAxy is the difference between upper and lower
limits for design parameteky: Uy — Lk, n is the
number of design variables ariRRlis a user-defined
percentage of the value used by the bacteria as
stepsize.

(4)

The criteria to sort the swarm of bacteria for the

reproduction process are the three rules of the
constraint-handling technique (detailed in the next
item of this list), instead of using only the objective

function value as in BFOA.

Finally, instead of eliminating each bacterium based
on a probability, only the worst bacteriué'(j,G)
based on the feasibility rules is eliminated and a new
randomly generated bacterium with uniform
distribution takes its place.

2.Constraint-Handling technique: MBFOA adopts a
parameter free constraint-handling technique to bia:

the search to the feasible region of the search space by

using three feasibility rules proposed by DeR) as

The violation of each constraint can be normalized to
eliminate significant differences of values among
constraints when computing the sum of constraint
violation. However, in the experiments of this paper
such process was not required.

3.Swarming operator: Instead of the swarming process

which requires four user-defined parameters, an
attractor movement was included to MBFOA so as to
let each bacterium in the swarm to follow the
bacterium located in the most promising region of the
search space in the current swarm, i.e., the best
current solution. The attractor movement is defined in
Equationb.

0'(j+1,G)=0'(j,G)+ B(6%(G) - 6'(j.G)) (5)

where8' (j + 1,G) is the new position of bacteriuim
0'(j,G) is the current position of bacteriuim68(G)

is the current position of the best bacterium in the
swarm so far at generatio®, and 8 defines the
closeness of the new position of bacteriunwith
respect to the position of the best bacteri@f(G).
The attractor movement applies twice in a chemotaxis
loop, while in the remaining steps the tumble-swim
movement is carried out. The aim is to promote a
balance between exploration and exploitation in the
search. Finally, if the value of a design variable
generated by the tumble-swim or attractor operators is
outside the valid limits defined by the optimization
problem, the following modification, taken fror89

is made so as to get the value within the valid range as
showed in EquatioB.

2xLi—X ifx <L
Xi=< 2xU—x ifx>U (6)
Xi otherwise

wherey; is the design variable valiigenerated by any
bacterium movement, and Bnd U are the lower and
upper limits for design variablie respectively.

The complete pseudocode of MBFOA is detailed in Figure

selection criteria when bacteria are compared. The3 Improved MBFOA (IMBFOA)

rules are the following: (1) between two feasible

bacteria, the one with the best objective function valueIMBFOA is an

improved version where different

is chosen, (2) between one feasible bacterium andnodifications were made in order to obtain better results
another infeasible one, the feasible is chosen, and (3in a wider set of CNOPs: (1) two swim movements within
between two infeasible bacteria, the one with thethe chemotaxis process, one for exploration and another

lowest sum of constraint violation is chosen.

one for exploitation, (2) a skew mechanism for the initial

swarm of bacteria, (3) a local search operator, and (4) a
The sum of constraint violation is computed as: reduction on the usage of the reproduction process.

>, max0,gi(x)), where m is the number of
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Begin the algorithm. The initiaC(i, G) is computed as indicated
Create a random initial swarm of bactefi&(j,0) vi,i=1,...,% in Equation4 but theR parameter is no longer used.
Evaliarel (6 (L) M i=1,....% and T take random values with uniform distribution

For i=1t0'S, Do between [-1,0) and (0,1], respectively.
For j=1to N; Do
Perform thechemotaxi tumble-swim) with o ) . .
Eql ;”n“dsins;‘:f:aiﬁgii’,“;g;iﬁ,“v";nh e It is important to remark that the first swim (Equatian
bacteriaf'(, G) by considering the constraint-handling performs larger movements as tlgi) vector is not
En(}e;;“'q”e scaled. On the other hand, the second swim (Equajion
End For contributes early in the exploration task due to its
Perform thereproduction processby sorting all bacteria in dynamic behavior on the stepsize. However, such second
the swarm based on the constraint-handling techniquetinigle| . il t loitati b I ts lat
the S worst bacteria and duplicating the remainfag- S .SW|m will promote exploitation by small movements later
Perform theelimination-dispersal processy eliminating the in the search process.
worst bacteriun®"(j,G) in the current swarm by considering
the constraint-handling technique . X . i
End For It is important to notice as well that a given bacterium
End will  not necessarily interleave exploration and

exploitation swims, because if the new position of a given
swim, 6'(j + 1,G) has a better fitness (based on the
Fig. 2: MBFOA pseudocode. Input parameters are numbefeasibility rules) than the original positiod'(j,G),

of bacteria§,, chemotaxis loop limitN;, number of  another similar swim in the same direction will be carried
bacteria for reproductio; (usually S = $,/2), scaling  out . Otherwise, a new tumble for the other swim will be

factor 3, percentage of initial stepsiZe and number of  computed. The process stops afterattempts.
generation&SMAX.

. 3.2 Skew mechanism for the initial swarm
3.1 Two updated swim operators
Motivated by (1) the increasing interest on the
In the chemotaxis process, the range for the tumble isnitialization techniques for nature-inspired algorithm
modified. Originally, the range boundaries are fixed[17], and (2) the effect of the two swim operators already
values [-1,1] (see Equatiol). To favor finer movements introduced, a skew mechanism to create the swarm of
(as suggested in the stepsize studylif]] a narrow range  bacteria is added to IMBFOA.
[u, 1] is proposedy and T are user-defined parameters,
where—1< v <0,0< 1<1andv < 1. Values between The finer movements promoted by the combination of the
-0.25 and -0.05 are recommended fgras well as values two swims proposed in this work, besides the swarming
between 0.15 and 1.0 far operator already present in MBFOA, may lead to a loss of
diversity early in the search. Moreover, such diversity
Considering the above mentioned narrow range, twolack in a constrained space may cause a difficulty to reach
swim operators are proposed to improve the searctihe feasible region of the search space. Therefore, a
capabilities of bacteria. This first swim, focused on different way to generate the initial swarm of bacteria is

exploration, is computed as indicated in Equafion proposed in this work, where just some bacteria are
_ _ uniformly distributed in the search space, and the
0'(j+1,G6)=0'(j,G) + ¢(i) @) positions of the others are skewed to the boundaries of the

This second swim, focused on exploitation is computed assearch space as detailed below.

indicated in Equatios: The initial swarm of bacterid&, is generated by three

P _ oir . . groups. In the first group there are randomly located
0(1+1,6)=6(],6) +C(i.G)a(i) (8) bacteria skewed to the lower limit of the decision
whereC(i,G) is the dynamic step size vector, inspired by variables. In the second group there are randomly located
a previous study presented i, and computed using bacteria skewed to the upper limit of the decision
Equationl. Each valuek of the vectorC(i,G) decreases variables. Finally, a group of randomly located bacteria
dynamically at each generation of the algorithm usingwithout skew, as in MBFOA, is considered. The three
Equationo: groups use random numbers with uniform distribution.
The formulas to set the limits for the first and second
group per variable are presented in Equatibdand11.

G
C(i,G+1)k=C(i,Gk=-<,k=1,...,n  (9)
GMAX [LisLi + (Ui~ Li)/s9) (10)
whereC(i,G+ 1) is the new step size value for variable
k and GMAX is the maximum number of generations of [Ui — ((Ui — Li)/s9,Uj] (11)
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wheressis the skew size, whose large values decrease theearch process. This local search operator is applied to the
skew effect and small values increase the skew effectbest bacterium in the swarm after the chemotaxis,
Figure 3 shows an example with a swarm of thirty swarming, reproduction, and elimination-dispersal
bacteria, in a two-dimensional search space withprocesses. However, the user can define the frequency of
—5<x; <5and-3 < x, <10, respectively. Considering usage of the local search operator by defining the
ss = 8, the first group forx; is generated between parameter Local Search frequend.

[-5,-5+ ((5—(-5)/8)] = [-5,—3.75] and the second
group for X1 is generated between
[5— ((5-(-5)/8),5] = [3.75,5]. Following the same
formula, the range of the first group feg is [-3,—1.375
and the second group fas is [8.37510]. The third group

Generations (6)

Reproduction

_m m’] » Bacteria
is generated by using the original limits for both | B

variables. The aim of this skew in the initial swarm is to T
keep the algorithm from converging prematurely (it was
observed in MBFOA motivated by its swarming process
and the fixed stepsize). Combined with the two swim
operators and the dynamic stepsize control, a better
exploration of the search space in the initial phase of the
search to promote better final results is expected.

Best
[P bacterium

until the maximum number of G

Fig. 4: IMBFOA general process

3.4 Scarce usage of the reproduction step

Search space To reduce premature convergence due to bacteria
10 % T ¥ % duplication, the reproduction takes place only at certain
° cycles of the algorithm (defined by th&epCycle
8 L] o parameter).
* . .
ot ¥ .' The corresponding pseudocode of IMBFOA is presented

. in Figure5 and in its caption the user-defined parameters
are summarized.

4 *
= * ® o
* , .
’ * 4 Results and analysis
- + Three experiments were carried out to analyze the
+ + behavior of the IMBFOA to solve CNOPs. The first
. +y oo experiment aimed to preliminary show the behavior of the
+ % RbBx mechanisms added to IMBFOA with respect to the

original MBFOA. The second experiment focused on an

X in-depth comparison of IMBFOA and MBFOA based on

performance measures and final results. Finally, such final
Fig. 3: Initial swarm of bacteria: RbLx are the random bacteria results .Obt?'”ed were compared against state-of-the-art
skewed to the lower limits of decision variables, RbUx are th nature-inspired algorithms to solve CNOPs. I.MBFOA
random bacteria skewed to the upper limits and RbBx are rando @Nd the performance measures were coded in Matlab
bacteria within the boundary of decision variables. R2009b, and run on a PC with a 3.5 Core 2 Duo
Processor, 4GB RAM, and Windows 7. 25 independent
runs were carried out by the proposed approach.

The Wilcoxon Signed Rank Test (WSRT§][ suggested

for nature-inspired algorithms comparison i8] [(for
paired samples), and the Friedman td<f [for multiple

To help IMBFOA to generate better results and based orsample comparison) were used as the statistical tests to
the improved behavior observed by memetic algorithmsvalidate the differences in the samples of runs. The scores
[33], Sequential Quadratic Programming (SQBY][is for the WSRT were based on the best fithess values of
incorporated to IMBFOA as a local search operator. Thiseach algorithm in each test problem, while the Friedman
proposal has a simple structure (see Fighravhere SQP  test used the means values. Both tests were applied with
is used only twice during the search process, once afte®5%-confidence.

the first cycle of the algorithm and once at half of the

3.3 Local Search Operator

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016)Wwww.naturalspublishing.com/Journals.asp NS = 613

4.1 Test problems

Begin
Create an initial swarm of bactergy using the skew mechanism
6'(j,0)vi,i=1,....%

Evaluatef (6/(j,0)) Vi,i=1,....S 24 well-known CNOPs found in2[l] and 18 scalable
FO;gzlzll“fé\:'gﬁ Do CNOPs (10D and 30D test problems) found 28][were
For j=1 to N, Do used in the experiments. A summary of the features of the
Perform thechemotaxis process by interleaving both proposed first 24 test problems is presented in TaBleThe main
SW.‘““SB"fV‘”‘quS7 and (qu)a“d the atiractor operator with . characteristics of the 18 test problems (10D and 30D) are
using for bacteriad'(j, . .
End For presented in Table3. The maximum number of
End For evaluations (MaxEs) allowed for each one of the first
If (G mod RepCycle ==0)
Perform thereproduction processby sorting the swarm based 24 test problems was 240,000. For the second set of test
on the feasibility rules and deleting teworst bacteria and problems the MaxEs was 200,000 for 10D and 600,000
£ plicating the remainingh — & for 30D. The tolerance for equality constraints was set to
Perform theelimination-dispersal processy eliminating the worst e=1E-04.

bacteriumf¥(j,G) in the current swarm
Update the step size vectodynamically by using Ec®
If G modLSs==0
Apply SQP to the best bacterium in the swarm. If the obtained
bacterium is better it replaces that best bacterium
End If Table 2: Summary of the first 24 test problenrsis the number

Eni”d For of variables p is the estimated ratio between the feasible region
and the search spacé, is the number of linear inequality

constraintsni is the number of nonlinear inequality constraints,

le is the number of linear equality constrainitg is the number

of nonlinear equality constraintg is the number of active

constraints and (x*) is the best known feasible solution

Fig. 5: IMBFOA pseudocode. Input parameters are
number of bacteri&,, chemotaxis loop limitN;, number

of bacteria for reproductiorg, scaling factorf, the Problem T pe offurcion 5 T W e W a .
i 01 13 drati 0.0111% 9 O 0 0 6 -15
reproduction cycle RepCycle, the number of cycles O o 2 5 5 S osowiol
GMAX, the local search frequentyss, T andu for the g03 10  polynomial  00000% 0 O 0 1 1  -1.000500f
. . . go4 5 quadratic 52.1230% 0 6 0 0 2 -30665.53867
search direction, anskfor the skew mechanism. 905 4 cubic 0.0000% 2 0 0 3 3 5126496714
go6 2 cubic 0.0066% 0o 2 0 0 2 -6961.813876
go7 10 quadratic 0.0003% 3 5 0 0 6 24.30620907
g08 2 nonlinear 0.8560% 0 2 0 0 0 -0.095825041
g09 7 polynomial 05121% 0 4 0 0 2 680.6300574
glo 8 linear 0.0010% 3 3 0 0 6 7049.248021

gll 2 quadratic 0.0000% 0o 0 0 1 1 0.7499

gl2 3 quat_jratic 47713% 0 1 0 O 0 -1

The input parameter values used by IMBFOA are shown | %3 5 oirea 0000 6 0 3 o 3 voossedis
1 1 H 15 3 drati 0.0000% 0 0 1 1 2 961.71502p3
in Table 1, _they were fine-tuned by the iRace t_ot2|21. L e ool 4 a0 0 4 aveseds
The only fixed parameter waBMAX related with the gl7 6  noninear  00000% O O O 4 4 8853539675
. A .. . g18 9 quadratic 0.0000% 0 13 0 0 6  -0.866025404
termination condition oMax FEs depending of the test 919 15  noninear  334761% 0 5 0 O 0 3265550205
problem as it will be detailed later. The parameters used | % % e 00000 0 0 5 ¥ ¥ ervman

Tell 1 _ 1 22 22 li 0.0000% 0 1 8 11 19 236.4309755
by the original MBFOA, also fine-tuned by iRace, are P Y g v NS G s g vl
shown in Tablel as well. The maximum number of g24 2 linear 796556% 0 2 0 0 2 5508013272

evaluations for the local search operator waB0® FEs
for the first benchmark and for the 10D test problems of
the second benchmark, while a maximum number of
10,000 FEs were allowed for the 30D test problems.

Table 3: Summary of the 18 scalable test problerpsis the
estimated ratio between the feasible region and the sepades

] | the number of inequality constraints the number of equality
Table 1: IMBFOA and MBFOA parameter values obtained by cqonstraints an® number of decision variables.

the |Race t00| 22] Function  Searchrange  Objective type Number of constraints )
i E | 10D 30D
Value co1 0,107 Non separable 0 2 Non separable 0997689 1.000000
Parameter MBFOA IMBFOA co2  [5.12,51F 1 2 0.000000  0.00P000
S 20 20 co3 [-1000,100°  Non separable 1 Separable 0 0.000000  0.000000
Ne 24 24 Cco4 [-so,sq" Separable 2 Non separable 0 0.000000  0.000000
s 2 1 Co05 [-600,608° Separable 2 Separable 0 0.000000  0.000p00
R 0.012 N co6 [600,60(° Separable 2 Rotated 0 0.000000  0.000000
; co7 [-140,14(°  Non separable 0 1 Separable 0.000000  0.000000
B 15 15 cos [-140,14(°  Non separable 0 1 Rotated 0505123  0.503(25
RepCycle - 100 C09 [-500,50(°  Nonseparable 1 Separable 0 0379512  0.375278
GMAX value to reach MaEs value to reach MakEs Cc10 [-500,50¢° Non separable 1 Rotated 0 0.000000  0.000000
LS - 1 and GMAX/2) generations| c11 [-100,10(° Rotated 1 Non separable 0 0.000000  0.000000
T - c12  [-1000,100( 1Non 1 0.000000  0.000000
v ~ 0.15 C13 [-500,508° Separable 0 2 Separable, 1 Non separable  0.000000  0.0G0000
p C14 [-1000,100%  Non separable 0 3 Separable 0.003112  0.006[123
SS - 8 C15  [1000,100° Non separable 0 3 Rotated 0.003210  0.006023
C16 [-10,10° Non 2 1 1Non 0000000.000000
c17 [-10,10° Non separable 1 Separable 2 Non separable 0.000000 0.090000
c18 [-50,50° Non 1 1 0.000010  0.000000
(@© 2016 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

614 NS 2 B. Hdez et al. : Improved modified bacterial foraging...

4.2 Performance measures (p) is close to zero (i.e., the feasible region is quite small
and difficult to find). The sums of constraint violation of
The following measures were computed to evaluate thghe run located on the median value of the fitness value,
performance of IMBFOA. The first five were taken from out of twenty five runs, of each one of the twenty bacteria
[21]): just after the chemotaxis, reproduction and elimination
dispersal processes based on the initial swarm generated
—Feasible run arunwhere at least one feasible solution with and without the skew mechanism are plotted in
is found within MaxFEs. Figures 6 and 7, for test problems g03 and CO04,
—Successful run a run where a feasible solution  respectively. As it can be observed, almost half of the
satisfying f(x) — f(x*) < 0.0001 is found within  swarm is feasible in problem g03 (Figu® and in
Max_FEs. . problem CO04 the violation is significantly decreased
—Feasible rate= (number of feasible runs) / total runs.  (Figure7). Moreover, 92% of the twenty five independent
—Success rate (number of successful runs) / total runs. runs obtained feasible solutions in the initial swarm using
—Success performance mean (FEs for successful |MBFOA with skew mechanism in test problem g03,
runs) x (# of total runs) / (# of successful runs). while 100% of the independent runs obtained a solution
—Successful swimA swim movement where the new simijlar to the best known feasible solution in such test
position is better (based on the feasibility rules of the problem. On the other hand, only 8% of the independent
constraint-handling  technique) than the currentryns obtained feasible solutions in the initial swarm with

position. ' _ IMBFOA without skew mechanism and 84% of the
—Successful swim rate= (number of successful swims) - independent runs provided a solution similar to the best
/ total swims, where total swim&x Nex GMAX. known solution.

—Progress ratio (PR) Proposed in27], the aim is to

measure the improvement capability of the algorithm » gjnijar hehavior was observed in test problem C04 with

hiah val ferred b th S30D, IMBFOA with skew mechanism generated an initial
measure, high values are preierre ecause MeY\varm with a lower sum of constraint violation with

indicate a higher improvement of the first feasible respect to IMBFOA without skew mechanism.

solut|qn fo.und. It is calculated as shown in the Furthermore, 68% of the twenty-five independent runs

Equation12 computed by the version with skew mechanism obtained
feasible solutions and 44% found similar results to the
best known solution. In contrast, for IMBFOA without

, if fmin(6%(GMAX) > 0 skew mechanism, only 56% of the twenty-five

independent runs obtained feasible solutions and 32%

reached similar results to the best known solution.

| fmin(68(Gy 1)
Tonin( OB (GMAX)

fnin(6B(G ) +1

— R . B —
PR= 1 Iy /4 e e | if fmin(6B(GMAX) =0

l\/fmin(BB(fo)+2\fmin(eB(GMAX))\

i . B
in( @B (GMAX) 121 @B | 1 Tmin(°(GMAX) <0

(12)
where fmin(88(Gs¢) is the value of the objective Y T ——
function of the first feasible solution found and .5 T erOAwinout Skew mechanism
fmin(88(GMAX) is the value of the objective function & *
of the best solution found. The best, average resuli .g
and standard deviation (St.d) on 25 independent runs & *°|
are presented. S R
g 1—++++++++++++++
, _ 3 os
4.3 Results of the first experiment s
e of'e e Eea.smles.oluilois. eco0o 0o o000 *
As afirst step to understand the behavior of IMBFOA, the @3 | =~~~
effectiveness of the skew mechanism to create the initia 50— 5 & % w » =
swarm of bacteria was analyzed. The parameters used k Bacteria

IMBFOA are those in Tablé.

Two representative test problems were used in thisFig. 6: IMBFOA with/without the skew mechanism in test
experiment: g03 from the first benchmark and C04 in 30Dproblem g03. The sum.of constraint vi.olation of each bastari
from the second and scalable benchmark. These two tedt the swarm after the first generation is plotted.

problems were chosen because their estimated ratio

between the feasible region and the whole search space
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= . - -
© - +++++++ @ 40 IMBFOA with new swim operators
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Generations

Fig. 7: IMBFOA with/without the skew mechanism in test Fig. 8: Successful swims by IMBFOA with/without the two
problem C04 with 30D. The sum of constraint violation of each swims proposed in test problem g03 in the execution located i
bacterium in the swarm after the first generation is plotted. the median value of 25 independent runs.

To further analyze the effect of the step size control W
mechanism and the swim operators proposed, the numbe T o i o e ot Spereter
of successful swims were computed in test problems g0: _ ** ]
and C04 for 30D. The successful swims by generation
(G) obtained by IMBFOA and IMBFOA but with the
traditional swim operator, of the run located in the median
value of 25 independent runs per each one of the
algorithms in the two test problems are plotted in Figures
8 (g03) and9 (C04 for 30D). It is clear to note that
IMBFOA always maintain a higher number of successful )
swims. The successful swim rates were 5.77% for \ﬂ*gﬂ; b L L |
IMBFOA, and 0.80% for the version with the traditional T rd:zqﬁs::""ififg‘;; m”
swim operator. ;

Finally, the convergence plots of IMBFOA and the variant Generations

with the traditional swim operator are shown in Figures

10 and 11 for test problem g03 and CO04 for 30D, Fig. 9: Successful swims by IMBFOA with/without the two
respectively. It is clear that the usage of the two proposewims proposed in test problem C04 for 30D in the execution
swims lead to better results. located in the median value of 25 independent runs.

From the overall results of this first experiment a

preliminary conclusion is that IMBFOA seems to

improve the constraint satisfaction, the ability to getera

better solutions by the swims operators and a bettefapie4 Based on such results the following findings are
convergence behavior. However, more evidence isjiscyssed: IMBFOA found feasible solutions to 21 of the
provided in the next experiment. 24 test problems, while MBFOA found feasible solutions
in 17 of 24 test problems. Moreover, IMBFOA provided
“better” best results in most test problems. Based on the
4.4 Results of the second experiment WSRT, there are significant differences in all cases
between IMBFOA and MBFOA.
IMBFOA was compared against MBFOA using the two
set of benchmark problems. The parameters adopted byhree performance measures (feasible rate, success rate
IMBFOA and MBFOA are shown in Tablel. The and success performance) obtained by IMBFOA and
tolerance for equality constrainéswvas set to 1.0E-04. BFOA in 25 independent runs are presented in Table
terms of the feasible rate, IMBFOA obtained feasible
The statistical results of the final fithess values obtainedsolutions in all runs in most of the test problems, with the
by each one of the two bacterial-based algorithms in theexception of test problems g20, g21 and g22. MBFOA
first set of 24 benchmark problems are summarized incould not find feasible solutions in those problems as well

250
200
150

i
1
K]
1
1
I
1
L1
1
!
100 I
!
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(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

616 NS 2 B. Hdez et al. : Improved modified bacterial foraging...
Table 4: Statistical results obtained on 25 independent runs by
—1.0005 T T T T T T T T H -
= [VBFOA vith baditonal swim operalor IMBFOA and MBFOA in the first set of test problems. The 95%-
= ' = | IMBFOA with new swim operators confidence WSRT based on the best results reports significant
o Th differences between the algorithms.
9 Prob. f(x) Criteria MBFOA IMBFOA
O _10007} & FEs 240,000 240,00
c 1 Runs 25 25
E 1 go1 -15 Best -9.885358 -15
@ -1.0008F " | Average -4.913382 -14.93
S 1 Std 2.11E+00 2.36E-01
= 1 g02 -0.8036191 Best -0.44923 -0.8035462
(&) . Average -0.332766  -0.6801028
QO -1.0009; 1 std 4.70E-02 5.98E-02
Q0 1 g03 -1.0005001 Best -1.000472 -1.001
(@) Y Average -1.00044 -1.0009
-1.001 et A N N R R RN R R RN N R N R N N N | St.d 2.30E-05 4.57E-05
g04 -30665.5387 Best -30665.05071 -30665.539
Average  -30663.33132 -30665.539
_1.0011 . . . . . . . . std 4.19E+00 0
50 100 150 200 250 300 350 400 450 g05 5126.49671 Best - 5126.497
1 Average - 5126.496
Generations e T puaeas
g06 -6961.81388 Best -6960.833737-6961.813875
Average  -6950.804575 -6961.81385
) . i Std 1.21E+01 8.39E-05
Fig. 10: Convergence plot by IMBFOA with/without the two 907 243062091 ABest zggzggggz 2‘21;‘3225
. . . . . verage § X
swims proposed in test problem g03 in the execution located i std 8.36E-01  2.62E-01
H H go8 -0.095825 Best -0.095825 -0.095824
the median value of 25 independent runs. Avorage 0095825 “o.005821
St.d 1.60E-12 8.01E-18
g09 680.630057  Best 680.653436 680.63
Average 680.706034 680.64
St.d 4.25E-02 3.70E-02
glo 7049.24802  Best 7082.964009 7049.24802
Average 7356.790777 7320.5021
St.d 4.89E+02 8.10E+02
{F gll 0.7499 Best 0.7499 0.7499
? e s e m Average 0.749901 0.7499
- St.d 2.12E-06 3.48E-06
c " gl2 -1 Best -0.999999 -1
O 10 - — - E Average -0.999247 -1
p=1 mm |MBFOA with traditional swim operator Std 1.95E-03 0
8 = = = |MBFOA with new swim operators g13 0.053941 Best - 0.053941
S Average - 0.17709
y— L St.d - 1.83E-01
@ 10°¢ 3 gla -47.764888 Best -42.534548 -46.467894
2 Average -38.684487  -45.016895
45 St.d 2.52E+00 9.84E-01
) gl5 961.715022 Best 961.715343 961.71502
o ! Average  961.717716  961.71502
10 "¢ ! 3 Std 1.57E-03 1.10E-08
O : glé -1.905155 Best -1.903357  -1.905155
' Average -1.887545 -1.904055
P St.d 5.64E-02 1.25E-03
» ) ) ) ) ) ) ) - -‘- -~=a gl7 8853.53967 Best - 8927.5917
10 10 200 300 40 500 600 700 800 900 é‘t’zrage ) 8??3752?35
Generations g18  -0.866025  Best -0.859667  -0.866025
Average -0.730242 -0.864223
Std 1.18E-01 2.46E-03
gl9 32.655592 Best 49.473018  32.655593
. . . Average 117.292903 37.160608
Fig. 11: Convergence plot by IMBFOA with/without the two st 733E401  8.45E+00
swims proposed in test problem C04 for 30D in the execution 920 0.2049794 AVB;jge :
located in the median value of 25 independent runs. std
g21 193.72451 Best
Average
Std
g22 236.430976 Best
Average
Std - -
g23 -400.0551 Best - -400.0023
as in problems g05, g13 and gl17. IMBFOA clearly Average o ea%
outperformed MBFOA regarding success rate. Finally, it 924 550801327 Best -5.508006  -5.508013
. . . Average -5.507687062 -5.508013
is also clear that IMBFOA required less computational std 283604 2.70E-11

cost with respect to MBFOA as suggested by the success

performance values.

Table6 includes the statistical results of the progress ratioThe results obtained by IMBFOA and MBFOA in the
measure on 25 independent runs. Unlike MBFOA, second set of test problems with 10 and 30 dimensions,

IMBFOA showed a very good ability to improve the first are presented in Tablg. The parameters used by
feasible solution found. Just in test problems g05, g09/MBFOA and MBFOA are the same as in Talde The

910, g11, g15, g17 and g24 the measure was close télerance for equality constraintsvas set to 1.0E-04.
zero. The common feature of such test problems is that

they have a very small feasible region ( see colymin

Table2).

The results in Tabl& show that IMBFOA found feasible
solutions in most of the 10D test problems with 10
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Table 5: Feasible rate, success rate and success performancEble 7: Statistical results obtained on 25 independent runs
obtained by IMBFOA and MBFOA in the first set of test by IMBFOA and MBFOA in the second set of test problems.

problems. The 95%-confidence WSRT based on the best results reports
Feasible rate Success rate Success performance significant differences between the algorithms.
Prob. MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA 5 =5
g0l 100%  100% - 64 % - 218,451 Prob. Criteria  MBFOA  IMBFOA  MBFOA  IMBFOA
g02 100 % 100 % - 4% - 3,104,70D FEs 200,000 200,000 200,000 200,000
g0o3 100 % 100 % 4% 100% 122,782 26,02 Runs 25 25 25 >4
go4 100 % 100 % - 100 % - 7,707 COl  Best -0.7441309 -0.7473104 -0.2651637 -0.3996041
905 - 100 % - 76 % - 122,782 Average -0.6682597  -0.723775 -0.2242018 -0.2914506
go6 100 % 100 % - 96 % - 49,496 std 6.99E-02  3.14E-02  1.89E-02  3.79E-02
g07 100 % 100 % - 44% - 127,975 C02  Best 1.2378498 -2.2777066 2.9831645  -2.280652
g08 100 % 100 % 12 % 100 % 68,024 601 Average  2.7822775 -2.0803575 4.0398068  -2.219141
909 100 % 100 % - 76 % - 41,549 std 7.87E-01 3.64E-01 4.75E-01 1.90E-01
gl0 100 % 100 % - 84 % 210,201 68,537 €03 Best - 7.20E-05 - -
gll 100 % 100 % 4% 100% 128302 78,05 ’S*Yedfage - 1fg§gﬁ
gl2 100 % 100 % 12% 100 % - 3,991 Cos Bt . oioa ) 35008
913 - 100 % - 68 % - 132,750
Average - 1.02E-01 - 1.44E-04
gl4  33% 100 % - - - - std - 2.76E-01 - 2.16E-04
g15  100% 100 % - 100 % - 8,251 C05  Best 510.62142 -483.509468 451.47207 -483.590859
gl6 100 % 100 % - 20 % - 588,396 Average  510.62142 -296.059023 518.458869 -181.502159
917 - 100 % - - - - std 0.00E+00  1.60E+02  3.14E+01  2.76E+02
g18  90% 100 % - 32% - 85,422 C06  Best 550.64589 -578.66231 478.916572 -530.543371
g19 100 % 100 % - 68 % - 82,566 Average  559.64589 -507.301756 564.091995 -527.240421
920 N - B - B 10,525 std 0.00E+00  1.13E+02  3.62E+01  6.55E+00
921 B ) B ) N ) CO07  Best 1.29E+00  7.13E-09 8.89E+09  3.47E-10
922 ~ _ ~ _ ~ _ Average 6.65E+01 9.57E-01 3.41E+10 1.59E+00
923 ) 100 % B 3 B std 1136402  1.74E+00  1.75E+10  1.99E+00
@24 100% 100 % 2% 100% 20.400 4,089 C08  Best 4.02E-01  2.95E-09 4.62E+09  2.96E-10
Average 67.62%  87.5%  2.66%  74% 109,942 198411 Average  147B+02  7.37E+01 - 2.95E+10  1.13E+01
] i std 3.60E+02 1556402 1.68E+10  2.94E+01
Co9 Best 1.37E+12 2.81E-11 1.27E+13 3.92E-11
Average 5.77E+12  3.28E+07 2.67E+13 4.10E+06
std 3.16E+12  1.33E+08  6.65E+12  6.22E+06
. . . C10 Best 144E+12  4.08E+01  131E+13  3.67E-11
Table 6: Statistical values for the progress ratio measure obtained Average  T43E+12  429E+06  2.54E+13  3.21E+03
by IMBFOA and MBFOA in the first set of test problems. o o3 #87TEHIZ TOBE06  GaIEMZ S.49E+03
Best Average Std Average - - - -1.11E-04
Prob. MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA std - - - 9.04E-05
g0l  1.27E+00 1.61E+00 1.26E+00 1.43E+00 5.22E-03  6.86E-02 C12  Best - -0.1992 - -0.1992434
g02 1.60E+00 159E+00 1.60E+00 1.58E+00 1.88E-03  6.00E-03 Average - -l95E-0L - L38E+00
g03  1.61E+00 1.95E+00 1.59E+00 1.60E+00 9.43E-03  1.11E-01 std - L14E02 - 6.33E+00
g04 5.17E+00 5.17E+00 5.17E+00 5.17E+00 6.02E-05  0.00E+00 C13  Best -62.27517 6227639 - 62751801
405 A L36E.07 ! 128E-07 - 9.45E-0 Average  -50.11026  -58.15052 - -59.22955
906  4.42E+00 4.48E+00 4.42E+00 4.43E+00 3.71E-03  L61E- o oa A emEis o
g07  0.00E+00 147E+00 0.00E+00 5.68E-01 0.00E+00  5.44H- Average  759E+12  220E+05  231E+14  2.28E+06
g08  1.60E+00 160E+00 1.60E+00 1.60E+00 2.20E-05  1.13H- std 6.36E+12  B.34E+05  756E+13  628E+06
g09 0.00E+00 2.76E-01  0.00E+00 1.39E-01 0.00E+00  1.36H- C15 Best 1.19E+13 4.50E+00 8.57E+13 1.06E-08
gl0  0.00E+00 4.11E-01 0.00E+00 8.79E-02 0.00E+00  1.43E- Average  4.73E+13  2.22E+07  2.71E+14  2.69E+04
gll  6.38E-05 1.44E-01 251E-05 132E-01 2.83E-05 4.15E- std 203E+13  5.45E+07  6.20E+13  8.79E+04
gl2 157E+00 157E+00 1.57E+00 1.57E+00 3.73E-10  2.228- C16  Best 4.95E-01 0.00E+00  1.14E+00  1.44E-15
g13 - 1.05E+00 - 4.37E-01 - 5.40E-0 Average 9.65E-01 3.81E-02 1.20E+00 5.16E-01
gl4  1.86E+00 195E+00 1.84E+00 1.91E+00 2.04E-02  2.64H- std 1286-01  7.99E-02  3.67E-02  S5.01E-01
gl5 0.00E+00 7.79E-08 0.00E+00 7.79E-08 0.00E+00  4.67E- Ci7 Best 9.12E+01  S.O7E-16  7.19B+02  S.47E-1S
gl6 1.96E+00 2.25E+00 1.84E+00 1.34E+00 142E-01  7.18E- Average  2.47E+02  1.00E+00  143E+03  6.54E+01
917 A 3.95E.07 A 3.30E-07 A 277E-0 std 120E+02  1.50E+00  3.14E+02  2.60E+02
c18 Best 3.75E+03 5.61E-16 1.59E+04 2.78E-15
gl8 1.59E+00 170E+00 1.58E+00 1.67E+00 2.81E-03  4.96H- Average  6.20E403  400E10 2716404  458EAL
g;g 0.00E+00 2.76E+00 0.00E+00 9.44E-01 0.00E+00  1.03Ef+00 std 1536403  131E00 5756403  8.32E-11
g _ ) _ ) _ )
g21
g22 - - - - - -
g23 - 2.99E+00 - 2.99E+00 - 7.28E-0
g24  6.27E-01 6.96E-01 6.25E-01 6.36E-01 1.80E-03  2.14E-02

17 of 18 test problems. In 30D test problems the behavior

was similar, IMBFOA found feasible solutions in 17 out

of 18 test problems while MBFOA found feasible
dimensions (except C11). In contrast, MBFOA found solutions only in 13 of 18 test problems.
feasible solutions only in 14 of 18 10D test problems.
Regarding 30D, IMBFOA found feasible solutions in all In terms of success rate and success performance, the
test problems with the exception of test problem CO3,results of both algorithms are presented in Tébéad 10,
while MBFOA found feasible solutions only in 13 out of respectively. The reference results to compute these two
18 30D test problems. With respect to the best andmeasures were taken fromJ. From these two tables it
average fitness values, IMBFOA outperformed MBFOA is clear to see that IMBFOA outperformed MBFOA
in most test problems, except C11. Finally, as it was thebecause the latter was unable to get success runs in any
case on the first benchmark, the WSRT reportedgiven test problem. The progress ratio measure results are
significant differences between the compared algorithms.shown in Tablell where in most 10D test problems
The feasible rates obtained by IMBFOA and MBFOA are IMBFOA was able to improve the first feasible solution
presented in Table, where IMBFOA obtained again found (i.e. it was able to move inside the feasible region
better results in most of the test problems. MBFOA of the search space); just in test problems C03, C09, C10
obtained feasible solutions only in 14 out of 18 10D testand C15 IMBFOA was unable to show such behavior. In
problems, while that IMBFOA found feasible solutions to 30D test problems IMBFOA was also able to move for
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Table 8: Feasible rate obtained by IMBFOA and MBFOA in the Table 10: Success performance obtained by IMBFOA and

second set of test problems. MBFOA in the second set of test problems.
10D 30D 10D 30D
Prob. MBFOA IMBFOA MBFOA IMBFOA Prob. MBFOA IMBFOA MBFOA IMBFOA

Co1 100 % 100 % 100 % 100 % Cco1 - 687,359 -
C02 100 % 100 % 100 % 100 % Co02 - 269,591
Co3 - 100% - N Cco3 - 3,757,000 -
Co4 - 92% - 68 % Co4 - 33,049 - 965,601
C05 98 % 100 % 96 % 100 % Co05 - - - -
C06 100 % 100 % 96 % 100 % Co6 - 280,688 - -
Cco7 100 % 100 % 100 % 100 % co7 - 39,556 - 63,231
Cco8 100 % 100 % 100 % 100 % Ccos - 171,753 - 173,904
C09 100 % 100 % 100 % 100 % Co09 - 131,325 - 420,908
c10 100 % 100 % 100 % 100 % C10 - - 631,556
C11 - - - 32% Cil1 - - - 10,592,075
Ci12 - 76% - 92 % C12 - - - 2,139,503
Ci3 100 % 100 % - 100 % C13 - - - -
C14 100 % 100 % 100 % 100 % C14 - 195,961 - 760,875
C15 100 % 100 % 100 % 100 % Ci15 - - - 916,357
C16 100 % 100 % 88 % 100 % Ci16 - 84,313 - 2,797,425
C17 100 % 100 % 100 % 100 % C17 - 77,255 - 881,653
Ci8 100 % 100 % 100 % 100 % C18 - 10,769 - 50,782

Average  77.67 % 98.12 % 71.11% 93.65 %0 Average - 478,218 - 1,699,48

Table 11: Statistical values for the progress ratio measure
obtained by IMBFOA and MBFOA in the second set of test

improvement inside the feasible region in most testP’oPlems.
problems, with the exception of test problems C02, CO4, |r o oo we o o o Lo o wo o we o

COL 0.00E+00 0.00E+0] 0.00E+00 0.00E+0] 0.00E+00 0.00E+00 0.00E+00  0.00E+0( 0.00E+00 0.00E+00 0.00E+00 0.00E+0

H C02  000E+00 000E+0) 124E-03 6.41E-01] 0.00E+00 5.33E-06| 0.00E+00 0.00E+0( 0.00E+00 0.00E+00 0.00E+00  0.00E+0X
CO07, C09 and C14. Unlike IMBFOA, MBFOA scarcely coa U ol T omeo) T omeo) - ot T aooen0 - oooeon
1 1 c 1.66E+00 -

04 - 1.61E+00) - 1.61E+00 2.37E-05 - 1.99E+00 - 2.32E-01

. P . . : 05 000Ei00 00E10] 000EKGD 6006400 000EI0D 000400 000E+00 0 0OEAD 000E+00 D00E-GD 0.00E400 0 00E-o

showed some improvement inside the feasible region in | S soes sBeolsses e Toocos soior ok omeiod 000D 000 dnE il
GO 00000 110 000E.GD 3SMECH OOOEI0O 101E03 000EI00 4 70E01 000E.00 43E DL OGECD 206E 02

00 000E/00 S91E0d 00OELD 49E0H OOOEI00  14SE03 000E-C0 S96E01 000E00 4SHEDL 0OELD 2 4aE0n

10D and 30D test problems_ 00 O3E0 20900 251505 299EH0] 203E05 OOOEK00 0.00E-00 2SOEA0 0.00E-00 23GEA00 000E+00  704El
Clo 000E\G0 0aNEO] 00OE.D ¢00E0d DOOEND 0.00EL00 00OEI00 6G0EADq G0E00 DOOELGD 000E10 G 00E-O

c11 - - - - - 0.00E+00 - 0.00E+00 - 0.00E+00

c12 - 000E+00| - 000E+00| - 000E+00| - L60E+00| - 160E+00 - 2.026-07
C13  000E+00 0.00E+0( 0.00E+00 0.00E+0q 0.00E+00 000E+0Q - -
Cl4 000E+00 0.00E+0] 0.00E+00 0.00E+0( 0.00E+00 0.00E+0(( 0.00E+00 0.00E+0Q| 0.00E+00 0.00E+00 0.00E+00  0.00E+0
C15 000E+00 0.00E+0( 0.00E+00 0.00E+0( 0.00E+00 0.00E+0Q( 0.00E+00 1.07E-01| 0.00E+00  107E-01 0.00E+00  0.00E+0
C16 591E-03 137E+0] 489E-03 2.82E+00 145603 6.10E+00 0.00E+00 3.69E+0C| 0.00E+00 2.29E+00 0.00E+00  1.08E+0I
C17 000E+00 5.46E+0] 0.00E+00 5.46E+0q 0.00E+00 0.00E+00 0.00E+00 L57E+00| 0.00E+00 4.62E-01 0.00E+00  7.42E-01
Cl8  795E-01 047E+0( 7.63E-01 421E+00 3.12E-01 3.10E+00| 0.00E+00  7.52E+00| 0.00E+00 2.06E+00 0.00E+00  2.58E+0!

Table 9: Success rate obtained by IMBFOA and MBFOA in the

second set of test problems. 4.5 Results of the third experiment
Prob. MBFOA 10?MBFOA MBFOA 3(I)I\IiBFOA
Gz 2% . . The final results obtained by IMBFOA were compared
o e : on with those obtained by different state-of-the-art
cos - - - - nature-inspired algorithms to solve CNOPs. Tall2
Gy Zan : 609% presents a comparison in the first set of test problems
o b - 8w against the Memetic Self-Adaptive Multi-Strategy
cio - - - - Differential Evolution (Memetic-SAMSDE), which also
- ) T uses SQP as local search],[the Adaptive Penalty
- oo s o Formulation with GA (APF-GA) 44], and the Modified
cis - - - 28 % Differential Evolution (MDE) R4]. The number of FEs
e b - b computed by APF-GA and MDE was 500,000 while for

Ave%i - 0% - 1o0% Memetic-SAMSDE and IMBFOA was 240,000 FEs.

Based on the results in Table, IMBFOA was able to

provide similar results with respect to the three compared

algorithms. Regarding the computational cost measured
The findings of the second experiment confirm those ofby the number of FEs, IMBFOA required less than half of
the first experiment, because IMBFOA improved the finalthe FEs required by APF-GA and MDE to reach
results obtained by the original MBFOA in the two sets of competitive results. The Friedman test confirmed that
benchmark problems, even in those with a highthere were not significant differences among the
dimensionality (i.e. 30D test problems). Moreover, algorithms compared. The—value in this set of test
IMBFOA outperformed MBFOA in its abilities to find the problems, based on the mean values of each test problem,
feasible region and to reach the vicinity of the best knownwas 0.8591. Only test problems where all algorithms
solution in most test problems. Furthermore, IMBFOA found feasible solutions (twenty one) were considered in
showed capacity to move inside the feasible region of thesuch test.
search space, even in those quite small feasible regions.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016)Wwww.naturalspublishing.com/Journals.asp

619

N SS ¥

Table 12: Statistical comparison of IMBFOA and state-of-the-art ~gnsidered because IEMA did not find feasible solutions

nature-inspired algorithms in the first set of test problems

and IMBFOA did not reach the feasible region in test

Prob. f(x7) Criteria IMBFOA  Memetic-SAMSDE APF-GA MDE
FEs 240,000 240,000 500000 500,000 problem CO03 as well.
Runs 25 30 25 25
go1 -15 Best -15 -15 -15 15
Average 14.93 -15 -15 -15
std 2.36E-01 0 0 0
g02  -0.8036191 Best -0.8035462 -0.8036191  -0.803601  -0.8036191
Average  -0.6801028 -0.8036191  -0.803518 -0.7861§
std 5.98E-02 0  1.00E-04 1.20E-07
g03  -1.0005001 Best -1.001 1.0005 -1.001 -1.0005 L )
fverage 10009 L0005 ool 10005 Table 13: Statistical comparison of IMBFOA and state-of-the-
g04  -30665.5387 Best -30665.539 -30665.530  -30665.539-30665.5386 art nature-inspired algorithms in the second set of tedilpnos
Average  -30665.539 -30665.539  -30665.539-30665.5386)
std 0 0  1.00E-04 0 (]_OD)
g05 512649671 Best 5126.497 5126497 5126497  5126.497
Average 5126.496 5126.497 5127.5423 5126.497 Prob.  Criteria IMBFOA  Memetic-SAMSDE eDEag IEMA
std 5.18E-05 0 1.43E+00 0 Fes 200,000 200,000 200,000 200,000
g06  -6961.81388 Best  -6961.813875 -6061.813875  -6961.814  -6961.814 Runs 25 25 o5 Y
fuerage  696LELIGIL  GOBLELIIS  -696LELE  -G96LEI4 Co1  Best -0.7473104 -0.7473104  -0.7473104 -0.74731
g07 243062091 Best 24,3062 24.3062 24.3062 24.3062 Average -0.723775 -0.7473104 -0.7470402 -0.74318
Average 24.481 24.3062 24.3062 24.306p Std 3.14E-02 0 1.32E-03  4.33E-03
08 0.095825 Séd t 02'(?925%% 00958025 0095325 ooggszs coz Best -2.2777066 22777099 -2.277702-2.27771
9 e s e e e e Average -2.0803575 -2.2776477 -2.25887-2.27771
Average  -0.095825 0.095825  -0.095825  -0.0958P5
std 6.01E-18 o o o std 3.64E-01 5.9704E-05  2.39E-02 1.82E-07
g09  680.630057 Best 680.63 680.63 680.63 680.63 C03  Best 7.20E-05 0 0 1.47E-16
Average 680.64 680.63 680.63 680.6 Average 1.242E+11 4.8159E-21 0  6.23E-07
10 7049.24802 Slésd t 703257258-35 7049, 24502 7049 2;)802 7049 204 02 std 4.65E+1L 6862821 0 1L40E08
g .. es .. .. - ~ _ o - ~ ~ _08
Average 73205021 7049.24802  7077.6821 7049.24802 Co4  Best 6.04E-04 1.00E-05  -9.99E-06  -9.99E-05
std 8100402 o '512E501 o Average 1.02E-01 -1.O0E-05 -9.92E-06 -9.91E-0§
g1l 0.7499 Best 0.7499 0.7499 0.7499 0.7499 std 2.76E-01 2.28E-10 1.55E-07  8.99E-08
Average 0.7499 0.7499 0.7499 0.7499 C05  Best -483.599468 -483.610625 -483.6106 483.611
std 3.48E-06 0 0 0 Average  -296.059023 -483.610625 -483.6106 -379.156
912 e e 1 1 1 1 std 1.60E+02 1.4883E-07 3.89E-13 1.79E+02
b o o o o C06  Best -578.66231 -578.66236 -578.6581  -578.662
913 0.053941  Best 0.053941 0.053942  0.053942 0.053942 Average  -507.301756 -578.6622  -578.6528 -551.47
Average 0.17709 0053942 0053942 0.053942 Std 1.13E+02 1.18E-04 3.63E-003  7.36E+01]
14 -47.764888 S‘Eid t igig%%lgﬁl 47 76485?5 47 764709 a7 764&05 CO7  Best 7.13E-09 0 0 175E-08
g -47. est -46.. -47. -47. -47. x » ¥
Average  -45.016895 47764888  -47.76479  -47.76487 Average 9.57E-01 930E-24 0 3.26E-09
std 0.84E-01 0 100E-04 1 40E-08 St.d 1.74E+00 1.71E-23 0  3.39e-09
gl5 961715022 Best 961.71502 961.71502  961.71502  961.71502 C08  Best 2.95E-09 0 0 1.01E-10
Average 96171502 961.71502 96171502  961.71502 Average 7.37E+01 9.51E-20  6.73E+00  4.07E+0(Q
16 1.905155 Séd t 11'911?5?5?;} 1 9051%5 1 905(1)55 1 90?155 std 1556402 349E-19 5.56E+00 - 6.38E+0
9 - s o o P o C09  Best 2.81E-11 0 0  1.20E-09
fuerage 150405 LOOSISS  LO0SISS L9015 Average  3.28E+07 1.29E-21 0 195E+12
gl7  8853.53967 Best 89275917 8853.5397 88535398 88535397 std 1.33E+08 2.87E-21 0 5.40E+12
Average 89275018 8823.5307 8888.4876  8853.5397 C10 Best 4.08E+01 0 0  5.40E-09
18 -0.866025 Sédt 0153:5%3: 08560025 2'%05&%25 0862025 Average 4.29E+06 T-46E-23 0 256En12
g -0.i es! -0. -0.i -0. -0. .
Average -0.864223 -0.866025 -0.865925  -0.866025 Std 7.08E+06 1.568-22 0 397E+12
std 2 4605 o look.os o Cl1  Best - 152E-03  1.52E-03  1.52E-0
g19  32.655592  Best 32.655593 32655593  32.655593 32.64827 Average 1.52E-03 1.52E-03 -1.15E-03
Average 37.160608 32655593  32.655503  33.34125 St.d - 1.36E-08  6.34E-11  2.73E-08
std 8.45E+00 o 0 8.47E-01 Cl2  Best -0.1992 -570.0899 -570.0899 -10.9735
920 02049794 Af;:‘ . - - - Average -0.1948 -3.3553 -336.7349 -0.648172
b ; : : std 1.14E-02 1.16E+02  1.78E+02  2.20E+0D
g21 19372451  Best 19372451 196.63301  193.72451 C13 Best -62.27639 -68.42937  -68.42937 -68.4294
Average 10372451 19951581  193.72451 Average -58.15052 -68.42937  -67.42937 -68.0182
std 0 2.36E+00 0 Std 2.63E+00 0 1.03E-06  1.40E+0Q
922 236430976  Best 236.370313 - - C14  Best 4.08E-08 o 0  8.04E-10
frerage : Y : : Average  2.22E+05 9.78E-21 0 5.63E+01
923 -400.0551  Best -400.0023 -400.0551  -399.7624  -400.0551 std 8.34E+05 2.10E-20 0 1.83E+02
Average -399.9196 -400.0551  -394.7627  -400.0551 C15 Best 4.50E+00 0 0 9.35E-10
24 550801327 Best 52 157158%531 5 5080013 3.5575E[)+t§)(;)13 5 50§013 Average 2.228+07 24820 - 1.BOE-01  1.58E+08
g 5. est 5. 5. -5.! 5. - -
Average  -5.508013 5508013  -5.508013  -5.508013 std 5.45E+07 101819 881E-01  6.04E+08
std > 0E-11 o o 0 C16  Best 0 0 0  4.44E-16
Average 3.81E-02 0 3.70E-01  3.30E-02
Std 7.99E-02 0 3.71E-01 2.26E-02
C17  Best 3.07E-16 0 1.46E-017  9.48E-1§
Average 1.00E+00 8.17E-16 1.25E-01 3.15E-03
Std 1.50E+00 1.45E-15 1.94E-01 1.58E-02
C18 Best 5.61E-16 0  3.73E-20 2.24E-15
i Average 4.09E-10 3.04E-25  9.68E-19  1.62E-14
IMBFOA was compared in Tablek3 (10D) and14 (30D) Average 40910 304E25  9ceE1s 16284

against Memetic-SAMSDEg¢ constrained Differential
Evolution [43], and a Genetic Algorithm based algorithm

(IEMA) [42 in the second set of benchmark problems. |t js worth noticing that the competitive performance
All algorithms required 500,000 FEs for the reported \\BFOA showed in the 10D test problems is not
results. Based on Tabld3 IMBFOA obtained very gignificantly affected when solving them on 30D. One
competitive results in most of the 10D test problems. shortcoming of IMBFOA is that the number of FEs to
deal with the 30D test problems increased considerably
The Friedman test indicated significant differences amongyith respect to the number computed on 10D (e.g. test
the algorithms compared with a—value of 0.04.Test problem C04).
problem C11 was not considered because IMBFOA did
not find feasible solutions. The conclusions of this third
IMBFOA provided competitive
state-of-the-art nature-inspired algorithms to solve
test suggested significant differences among theCNOPs on 60 test problems. The performance of
algorithms in the comparison with avalue of 0.0293. IMBFOA slightly decreased in presence of high
Test problems CO03, C04, C11 and C12 were notdimensionality, but it remained as competitive. However,

experiment are that
results against five
In the case of 30D test problems (Talil) the Friedman
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Table 14: Statistical comparison of IMBFOA and state-of-the- {he search space combined with the two-swim operator.
art nature-inspired algorithms in the second set of tedilpros Finally, a local search operator based on SQP was applied

(30D). _ _ twice during the search (one time after the first cycle of
Prob.  Criteria IMBFOA  Memetic-SAMSDE e£DEag IEMA .
FEs 500,000 600,000 600,000 _ 600,00 the algorithm and another one at half of the GMAX
R 25 25 25 25 H H
o1 Best -0.3996041 -0.8218843 -0.8218255 -0.82188 cycles). Finally, the reproduction step was scarcely
A -0.2914506 -0.8156324-0.8208687 -0.817769 1 I
Average  -0.2914%0¢ ),61°6324-0.6206087 0.8A7769 ?hppgedl_so ?s to Sgscoturfage premature convergence due to
C02  Best -2.2806521 -2.2880962 -2.169248  -2.2809] e duplication of bacteria.
Average -2.2191412 -2.2777017  -2.151424 -1.50449
St.d 1.90E-01 9.85E-04 1.20E-02  2.14E+0(
P rnge : Sposay ZeTEo : Three experiments were carried out, where two
Std - 3.48E-17 8.05E-01 - - 1
cos o3 550508 Saaear soeo : well-known benchmarks'wnh a t'otgl of 60 test problems
fverage  144E-04 LSIEGS  816E03 - were solved (1) to provide preliminary evidence of the
CO5  Best -483.59086 48361062 -453.1307  -286.674 behavior from the new mechanisms added to the
o s Qs Ss algorithm, (2) to provide an in-depth comparison between
C06  Best -530.543 -530.637 -528.575 -529.593 1001 1
nge  -aorsdos SRl e e IMBFOA and the original MBFOA based on final results
std 6.55E+00 3.08E-01 4.75E-01 5.61E+02 and also on four performance measures, and (3) to
co7 Best 3.47E-10 5.02E-25 1.15E-15 4.82E-1( . .
Average  1.59E+00 9.34E-20 2.60E-15  8.49E-10 compare the results of IMBFOA against those provided
s oo e gorEl EE e by five state-of-the-art nature-inspired algorithms toseol
Average 1.13E+01 1.65E-17 7.83E-14  1.77E+0] CNOPS
Std 2.94E+01 3.89E-17 4.86E-14  4.08E+01 )
C09 Best 3.92E-11 9.82E-23 2.77E-16  7.31E+03
Average 4.10E+06 1.38E-14  1.07E+01  2.99E+07 .. . .
std 6.226406 459E-14  2.82E401  4.50E+07 From the preliminary experiments it was found that
O g aottios 485525 3zoEvol 2T7E IMBFOA improved the MBFOA ability to reach the
Std 5.49E+03 3.64E-15 4.55E-01 1.68E+07 i i i i i
oy o PPy Soaras  AsEo 0 feasible region of the search space (even in tiny feasible
Average  -LILEO! BOZE04 286504 : regions), and it was also found that the combination of the
C12 Best 01992434 -0.1992611 -0.1991453 - two swims improved the generation of better solutions
St ST oitos  seoEsos : during all the search. Such findings were confirmed by
C13 Best -62.7518 -68.42936  -66.42473  -68.4294 i
Jrom i (54295 Goa2473  LBAZ9) the results of the second experiment, where IMBFOA
std 2.20E+00 345E-01  5.73E-01 9.84E-0L clearly outperformed MBFOA based on final results,
C14 Best 1.26E-08 1.57E-19 5.02E-14 3.29E-09 . . . . .
Average  2.28E+06 281E-12 300E-13 7.38E-09 besides showing a better capacity to move inside the
s pew toceos Teat pretiol 3 1sEi0d feasible region after reaching it. Finally, IMBFOA
A 2.69E+04 3.94E-15 2.16E+01  2.29E+09 i 1 i
fverage  ZooE0d 3MES  ZISEMOL ZI9EC provided a competitive performance  against
C16  Best 1.44E-15 0 0 6.16E-12 state-of-the-art algorithms, and, to the best of the asthor
Average 5.16E-01 0 2.17E-21 1.63E-03 . . . .
std 5.01E-01 0  106E-20  8.16E-03 knowledge, this is the first attempt to design a
T ige ebapion SMEN mlion S BFOA-based algorithm to solve a wide set of CNOPs.
St.d 2.60E+02 1.48E-07 4.99E+00 1.51E-0]
C18 Best 2.78E-15 3.00E-20  1.23E+00 1.38E-14 . . .
Average  458E-11 8.36E-15  B75E401  4.74E-14 One shortcoming found in IMBFOA was the high number
St.d 8.32E-11 3.84E-14 1.66E+02 6.57E-14

of FEs required to find good results in high-dimensional
CNOPs. This is the starting point of the future work,
where a more suitable way to combine IMBFOA with the
the number of FEs required by IMBFOA in such large local search operator will be studied. Furthermore, the

scale search spaces increased significantly. swim operators will be revisited to increase their
probability to generate better solutions with less

evaluations per swim.
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