
Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) 607

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100220

Improved Modified Bacterial Foraging Optimization
Algorithm to Solve Constrained Numerical Optimization
Problems
Betania Herńandez-Ocãna1,∗, Ma. Del Pilar Pozos-Parra1 and Efŕen Mezura-Montes2

1 Juárez Autonomous University of Tabasco, Cunduacán, Tabasco, México
2 Artificial Intelligence Research Center, University of Veracruz, Xalapa, Veracruz, México

Received: 17 Aug. 2015, Revised: 4 Nov. 2015, Accepted: 5 Nov. 2015
Published online: 1 Mar. 2016

Abstract: This paper presents an improved version of the modified bacterial foraging optimization algorithm to solve constrained
numerical optimization problems. Four mechanisms are added: (1) two swim operators, one to favor the exploration and another one
to focus on the exploitation of the search space, where a dynamic mechanism is considered to deal with the stepsize value,(2) a skew
mechanism for a more suitable initial swarm where bacteria are divided in three groups, two of them close to the boundaries of the
search space and one distributed in all the search space, (3)a local search operator and (4) a decrease in the usage of the reproduction
step to deal with premature convergence. 60 well-known testproblems from two benchmarks are solved along three experiments. The
first experiment aims to provide preliminary evidence on thesuitable behavior of the new mechanism added. The second experiment
provides an in-depth comparison of the new version against its previous one based on final results and four performance measures. The
third experiment compares the performance of the proposed algorithm against five state-of-the-art nature-inspired algorithms designed
to deal with constrained continuous search spaces. The results show that the proposed algorithm clearly provides a better performance
against its predecessor by increasing its ability to reach the feasible region and generating better solutions, while obtaining a competitive
performance against those compared state-of-the-art algorithms.

Keywords: Nature-inspired optimization; evolutionary algorithms;swarm intelligence; constrained optimization

1 Introduction

Nowadays, meta-heuristic algorithms are a popular choice
for solving complex optimization problems [41].
Evolutionary algorithms (EAs) are based on emulating
the process of natural evolution and survival of the fittest.
On the other hand, in the mid 1990’s a new group of
algorithms emerged, those based on social and
cooperative behaviors of simple organisms such as
insects, birds, fish and bacteria, among others, to which
are called Swarm Intelligence Algorithms (SIAs) [10].
Originally designed to deal with unconstrained search
spaces, SIAs and EAs can be extended with
constraint-handling techniques with the purpose of
solving constrained numerical optimization problems
(CNOPs) [25]. Without loss of generality, a CNOP can be
defined as to:

Minimize f (x)
subject to:

gi(x)≤ 0, i = 1, ...,m
h j(x) = 0, j = 1, ..., p

wherex = [x1,x2, . . . ,xn] ∈ Rn, is the solution vector and
each decision variablexi , i = 1, ...,n is bounded by lower
and upper limitsLi ≤ xi ≤ Ui , which define the search
spaceS; m is the number of inequality constraints andp is
the number of equality constraints (in both cases, the
constraints can be linear or nonlinear). IfF denotes the
feasible region, then it must be clear thatF ⊆ S. As it is
commonly found in the specialized literature of
nature-inspired algorithms to solve CNOPs [5,25,28] an
equality constraint is transformed into an inequality
constraint by using a small toleranceε as follows:
|h j(x)|− ε ≤ 0, j = 1, . . . , p.

∗ Corresponding author e-mail:betania.hernandez@ujat.mx

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100220

608 B. Hdez et al. : Improved modified bacterial foraging...

Some of the most popular SIAs in the specialized
literature to solve CNOPs is the Particle Swarm
Optimization (PSO) algorithm [18,29], which simulates
the cooperative behavior of bird flocks when looking for
food or refuge. Such cooperation is represented in each
solution (called particle) with a velocity vector whose
values combine the cognitive information of each
solution, i.e., its best position reached so far, and the
social information, i.e., the position of the best particlein
the swarm. The Artificial Bee Colony (ABC) [15,26] is
another popular SIA, based on the behavior of honey
bees. Three types of bees, which are variation operators,
are considered: employed, onlooker and scouts. Food
sources are the solutions of the optimization problem and
they are improved by bees. The cooperation is reached by
the information employed bees share with onlooker bees
by means of waggle dances. In this way, the most rich
food sources are improved with a higher probability with
respect to low quality food sources.

Passino, inspired in previous studies [4], proposed
Bacterial Foraging Optimization Algorithm (BFOA), a
SIA to originally solve unconstrained numerical
optimization problems [36]. Moreover, recent versions of
BFOA have been adapted to solve CNOPs [11]. BFOA’s
main difference with respect to other representative SIAs
is the way the cooperative behavior is computed. In
BFOA such process is based on attractants and repellants
among bacteria emulated by a penalty-like mechanism
which increases the fitness of bacteria located in
promising regions of the search space, while decreasing
the fitness of bacteria located in poor zones.

This algorithm emulates the behavior of bacterium E.Coli
in the search of nutrients in its environment. Each
bacterium tries to maximize its obtained energy per each
unit of time spent on the foraging process while avoiding
noxious substances. In fact, bacteria can communicate
among themselves. A swarm of bacteria presents the
following process [36]:

1.Bacteria are distributed at random in the map of
nutrients.

2.Bacteria locate high-nutrient regions in the map by
chemotaxis movements (tumble and swim).

3.Bacteria in regions with noxious substances or
low-nutrient regions will die and disperse,
respectively.

4.Bacteria in high-nutrient regions will reproduce by
splitting. They will also attempt to attract other
bacteria by generating chemical attractors.

5.Bacteria then disperse to seek new nutrient regions in
the map.

Those processes were summarized in four steps in BFOA:
(1) chemotaxis, (2) swarming, (3) reproduction and (4)
elimination-dispersal. Moreover, this algorithm has been
adapted to solve CNOPs in [30], which in turn was
extended in order to solve multi-objective CNOPs [31,

32], given the Modified Bacterial Foraging Optimization
Algorithm (MBFOA). MBFOA inherits the four main
processes used in BFOA. However, they were adapted
with the aim to eliminate one loop and some parameters.

BFOA has been also combined with other search
algorithms such as the Hooke-Jeeves Pattern Search
Method as local search operator [31]. Moreover, BFOA
was combined with Armijo rules for local search in the
proposal called Spiral Bacterial Foraging Optimization
(SBFO) which is a multi-agent, gradient-based algorithm
that minimizes both the main objective function (local
cost) and the distance between each agent and a
temporary central point (global cost). Random parameter
values were adopted in this proposal to cope with
premature convergence, which is a feature of
swarm-based optimization methods [16]. Modifications to
BFOA have been reported as well, such as the elimination
of the reproduction process [1], and the combination with
other meta-heuristic algorithms like Genetic Algorithms
(GA) [19], PSO [3,20], and Differential Evolution (DE)
[2].

A review of BFOA to solve CNOPs was presented in
[11], where the penalty function was detected as the most
used constraint-handling technique. Moreover, such
report concluded that BFOA is particularly sensitive to
the step size parameter, which is used in the chemotaxis
process with the tumble-swim movement. There are
different ways to control the step size: (1) keeping it static
during the search process (as in the original BFOA) [30,
13,46,12], (2) using random values [38,45,12], (3) using
a dynamic variation [35,34,12], or (4) adopting an
adaptive mechanism [40,31,12]. However, such proposals
were stated mainly for specific optimization problems. On
the other hand, there is a recent study of the step size in
MBFOA [12] where different approaches were compared,
being the dynamic control mechanism slightly superior
with respect to static, random, and adaptive versions.

Motivated by the above mentioned, the aim of this work is
to propose an improved bacterial foraging optimizer to
solve CNOPs, which takes MBFOA as the search
algorithm and two types of swims are proposed to deal
with the sensitivity to the stepsize value. Furthermore, the
initial swarm of bacteria is generated in three groups
depending on the boundaries of each decision variable so
as to take advantage of the random search directions used
in the chemotaxis cycle. Finally, the reproduction step is
limited to favor diversity and a local search operator [37]
is added in two times of the search process. The proposed
algorithm is tested on two sets of well-known problems
with different features [21], [23] and its behavior is
analyzed with different performance measures taken from
the specialized literature [26]. Furthermore, the results
obtained are compared against state-of-the-art
nature-inspired algorithms.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 609

Begin
Create a random initial swarm of bacteriaθ i(j,k, l) ∀i, i = 1, . . . ,Sb

Evaluatef (θ i (j,k, l)) ∀i, i = 1, . . . ,Sb
For l=1 to Ned Do

For k=1 toNre Do
For j=1 to Nc Do

For i=1 to Sb Do
Updatef (θ i(j,k, l)) to emulate theswarming process
Perform thechemotaxis process(tumble-swim) with
Eq.1 and Eq.2 for bacteriaθ i (j,k, l) controlled byNs

End For
End For
Perform thereproduction processby sorting all bacteria
in the swarm based onf (θ i(j +1,k, l)), deleting theSr worst
bacteria and duplicating the remainingSb−Sr

End For
Perform theelimination-dispersal process by eliminating each
bacteriaθ i (j,k, l) ∀i, i = 1, . . . ,Sb with probability 0≤ Ped ≤ 1

End For
End

Fig. 1: BFOA pseudocode. Input parameters are number
of bacteriaSb, chemotaxis loop limitNc, swim loop limit
Ns, reproduction loop limitNre, number of bacteria for
reproductionSr (usuallySr = Sb/2), elimination-dispersal
loop limit Ned, stepsizeCi and probability of elimination
dispersalped.

The document is organized as follows: Section2
describes the original BFOA and MBFOA. Section3
introduces the proposed algorithm. Section4 presents the
set of test problems to resolve, the performance measures
to evaluate the results, a behavior analysis of the proposal
with the new mechanisms, the results obtained in the test
problems, and the analysis of them compared against
state-of-the-art algorithms. Finally, Section5 presents the
general conclusions of this work.

2 Bacterial Foraging Optimization Algorithm

2.1 BFOA

Recalling from Section1, BFOA is based on four
processes: (1) chemotaxis, (2) swarming, (3) reproduction
and (4) elimination-dispersal [36] and was designed to
solve unconstrained numerical single-objective
optimization problems. The algorithm is detailed in
Figure1.

A bacterium i represents a potential solution to the
optimization problem (an-dimensional real-value vector
named asx in Section1), and it is defined asθ i(j,k, l),
where j is its chemotaxis loop value,k is its reproduction
loop value, andl is its elimination-dispersal loop value.

2.1.1 Chemotaxis

In this process, each bacterium in the current swarm
performs one movement by tumbling (finding a search

direction) and swimming (moving along such direction).
The tumble, as proposed by Passino [36], consists of a
search directionφ(i) generated at random with uniform
distribution as presented in Equation1:

φ(i) =
∆(i)

√

∆T(i)∆(i)
(1)

where∆(i) is a uniformly distributed random vector of
size n with elements within the following interval:
[−1,1]. Once the search direction was generated (i.e. the
tumble was carried out) each bacteriumi modifies its
position by a swimming step as indicated in Equation2.

θ i(j +1,k, l) = θ i(j,k, l)+C(i)φ(i) (2)

whereθ i(j + 1,k, l) is the new position of bacteriumi,
which is based on its previous positionθ i(j,k, l) and its
search directionφ(i) scaled by the stepsizeC(i). The
swim will be repeatedNs times if and only if the new
position is better than the previous one, i.e., (assuming
minimization) f (θ i(j + 1,k, l)) < f (θ i(j,k, l)).
Otherwise, a new tumble is computed. The chemotaxis
loop stops when the chemotaxis loop limitNc is reached
for all bacteria in the swarm.

2.1.2 Swarming

The swarming process is based on a modification to the
fitness landscape by making more attractive the
boundaries of the location of a given bacterium with the
aim to attract more bacteria to such region. This process
requires the definition of a set of parameter values by the
user [36].

2.1.3 Reproduction

The reproduction process consists on sorting all bacteria
in the swarmθ i(j,k, l),∀i, i = 1, . . . ,Sb based on their
objective function valuef (θ i(j,k, l)) and eliminating half
of them with the worst values. The remaining half will be
duplicated so as to maintain a fixed swarm size.

2.1.4 Elimination-dispersal

The elimination-dispersal process consists on eliminating
each bacteriaθ i(j,k, l),∀i, i = 1, . . . ,Sb with a probability
0≤ Ped ≤ 1.

2.2 Modified BFOA (MBFOA)

MBFOA was proposed as one of the first attempts of
adapting BFOA for solving CNOPs. In this way, the
original algorithm was simplified and some parameters
were eliminated so as to make it easier to use particularly

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

610 B. Hdez et al. : Improved modified bacterial foraging...

in engineering design problems [30].

The modifications made in MBFOA with respect to
BFOA, detailed in [30], are the following:

1.Algorithm simplification : A generational loop (G) is
considered, where three inner processes are carried
out: chemotaxis, reproduction and
elimination-dispersal. Based on the fact that in
MBFOA there are no reproduction and
elimination-dispersal loops, because they are replaced
by the generational loop, a bacteriumi in generation
G and in chemotaxis stepj is defined asθ i(j,G). With
this change, the nomenclature of the swim movement
is modified as indicated in Equation3.

θ i(j +1,G) = θ i(j,G)+C(i)φ(i) (3)

whereθ i(j + 1,G) is the new position of bacteriumi
(new solution),θ i(j,G) is the current position of
bacterium i and C(i) is the stepsize, which is
computed by considering the limits per each design
variablek [30] as indicated in Equation4.

C(i)k = R∗ (∆xk√
n
),k= 1, ...,n (4)

where∆xk is the difference between upper and lower
limits for design parameterxk: Uk − Lk, n is the
number of design variables andR is a user-defined
percentage of the value used by the bacteria as
stepsize.

The criteria to sort the swarm of bacteria for the
reproduction process are the three rules of the
constraint-handling technique (detailed in the next
item of this list), instead of using only the objective
function value as in BFOA.

Finally, instead of eliminating each bacterium based
on a probability, only the worst bacteriumθ w(j,G)
based on the feasibility rules is eliminated and a new
randomly generated bacterium with uniform
distribution takes its place.

2.Constraint-Handling technique: MBFOA adopts a
parameter free constraint-handling technique to bias
the search to the feasible region of the search space by
using three feasibility rules proposed by Deb [7] as
selection criteria when bacteria are compared. The
rules are the following: (1) between two feasible
bacteria, the one with the best objective function value
is chosen, (2) between one feasible bacterium and
another infeasible one, the feasible is chosen, and (3)
between two infeasible bacteria, the one with the
lowest sum of constraint violation is chosen.

The sum of constraint violation is computed as:
∑m

i=1max(0,gi(x)), where m is the number of

constraints of the problem. Each equality constraint is
converted into an inequality constraint:‖ hi(x) ‖ -ε
≤ 0, whereε is the tolerance allowed (a very small
value, in the literature this value is usually 1E−04).

The violation of each constraint can be normalized to
eliminate significant differences of values among
constraints when computing the sum of constraint
violation. However, in the experiments of this paper
such process was not required.

3.Swarming operator: Instead of the swarming process
which requires four user-defined parameters, an
attractor movement was included to MBFOA so as to
let each bacterium in the swarm to follow the
bacterium located in the most promising region of the
search space in the current swarm, i.e., the best
current solution. The attractor movement is defined in
Equation5.

θ i(j +1,G) = θ i(j,G)+β (θ B(G)−θ i(j,G)) (5)

whereθ i(j +1,G) is the new position of bacteriumi,
θ i(j,G) is the current position of bacteriumi, θ B(G)
is the current position of the best bacterium in the
swarm so far at generationG, and β defines the
closeness of the new position of bacteriumi with
respect to the position of the best bacteriumθ B(G).
The attractor movement applies twice in a chemotaxis
loop, while in the remaining steps the tumble-swim
movement is carried out. The aim is to promote a
balance between exploration and exploitation in the
search. Finally, if the value of a design variable
generated by the tumble-swim or attractor operators is
outside the valid limits defined by the optimization
problem, the following modification, taken from [39]
is made so as to get the value within the valid range as
showed in Equation6.

xi =







2∗Li − xi if xi < Li
2∗Ui − xi if xi > Ui
xi otherwise

(6)

wherexi is the design variable valuei generated by any
bacterium movement, and Li and Ui are the lower and
upper limits for design variablei, respectively.

The complete pseudocode of MBFOA is detailed in Figure
2.

3 Improved MBFOA (IMBFOA)

IMBFOA is an improved version where different
modifications were made in order to obtain better results
in a wider set of CNOPs: (1) two swim movements within
the chemotaxis process, one for exploration and another
one for exploitation, (2) a skew mechanism for the initial
swarm of bacteria, (3) a local search operator, and (4) a
reduction on the usage of the reproduction process.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 611

Begin
Create a random initial swarm of bacteriaθ i (j,0) ∀i, i = 1, . . . ,Sb

Evaluatef (θ i (j,0)) ∀i, i = 1, . . . ,Sb
For G=1 toGMAX Do

For i=1 to Sb Do
For j=1 to Nc Do

Perform thechemotaxis process(tumble-swim) with
Eq.1 and3 andattractor operator with Eq.5 for
bacteriaθ i (j,G) by considering the constraint-handling
technique

End For
End For
Perform thereproduction processby sorting all bacteria in
the swarm based on the constraint-handling technique, deleting
theSr worst bacteria and duplicating the remainingSb−Sr

Perform theelimination-dispersal processby eliminating the
worst bacteriumθ w(j,G) in the current swarm by considering
the constraint-handling technique

End For
End

Fig. 2: MBFOA pseudocode. Input parameters are number
of bacteria Sb, chemotaxis loop limitNc, number of
bacteria for reproductionSr (usuallySr = Sb/2), scaling
factor β , percentage of initial stepsizeR and number of
generationsGMAX.

3.1 Two updated swim operators

In the chemotaxis process, the range for the tumble is
modified. Originally, the range boundaries are fixed
values [-1,1] (see Equation1). To favor finer movements
(as suggested in the stepsize study in [12]) a narrow range
[υ , τ] is proposed;υ andτ are user-defined parameters,
where−1≤ υ < 0 , 0< τ ≤ 1 andυ < τ. Values between
-0.25 and -0.05 are recommended forυ , as well as values
between 0.15 and 1.0 forτ.

Considering the above mentioned narrow range, two
swim operators are proposed to improve the search
capabilities of bacteria. This first swim, focused on
exploration, is computed as indicated in Equation7:

θ i(j +1,G) = θ i(j,G)+φ(i) (7)

This second swim, focused on exploitation is computed as
indicated in Equation8:

θ i(j +1,G) = θ i(j,G)+C(i,G)φ(i) (8)

whereC(i,G) is the dynamic step size vector, inspired by
a previous study presented in [12], and computed using
Equation1. Each valuek of the vectorC(i,G) decreases
dynamically at each generation of the algorithm using
Equation9:

C(i,G+1)k =C(i,G)k
G

GMAX
,k= 1, ...,n (9)

whereC(i,G+1)k is the new step size value for variable
k andGMAX is the maximum number of generations of

the algorithm. The initialC(i,G) is computed as indicated
in Equation4 but theR parameter is no longer used.υ
and τ take random values with uniform distribution
between [-1,0) and (0,1], respectively.

It is important to remark that the first swim (Equation7)
performs larger movements as theφ(i) vector is not
scaled. On the other hand, the second swim (Equation8)
contributes early in the exploration task due to its
dynamic behavior on the stepsize. However, such second
swim will promote exploitation by small movements later
in the search process.

It is important to notice as well that a given bacterium
will not necessarily interleave exploration and
exploitation swims, because if the new position of a given
swim, θ i(j + 1,G) has a better fitness (based on the
feasibility rules) than the original positionθ i(j,G),
another similar swim in the same direction will be carried
out . Otherwise, a new tumble for the other swim will be
computed. The process stops afterNc attempts.

3.2 Skew mechanism for the initial swarm

Motivated by (1) the increasing interest on the
initialization techniques for nature-inspired algorithms
[17], and (2) the effect of the two swim operators already
introduced, a skew mechanism to create the swarm of
bacteria is added to IMBFOA.

The finer movements promoted by the combination of the
two swims proposed in this work, besides the swarming
operator already present in MBFOA, may lead to a loss of
diversity early in the search. Moreover, such diversity
lack in a constrained space may cause a difficulty to reach
the feasible region of the search space. Therefore, a
different way to generate the initial swarm of bacteria is
proposed in this work, where just some bacteria are
uniformly distributed in the search space, and the
positions of the others are skewed to the boundaries of the
search space as detailed below.

The initial swarm of bacteriaSb is generated by three
groups. In the first group there are randomly located
bacteria skewed to the lower limit of the decision
variables. In the second group there are randomly located
bacteria skewed to the upper limit of the decision
variables. Finally, a group of randomly located bacteria
without skew, as in MBFOA, is considered. The three
groups use random numbers with uniform distribution.
The formulas to set the limits for the first and second
group per variable are presented in Equations10and11.

[Li ,Li +((Ui −Li)/ss)] (10)

[Ui − ((Ui −Li)/ss),Ui] (11)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

612 B. Hdez et al. : Improved modified bacterial foraging...

wheressis the skew size, whose large values decrease the
skew effect and small values increase the skew effect.
Figure 3 shows an example with a swarm of thirty
bacteria, in a two-dimensional search space with
−5≤ x1 ≤ 5 and−3≤ x2 ≤ 10, respectively. Considering
ss = 8, the first group forx1 is generated between
[−5,−5+ ((5− (−5)/8)] = [−5,−3.75] and the second
group for x1 is generated between
[5− ((5 − (−5)/8),5] = [3.75,5]. Following the same
formula, the range of the first group forx2 is [−3,−1.375]
and the second group forx2 is [8.375,10]. The third group
is generated by using the original limits for both
variables. The aim of this skew in the initial swarm is to
keep the algorithm from converging prematurely (it was
observed in MBFOA motivated by its swarming process
and the fixed stepsize). Combined with the two swim
operators and the dynamic stepsize control, a better
exploration of the search space in the initial phase of the
search to promote better final results is expected.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

x
1

x 2

Search space

RbLx
RbUx
RbBx

Fig. 3: Initial swarm of bacteria: RbLx are the random bacteria
skewed to the lower limits of decision variables, RbUx are the
random bacteria skewed to the upper limits and RbBx are random
bacteria within the boundary of decision variables.

3.3 Local Search Operator

To help IMBFOA to generate better results and based on
the improved behavior observed by memetic algorithms
[33], Sequential Quadratic Programming (SQP) [37] is
incorporated to IMBFOA as a local search operator. This
proposal has a simple structure (see Figure4), where SQP
is used only twice during the search process, once after
the first cycle of the algorithm and once at half of the

search process. This local search operator is applied to the
best bacterium in the swarm after the chemotaxis,
swarming, reproduction, and elimination-dispersal
processes. However, the user can define the frequency of
usage of the local search operator by defining the
parameter Local Search frequencyLSG.

Fig. 4: IMBFOA general process

3.4 Scarce usage of the reproduction step

To reduce premature convergence due to bacteria
duplication, the reproduction takes place only at certain
cycles of the algorithm (defined by theRepCycle
parameter).

The corresponding pseudocode of IMBFOA is presented
in Figure5 and in its caption the user-defined parameters
are summarized.

4 Results and analysis

Three experiments were carried out to analyze the
behavior of the IMBFOA to solve CNOPs. The first
experiment aimed to preliminary show the behavior of the
mechanisms added to IMBFOA with respect to the
original MBFOA. The second experiment focused on an
in-depth comparison of IMBFOA and MBFOA based on
performance measures and final results. Finally, such final
results obtained were compared against state-of-the-art
nature-inspired algorithms to solve CNOPs. IMBFOA
and the performance measures were coded in Matlab
R2009b, and run on a PC with a 3.5 Core 2 Duo
Processor, 4GB RAM, and Windows 7. 25 independent
runs were carried out by the proposed approach.

The Wilcoxon Signed Rank Test (WSRT) [6], suggested
for nature-inspired algorithms comparison in [8] (for
paired samples), and the Friedman test [14] (for multiple
sample comparison) were used as the statistical tests to
validate the differences in the samples of runs. The scores
for the WSRT were based on the best fitness values of
each algorithm in each test problem, while the Friedman
test used the means values. Both tests were applied with
95%-confidence.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 613

Begin
Create an initial swarm of bacteriaby using the skew mechanism
θ i (j,0) ∀i, i = 1, . . . ,Sb

Evaluatef (θ i (j,0)) ∀i, i = 1, . . . ,Sb

For G=1 toGMAX Do
For i=1 to Sb Do

For j=1 to Nc Do
Perform thechemotaxis process by interleaving both proposed
swims with Eqs7 and Eq.8 and the attractor operator with Eq.5
usingβ for bacteriaθ i (j,G)

End For
End For
If (G mod RepCycle == 0)

Perform thereproduction processby sorting the swarm based
on the feasibility rules and deleting theSr worst bacteria and
duplicating the remainingSb−Sr

End If
Perform theelimination-dispersal processby eliminating the worst
bacteriumθ w(j,G) in the current swarm
Update the step size vectordynamically by using Eq.9

If G modLSG==0
Apply SQP to the best bacterium in the swarm. If the obtained
bacterium is better it replaces that best bacterium

End If
End For

End

Fig. 5: IMBFOA pseudocode. Input parameters are
number of bacteriaSb, chemotaxis loop limitNc, number
of bacteria for reproductionSr , scaling factorβ , the
reproduction cycle RepCycle, the number of cycles
GMAX, the local search frequencyLSG, τ andυ for the
search direction, andssfor the skew mechanism.

The input parameter values used by IMBFOA are shown
in Table 1, they were fine-tuned by the iRace tool [22].
The only fixed parameter wasGMAX related with the
termination condition ofMax FEs, depending of the test
problem as it will be detailed later. The parameters used
by the original MBFOA, also fine-tuned by iRace, are
shown in Table1 as well. The maximum number of
evaluations for the local search operator was 5,000 FEs
for the first benchmark and for the 10D test problems of
the second benchmark, while a maximum number of
10,000 FEs were allowed for the 30D test problems.

Table 1: IMBFOA and MBFOA parameter values obtained by
the iRace tool [22].

Value
Parameter MBFOA IMBFOA

Sb 20 20
Nc 24 24
Sr 2 1
R 0.012 -
β 1.5 1.5

RepCycle - 100
GMAX value to reach MaxFEs value to reach MaxFEs

LSG - 1 and (GMAX/2) generations
τ - -0.25
υ - 0.15
ss - 8

4.1 Test problems

24 well-known CNOPs found in [21] and 18 scalable
CNOPs (10D and 30D test problems) found in [23] were
used in the experiments. A summary of the features of the
first 24 test problems is presented in Table2. The main
characteristics of the 18 test problems (10D and 30D) are
presented in Table3. The maximum number of
evaluations (MaxFEs) allowed for each one of the first
24 test problems was 240,000. For the second set of test
problems the MaxFEs was 200,000 for 10D and 600,000
for 30D. The tolerance for equality constraints was set to
ε = 1E−04.

Table 2: Summary of the first 24 test problems.n is the number
of variables,ρ is the estimated ratio between the feasible region
and the search space,li is the number of linear inequality
constraints,ni is the number of nonlinear inequality constraints,
le is the number of linear equality constraints,ne is the number
of nonlinear equality constraints,a is the number of active
constraints andf (x∗) is the best known feasible solution

Problem n type of function ρ li ni le ne a f(x∗)
g01 13 quadratic 0.0111% 9 0 0 0 6 -15
g02 20 nonlinear 99.9971% 0 2 0 0 1 -0.803619104
g03 10 polynomial 0.0000% 0 0 0 1 1 -1.0005001
g04 5 quadratic 52.1230% 0 6 0 0 2 -30665.53867
g05 4 cubic 0.0000% 2 0 0 3 3 5126.496714
g06 2 cubic 0.0066% 0 2 0 0 2 -6961.813876
g07 10 quadratic 0.0003% 3 5 0 0 6 24.30620907
g08 2 nonlinear 0.8560% 0 2 0 0 0 -0.095825041
g09 7 polynomial 0.5121% 0 4 0 0 2 680.6300574
g10 8 linear 0.0010% 3 3 0 0 6 7049.248021
g11 2 quadratic 0.0000% 0 0 0 1 1 0.7499
g12 3 quadratic 4.7713% 0 1 0 0 0 -1
g13 5 nonlinear 0.0000% 0 0 0 3 3 0.053941514
g14 10 nonlinear 0.0000% 0 0 3 0 3 -47.76488846
g15 3 quadratic 0.0000% 0 0 1 1 2 961.7150223
g16 5 nonlinear 0.0204% 4 34 0 0 4 -1.905155259
g17 6 nonlinear 0.0000% 0 0 0 4 4 8853.539675
g18 9 quadratic 0.0000% 0 13 0 0 6 -0.866025404
g19 15 nonlinear 33.4761% 0 5 0 0 0 32.65559295
g20 24 linear 0.0000% 0 6 2 12 16 0.2049794
g21 7 linear 0.0000% 0 1 0 5 6 193.7245101
g22 22 linear 0.0000% 0 1 8 11 19 236.4309755
g23 9 linear 0.0000% 0 2 3 1 6 -400.0551
g24 2 linear 79.6556% 0 2 0 0 2 -5.508013272

Table 3: Summary of the 18 scalable test problems.ρ is the
estimated ratio between the feasible region and the search space,
I the number of inequality constraints,E the number of equality
constraints andD number of decision variables.

Function Search range Objective type Number of constraints ρ
E I 10D 30D

C01 [0,10]D Non separable 0 2 Non separable 0.997689 1.000000
C02 [-5.12, 5,12]D Separable 1 Separable 2 Separable 0.000000 0.000000
C03 [-1000,1000]D Non separable 1 Separable 0 0.000000 0.000000
C04 [-50,50]D Separable 2 Non separable 0 0.000000 0.000000
C05 [-600,600]D Separable 2 Separable 0 0.000000 0.000000
C06 [-600,600]D Separable 2 Rotated 0 0.000000 0.000000
C07 [-140,140]D Non separable 0 1 Separable 0.000000 0.000000
C08 [-140,140]D Non separable 0 1 Rotated 0.505123 0.503725
C09 [-500,500]D Non separable 1 Separable 0 0.379512 0.375278
C10 [-500,500]D Non separable 1 Rotated 0 0.000000 0.000000
C11 [-100,100]D Rotated 1 Non separable 0 0.000000 0.000000
C12 [-1000,1000]D Separable 1 Non separable 1 Separable 0.000000 0.000000
C13 [-500,500]D Separable 0 2 Separable, 1 Non separable 0.000000 0.000000
C14 [-1000,1000]D Non separable 0 3 Separable 0.003112 0.006123
C15 [-1000,1000]D Non separable 0 3 Rotated 0.003210 0.006023
C16 [-10,10]D Non separable 2 Separable 1 Separable, 1 Non separable 0.000000 0.000000
C17 [-10,10]]D Non separable 1 Separable 2 Non separable 0.000000 0.000000
C18 [-50,50]D Non separable 1 Separable 1 Separable 0.000010 0.000000

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

614 B. Hdez et al. : Improved modified bacterial foraging...

4.2 Performance measures

The following measures were computed to evaluate the
performance of IMBFOA. The first five were taken from
[21]:

–Feasible run: a run where at least one feasible solution
is found within MaxFEs.

–Successful run: a run where a feasible solutionx
satisfying f (x) − f (x∗) ≤ 0.0001 is found within
Max FEs.

–Feasible rate= (number of feasible runs) / total runs.
–Success rate= (number of successful runs) / total runs.
–Success performance= mean (FEs for successful
runs)× (# of total runs) / (# of successful runs).

–Successful swim: A swim movement where the new
position is better (based on the feasibility rules of the
constraint-handling technique) than the current
position.

–Successful swim rate= (number of successful swims)
/ total swims, where total swims=Sb×Nc×GMAX.

–Progress ratio (PR): Proposed in [27], the aim is to
measure the improvement capability of the algorithm
within the feasible region of the search space. For this
measure, high values are preferred because they
indicate a higher improvement of the first feasible
solution found. It is calculated as shown in the
Equation12:

PR=



























































∣

∣

∣

∣

∣

In

√

fmin(θB(Gf f)

fmin(θB(GMAX)

∣

∣

∣

∣

∣

, if fmin(θ B(GMAX)> 0

∣

∣

∣

∣

∣

In

√

fmin(θB(Gf f)+1

fmin(θB(GMAX)+1

∣

∣

∣

∣

∣

, if fmin(θ B(GMAX) = 0

∣

∣

∣

∣

∣

In

√

fmin(θB(Gf f)+2| fmin(θB(GMAX))|
fmin(θB(GMAX)+2| fmin(θB(GMAX))|

∣

∣

∣

∣

∣

, if fmin(θ B(GMAX)< 0

(12)

where fmin(θ B(Gf f) is the value of the objective
function of the first feasible solution found and
fmin(θ B(GMAX) is the value of the objective function
of the best solution found. The best, average result
and standard deviation (St.d) on 25 independent runs
are presented.

4.3 Results of the first experiment

As a first step to understand the behavior of IMBFOA, the
effectiveness of the skew mechanism to create the initial
swarm of bacteria was analyzed. The parameters used by
IMBFOA are those in Table1.

Two representative test problems were used in this
experiment: g03 from the first benchmark and C04 in 30D
from the second and scalable benchmark. These two test
problems were chosen because their estimated ratio
between the feasible region and the whole search space

(ρ) is close to zero (i.e., the feasible region is quite small
and difficult to find). The sums of constraint violation of
the run located on the median value of the fitness value,
out of twenty five runs, of each one of the twenty bacteria
just after the chemotaxis, reproduction and elimination
dispersal processes based on the initial swarm generated
with and without the skew mechanism are plotted in
Figures 6 and 7, for test problems g03 and C04,
respectively. As it can be observed, almost half of the
swarm is feasible in problem g03 (Figure6) and in
problem C04 the violation is significantly decreased
(Figure7). Moreover, 92% of the twenty five independent
runs obtained feasible solutions in the initial swarm using
IMBFOA with skew mechanism in test problem g03,
while 100% of the independent runs obtained a solution
similar to the best known feasible solution in such test
problem. On the other hand, only 8% of the independent
runs obtained feasible solutions in the initial swarm with
IMBFOA without skew mechanism and 84% of the
independent runs provided a solution similar to the best
known solution.

A similar behavior was observed in test problem C04 with
30D, IMBFOA with skew mechanism generated an initial
swarm with a lower sum of constraint violation with
respect to IMBFOA without skew mechanism.
Furthermore, 68% of the twenty-five independent runs
computed by the version with skew mechanism obtained
feasible solutions and 44% found similar results to the
best known solution. In contrast, for IMBFOA without
skew mechanism, only 56% of the twenty-five
independent runs obtained feasible solutions and 32%
reached similar results to the best known solution.

0 2 4 6 8 10 12 14 16 18 20 22
−0.5

0

0.5

1

1.5

2

2.5

Bacteria

S
um

 o
f c

on
st

ra
in

t v
io

la
tio

n

IMBFOA without Skew mechanism
IMBFOA with Skew mechanism

Feasible solutions

Fig. 6: IMBFOA with/without the skew mechanism in test
problem g03. The sum of constraint violation of each bacterium
in the swarm after the first generation is plotted.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 615

0 2 4 6 8 10 12 14 16 18 20 22
10

4

10
5

10
6

10
7

10
8

Bacteria

S
um

 o
f c

on
st

ra
in

t v
io

la
tio

n

IMBFOA without Skew mechanism
IMBFOA with Skew mechanism

Fig. 7: IMBFOA with/without the skew mechanism in test
problem C04 with 30D. The sum of constraint violation of each
bacterium in the swarm after the first generation is plotted.

To further analyze the effect of the step size control
mechanism and the swim operators proposed, the number
of successful swims were computed in test problems g03
and C04 for 30D. The successful swims by generation
(G) obtained by IMBFOA and IMBFOA but with the
traditional swim operator, of the run located in the median
value of 25 independent runs per each one of the
algorithms in the two test problems are plotted in Figures
8 (g03) and9 (C04 for 30D). It is clear to note that
IMBFOA always maintain a higher number of successful
swims. The successful swim rates were 5.77% for
IMBFOA, and 0.80% for the version with the traditional
swim operator.
Finally, the convergence plots of IMBFOA and the variant
with the traditional swim operator are shown in Figures
10 and 11 for test problem g03 and C04 for 30D,
respectively. It is clear that the usage of the two proposed
swims lead to better results.
From the overall results of this first experiment a
preliminary conclusion is that IMBFOA seems to
improve the constraint satisfaction, the ability to generate
better solutions by the swims operators and a better
convergence behavior. However, more evidence is
provided in the next experiment.

4.4 Results of the second experiment

IMBFOA was compared against MBFOA using the two
set of benchmark problems. The parameters adopted by
IMBFOA and MBFOA are shown in Table1. The
tolerance for equality constraintsε was set to 1.0E-04.

The statistical results of the final fitness values obtained
by each one of the two bacterial-based algorithms in the
first set of 24 benchmark problems are summarized in

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

40

45

Generations

S
uc

ce
ss

fu
l s

w
im

IMBFOA with traditional swim operator
IMBFOA with new swim operators

Fig. 8: Successful swims by IMBFOA with/without the two
swims proposed in test problem g03 in the execution located in
the median value of 25 independent runs.

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

Generations

S
uc

ce
ss

fu
l s

w
im

IMBFOA with traditional swim operator
IMBFOA with new swim operators

Fig. 9: Successful swims by IMBFOA with/without the two
swims proposed in test problem C04 for 30D in the execution
located in the median value of 25 independent runs.

Table4. Based on such results the following findings are
discussed: IMBFOA found feasible solutions to 21 of the
24 test problems, while MBFOA found feasible solutions
in 17 of 24 test problems. Moreover, IMBFOA provided
“better” best results in most test problems. Based on the
WSRT, there are significant differences in all cases
between IMBFOA and MBFOA.

Three performance measures (feasible rate, success rate
and success performance) obtained by IMBFOA and
BFOA in 25 independent runs are presented in Table5. In
terms of the feasible rate, IMBFOA obtained feasible
solutions in all runs in most of the test problems, with the
exception of test problems g20, g21 and g22. MBFOA
could not find feasible solutions in those problems as well

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

616 B. Hdez et al. : Improved modified bacterial foraging...

0 50 100 150 200 250 300 350 400 450
−1.0011

−1.001

−1.0009

−1.0008

−1.0007

−1.0006

−1.0005

Generations

O
bj

ec
tiv

e
fu

nc
tio

n

IMBFOA with traditional swim operator
IMBFOA with new swim operators

Fig. 10: Convergence plot by IMBFOA with/without the two
swims proposed in test problem g03 in the execution located in
the median value of 25 independent runs.

0 100 200 300 400 500 600 700 800 900
10

−4

10
−3

10
−2

10
−1

Generations

O
bj

ec
tiv

e
fu

nc
tio

n

IMBFOA with traditional swim operator
IMBFOA with new swim operators

Fig. 11: Convergence plot by IMBFOA with/without the two
swims proposed in test problem C04 for 30D in the execution
located in the median value of 25 independent runs.

as in problems g05, g13 and g17. IMBFOA clearly
outperformed MBFOA regarding success rate. Finally, it
is also clear that IMBFOA required less computational
cost with respect to MBFOA as suggested by the success
performance values.

Table6 includes the statistical results of the progress ratio
measure on 25 independent runs. Unlike MBFOA,
IMBFOA showed a very good ability to improve the first
feasible solution found. Just in test problems g05, g09,
g10, g11, g15, g17 and g24 the measure was close to
zero. The common feature of such test problems is that
they have a very small feasible region (see columnρ in
Table2).

Table 4: Statistical results obtained on 25 independent runs by
IMBFOA and MBFOA in the first set of test problems. The 95%-
confidence WSRT based on the best results reports significant
differences between the algorithms.

Prob. f (x∗) Criteria MBFOA IMBFOA
FEs 240,000 240,000
Runs 25 25

g01 -15 Best -9.885358 -15
Average -4.913382 -14.93
St.d 2.11E+00 2.36E-01

g02 -0.8036191 Best -0.44923 -0.8035462
Average -0.332766 -0.6801028
St.d 4.70E-02 5.98E-02

g03 -1.0005001 Best -1.000472 -1.001
Average -1.00044 -1.0009
St.d 2.30E-05 4.57E-05

g04 -30665.5387 Best -30665.05071 -30665.539
Average -30663.33132 -30665.539
St.d 4.19E+00 0

g05 5126.49671 Best - 5126.497
Average - 5126.496
St.d - 5.18E-05

g06 -6961.81388 Best -6960.833737-6961.813875
Average -6950.804575 -6961.81385
St.d 1.21E+01 8.39E-05

g07 24.3062091 Best 24.726052 24.3062
Average 25.910263 24.481
St.d 8.36E-01 2.62E-01

g08 -0.095825 Best -0.095825 -0.095825
Average -0.095825 -0.095825
St.d 1.60E-12 8.01E-18

g09 680.630057 Best 680.653436 680.63
Average 680.706034 680.64
St.d 4.25E-02 3.70E-02

g10 7049.24802 Best 7082.964009 7049.24802
Average 7356.790777 7320.5021
St.d 4.89E+02 8.10E+02

g11 0.7499 Best 0.7499 0.7499
Average 0.749901 0.7499
St.d 2.12E-06 3.48E-06

g12 -1 Best -0.999999 -1
Average -0.999247 -1
St.d 1.95E-03 0

g13 0.053941 Best - 0.053941
Average - 0.17709
St.d - 1.83E-01

g14 -47.764888 Best -42.534548 -46.467894
Average -38.684487 -45.016895
St.d 2.52E+00 9.84E-01

g15 961.715022 Best 961.715343 961.71502
Average 961.717716 961.71502
St.d 1.57E-03 1.10E-08

g16 -1.905155 Best -1.903357 -1.905155
Average -1.887545 -1.904055
St.d 5.64E-02 1.25E-03

g17 8853.53967 Best - 8927.5917
Average - 8927.5918
St.d - 1.39E-04

g18 -0.866025 Best -0.859667 -0.866025
Average -0.730242 -0.864223
St.d 1.18E-01 2.46E-03

g19 32.655592 Best 49.473018 32.655593
Average 117.292903 37.160608
St.d 7.33E+01 8.45E+00

g20 0.2049794 Best - -
Average - -
St.d - -

g21 193.72451 Best - -
Average - -
St.d - -

g22 236.430976 Best - -
Average - -
St.d - -

g23 -400.0551 Best - -400.0023
Average - -399.9196
St.d - 2.78E-01

g24 -5.50801327 Best -5.508006 -5.508013
Average -5.507687062 -5.508013
St.d 2.83E-04 2.70E-11

The results obtained by IMBFOA and MBFOA in the
second set of test problems with 10 and 30 dimensions,
are presented in Table7. The parameters used by
IMBFOA and MBFOA are the same as in Table1. The
tolerance for equality constraintsε was set to 1.0E-04.

The results in Table7 show that IMBFOA found feasible
solutions in most of the 10D test problems with 10

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 617

Table 5: Feasible rate, success rate and success performance
obtained by IMBFOA and MBFOA in the first set of test
problems.

Feasible rate Success rate Success performance
Prob. MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA

g01 100 % 100 % - 64 % - 218,451
g02 100 % 100 % - 4 % - 3,104,700
g03 100 % 100 % 4 % 100 % 122,782 26,022
g04 100 % 100 % - 100 % - 7,707
g05 - 100 % - 76 % - 122,782
g06 100 % 100 % - 96 % - 49,496
g07 100 % 100 % - 44 % - 127,975
g08 100 % 100 % 12 % 100 % 68,024 601
g09 100 % 100 % - 76 % - 41,549
g10 100 % 100 % - 84 % 210,201 68,537
g11 100 % 100 % 4 % 100 % 128,302 78,051
g12 100 % 100 % 12 % 100 % - 3,991
g13 - 100 % - 68 % - 132,750
g14 33 % 100 % - - - -
g15 100 % 100 % - 100 % - 8,251
g16 100 % 100 % - 20 % - 588,396
g17 - 100 % - - - -
g18 90 % 100 % - 32 % - 85,422
g19 100 % 100 % - 68 % - 82,566
g20 - - - - - 10,525
g21 - - - - - -
g22 - - - - - -
g23 - 100 % - - - -
g24 100 % 100 % 32 % 100 % 20,400 4,089

Average 67.62 % 87.5 % 2.66 % 74 % 109,942 198,411

Table 6: Statistical values for the progress ratio measure obtained
by IMBFOA and MBFOA in the first set of test problems.

Best Average St.d
Prob. MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA
g01 1.27E+00 1.61E+00 1.26E+00 1.43E+00 5.22E-03 6.86E-02
g02 1.60E+00 1.59E+00 1.60E+00 1.58E+00 1.88E-03 6.00E-03
g03 1.61E+00 1.95E+00 1.59E+00 1.60E+00 9.43E-03 1.11E-01
g04 5.17E+00 5.17E+00 5.17E+00 5.17E+00 6.02E-05 0.00E+00
g05 - 1.36E-07 - 1.28E-07 - 9.45E-09
g06 4.42E+00 4.48E+00 4.42E+00 4.43E+00 3.71E-03 1.61E-02
g07 0.00E+00 1.47E+00 0.00E+00 5.68E-01 0.00E+00 5.44E-01
g08 1.60E+00 1.60E+00 1.60E+00 1.60E+00 2.20E-05 1.13E-13
g09 0.00E+00 2.76E-01 0.00E+00 1.39E-01 0.00E+00 1.36E-01
g10 0.00E+00 4.11E-01 0.00E+00 8.79E-02 0.00E+00 1.43E-01
g11 6.38E-05 1.44E-01 2.51E-05 1.32E-01 2.83E-05 4.15E-02
g12 1.57E+00 1.57E+00 1.57E+00 1.57E+00 3.73E-10 2.22E-04
g13 - 1.05E+00 - 4.37E-01 - 5.40E-01
g14 1.86E+00 1.95E+00 1.84E+00 1.91E+00 2.04E-02 2.64E-02
g15 0.00E+00 7.79E-08 0.00E+00 7.79E-08 0.00E+00 4.67E-12
g16 1.96E+00 2.25E+00 1.84E+00 1.34E+00 1.42E-01 7.18E-01
g17 - 3.35E-07 - 3.30E-07 - 2.77E-09
g18 1.59E+00 1.70E+00 1.58E+00 1.67E+00 2.81E-03 4.96E-02
g19 0.00E+00 2.76E+00 0.00E+00 9.44E-01 0.00E+00 1.03E+00
g20 - - - - - -
g21 - - - - - -
g22 - - - - - -
g23 - 2.99E+00 - 2.99E+00 - 7.28E-04
g24 6.27E-01 6.96E-01 6.25E-01 6.36E-01 1.80E-03 2.14E-02

dimensions (except C11). In contrast, MBFOA found
feasible solutions only in 14 of 18 10D test problems.
Regarding 30D, IMBFOA found feasible solutions in all
test problems with the exception of test problem C03,
while MBFOA found feasible solutions only in 13 out of
18 30D test problems. With respect to the best and
average fitness values, IMBFOA outperformed MBFOA
in most test problems, except C11. Finally, as it was the
case on the first benchmark, the WSRT reported
significant differences between the compared algorithms.
The feasible rates obtained by IMBFOA and MBFOA are
presented in Table8, where IMBFOA obtained again
better results in most of the test problems. MBFOA
obtained feasible solutions only in 14 out of 18 10D test
problems, while that IMBFOA found feasible solutions to

Table 7: Statistical results obtained on 25 independent runs
by IMBFOA and MBFOA in the second set of test problems.
The 95%-confidence WSRT based on the best results reports
significant differences between the algorithms.

10D 30D
Prob. Criteria MBFOA IMBFOA MBFOA IMBFOA

FEs 200,000 200,000 200,000 200,000
Runs 25 25 25 25

C01 Best -0.7441309 -0.7473104 -0.2651637 -0.3996041
Average -0.6682597 -0.723775 -0.2242018 -0.2914506
St.d 6.99E-02 3.14E-02 1.89E-02 3.79E-02

C02 Best 1.2378498 -2.2777066 2.9831645 -2.280652
Average 2.7822775 -2.0803575 4.0398068 -2.219141
St.d 7.87E-01 3.64E-01 4.75E-01 1.90E-01

C03 Best - 7.20E-05 - -
Average - 1.242E+11 - -
St.d - 4.65E+11 - -

C04 Best - -6.04E-04 - 3.50E-08
Average - 1.02E-01 - 1.44E-04
St.d - 2.76E-01 - 2.16E-04

C05 Best 510.62142 -483.599468 451.47207 -483.590859
Average 510.62142 -296.059023 518.458869 -181.502159
St.d 0.00E+00 1.60E+02 3.14E+01 2.76E+02

C06 Best 559.64589 -578.66231 478.916572 -530.543371
Average 559.64589 -507.301756 564.091995 -527.240421
St.d 0.00E+00 1.13E+02 3.62E+01 6.55E+00

C07 Best 1.29E+00 7.13E-09 8.89E+09 3.47E-10
Average 6.65E+01 9.57E-01 3.41E+10 1.59E+00
St.d 1.13E+02 1.74E+00 1.75E+10 1.99E+00

C08 Best 4.02E-01 2.95E-09 4.62E+09 2.96E-10
Average 1.47E+02 7.37E+01 2.95E+10 1.13E+01
St.d 3.60E+02 1.55E+02 1.68E+10 2.94E+01

C09 Best 1.37E+12 2.81E-11 1.27E+13 3.92E-11
Average 5.77E+12 3.28E+07 2.67E+13 4.10E+06
St.d 3.16E+12 1.33E+08 6.65E+12 6.22E+06

C10 Best 1.44E+12 4.08E+01 1.31E+13 3.67E-11
Average 7.43E+12 4.29E+06 2.54E+13 3.21E+03
St.d 4.87E+12 7.08E+06 6.41E+12 5.49E+03

C11 Best - - - -3.33E-04
Average - - - -1.11E-04
St.d - - - 9.04E-05

C12 Best - -0.1992 - -0.1992434
Average - -1.95E-01 - 1.38E+00
St.d - 1.14E-02 - 6.33E+00

C13 Best -62.27577 -62.27639 - -62.751801
Average -50.11026 -58.15052 - -59.22955
St.d 6.04E+00 2.63E+00 - 2.20E+00

C14 Best 1.58E+11 4.08E-08 6.32E+13 1.26E-08
Average 7.59E+12 2.22E+05 2.31E+14 2.28E+06
St.d 6.36E+12 8.34E+05 7.56E+13 6.28E+06

C15 Best 1.19E+13 4.50E+00 8.57E+13 1.06E-08
Average 4.73E+13 2.22E+07 2.71E+14 2.69E+04
St.d 2.03E+13 5.45E+07 6.20E+13 8.79E+04

C16 Best 4.95E-01 0.00E+00 1.14E+00 1.44E-15
Average 9.65E-01 3.81E-02 1.20E+00 5.16E-01
St.d 1.28E-01 7.99E-02 3.67E-02 5.01E-01

C17 Best 9.12E+01 3.07E-16 7.19E+02 3.47E-15
Average 2.47E+02 1.00E+00 1.43E+03 6.54E+01
St.d 1.20E+02 1.50E+00 3.14E+02 2.60E+02

C18 Best 3.75E+03 5.61E-16 1.59E+04 2.78E-15
Average 6.20E+03 4.09E-10 2.71E+04 4.58E-11
St.d 1.53E+03 1.31E-09 5.75E+03 8.32E-11

17 of 18 test problems. In 30D test problems the behavior
was similar, IMBFOA found feasible solutions in 17 out
of 18 test problems while MBFOA found feasible
solutions only in 13 of 18 test problems.

In terms of success rate and success performance, the
results of both algorithms are presented in Table9 and10,
respectively. The reference results to compute these two
measures were taken from [43]. From these two tables it
is clear to see that IMBFOA outperformed MBFOA
because the latter was unable to get success runs in any
given test problem. The progress ratio measure results are
shown in Table11 where in most 10D test problems
IMBFOA was able to improve the first feasible solution
found (i.e. it was able to move inside the feasible region
of the search space); just in test problems C03, C09, C10
and C15 IMBFOA was unable to show such behavior. In
30D test problems IMBFOA was also able to move for

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

618 B. Hdez et al. : Improved modified bacterial foraging...

Table 8: Feasible rate obtained by IMBFOA and MBFOA in the
second set of test problems.

10D 30D
Prob. MBFOA IMBFOA MBFOA IMBFOA

C01 100 % 100 % 100 % 100 %
C02 100 % 100 % 100 % 100 %
C03 - 100% - -
C04 - 92% - 68 %
C05 98 % 100 % 96 % 100 %
C06 100 % 100 % 96 % 100 %
C07 100 % 100 % 100 % 100 %
C08 100 % 100 % 100 % 100 %
C09 100 % 100 % 100 % 100 %
C10 100 % 100 % 100 % 100 %
C11 - - - 32 %
C12 - 76% - 92 %
C13 100 % 100 % - 100 %
C14 100 % 100 % 100 % 100 %
C15 100 % 100 % 100 % 100 %
C16 100 % 100 % 88 % 100 %
C17 100 % 100 % 100 % 100 %
C18 100 % 100 % 100 % 100 %

Average 77.67 % 98.12 % 71.11 % 93.65 %

improvement inside the feasible region in most test
problems, with the exception of test problems C02, C04,
C07, C09 and C14. Unlike IMBFOA, MBFOA scarcely
showed some improvement inside the feasible region in
10D and 30D test problems.

Table 9: Success rate obtained by IMBFOA and MBFOA in the
second set of test problems.

10D 30D
Prob. MBFOA IMBFOA MBFOA IMBFOA

C01 - 16 % - -
C02 - 28 % - -
C03 - 4% - -
C04 - 80% - 44 %
C05 - - - -
C06 - 24 % - -
C07 - 76 % - 60 %
C08 - 32 % - 80 %
C09 - 8 % - 12 %
C10 - - - -
C11 - - - 48 %
C12 - - - 24 %
C13 - - - -
C14 - 52 % - 4 %
C15 - - - 28 %
C16 - 68 % - 12 %
C17 - 32 % - 16 %
C18 - 100 % - 100 %

Average - 43.33 % - 38.91 %

The findings of the second experiment confirm those of
the first experiment, because IMBFOA improved the final
results obtained by the original MBFOA in the two sets of
benchmark problems, even in those with a high
dimensionality (i.e. 30D test problems). Moreover,
IMBFOA outperformed MBFOA in its abilities to find the
feasible region and to reach the vicinity of the best known
solution in most test problems. Furthermore, IMBFOA
showed capacity to move inside the feasible region of the
search space, even in those quite small feasible regions.

Table 10: Success performance obtained by IMBFOA and
MBFOA in the second set of test problems.

10D 30D
Prob. MBFOA IMBFOA MBFOA IMBFOA

C01 - 687,359 - -
C02 - 269,591 - -
C03 - 3,757,000 - -
C04 - 33,049 - 965,601
C05 - - - -
C06 - 280,688 - -
C07 - 39,556 - 63,231
C08 - 171,753 - 173,904
C09 - 131,325 - 420,908
C10 - - - 631,556
C11 - - - 10,592,075
C12 - - - 2,139,503
C13 - - - -
C14 - 195,961 - 760,875
C15 - - - 916,357
C16 - 84,313 - 2,797,425
C17 - 77,255 - 881,653
C18 - 10,769 - 50,782

Average - 478,218 - 1,699,489

Table 11: Statistical values for the progress ratio measure
obtained by IMBFOA and MBFOA in the second set of test
problems.

10D 30D
Best Average St.d Best Average St.d

Prob. MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA MBFOA IMBFOA
C01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C02 0.00E+00 0.00E+00 1.24E-03 6.41E-01 0.00E+00 5.33E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C03 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00
C04 - 1.61E+00 - 1.61E+00 - 2.37E-05 - 1.99E+00 - 1.66E+00 - 2.32E-01
C05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C06 6.27E-01 3.18E+00 6.25E-01 3.18E+00 1.80E-03 4.64E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C07 0.00E+00 5.11E-02 0.00E+00 3.54E-02 0.00E+00 1.01E-02 0.00E+00 4.78E-01 0.00E+00 4.36E-01 0.00E+00 2.86E-02
C08 0.00E+00 5.91E-03 0.00E+00 4.89E-03 0.00E+00 1.45E-03 0.00E+00 9.96E-01 0.00E+00 4.55E-01 0.00E+00 2.43E-01
C09 6.38E-05 2.99E+00 2.51E-05 2.99E+00 2.83E-05 0.00E+00 0.00E+00 2.50E+00 0.00E+00 2.36E+00 0.00E+00 2.04E-01
C10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C11 - - - - - - - 0.00E+00 - 0.00E+00 - 0.00E+00
C12 - 0.00E+00 - 0.00E+00 - 0.00E+00 - 1.60E+00 - 1.60E+00 - 2.02E-07
C13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 0.00E+00 - 0.00E+00 - 0.00E+00
C14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
C15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.07E-01 0.00E+00 1.07E-01 0.00E+00 0.00E+00
C16 5.91E-03 1.37E+01 4.89E-03 2.82E+00 1.45E-03 6.10E+00 0.00E+00 3.69E+00 0.00E+00 2.29E+00 0.00E+00 1.08E+00
C17 0.00E+00 5.46E+00 0.00E+00 5.46E+00 0.00E+00 0.00E+00 0.00E+00 1.57E+00 0.00E+00 4.62E-01 0.00E+00 7.42E-01
C18 7.95E-01 9.47E+00 7.63E-01 4.21E+00 3.12E-01 3.10E+00 0.00E+00 7.52E+00 0.00E+00 2.06E+00 0.00E+00 2.58E+00

4.5 Results of the third experiment

The final results obtained by IMBFOA were compared
with those obtained by different state-of-the-art
nature-inspired algorithms to solve CNOPs. Table12
presents a comparison in the first set of test problems
against the Memetic Self-Adaptive Multi-Strategy
Differential Evolution (Memetic-SAMSDE), which also
uses SQP as local search [9], the Adaptive Penalty
Formulation with GA (APF-GA) [44], and the Modified
Differential Evolution (MDE) [24]. The number of FEs
computed by APF-GA and MDE was 500,000 while for
Memetic-SAMSDE and IMBFOA was 240,000 FEs.

Based on the results in Table12, IMBFOA was able to
provide similar results with respect to the three compared
algorithms. Regarding the computational cost measured
by the number of FEs, IMBFOA required less than half of
the FEs required by APF-GA and MDE to reach
competitive results. The Friedman test confirmed that
there were not significant differences among the
algorithms compared. The p−value in this set of test
problems, based on the mean values of each test problem,
was 0.8591. Only test problems where all algorithms
found feasible solutions (twenty one) were considered in
such test.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 619

Table 12:Statistical comparison of IMBFOA and state-of-the-art
nature-inspired algorithms in the first set of test problems.

Prob. f (x∗) Criteria IMBFOA Memetic-SAMSDE APF-GA MDE
FEs 240,000 240,000 500,000 500,000
Runs 25 30 25 25

g01 -15 Best -15 -15 -15 -15
Average -14.93 -15 -15 -15
St.d 2.36E-01 0 0 0

g02 -0.8036191 Best -0.8035462 -0.8036191 -0.803601 -0.8036191
Average -0.6801028 -0.8036191 -0.803518 -0.78616
St.d 5.98E-02 0 1.00E-04 1.20E-02

g03 -1.0005001 Best -1.001 1.0005 -1.001 -1.0005
Average -1.0009 -1.0005 -1.001 -1.0005
St.d 4.57E-05 0 0 0

g04 -30665.5387 Best -30665.539 -30665.539 -30665.539-30665.5386
Average -30665.539 -30665.539 -30665.539-30665.5386
St.d 0 0 1.00E-04 0

g05 5126.49671 Best 5126.497 5126.497 5126.497 5126.497
Average 5126.496 5126.497 5127.5423 5126.497
St.d 5.18E-05 0 1.43E+00 0

g06 -6961.81388 Best -6961.813875 -6961.813875 -6961.814 -6961.814
Average -6961.813851 -6961.813875 -6961.814 -6961.814
St.d 8.39E-05 0 0 0

g07 24.3062091 Best 24.3062 24.3062 24.3062 24.3062
Average 24.481 24.3062 24.3062 24.3062
St.d 2.62E-01 0 0 0

g08 -0.095825 Best -0.095825 -0.095825 -0.095825 -0.095825
Average -0.095825 -0.095825 -0.095825 -0.095825
St.d 8.01E-18 0 0 0

g09 680.630057 Best 680.63 680.63 680.63 680.63
Average 680.64 680.63 680.63 680.63
St.d 3.70E-02 0 0 0

g10 7049.24802 Best 7049.24802 7049.24802 7049.24802 7049.24802
Average 7320.5021 7049.24802 7077.6821 7049.24802
St.d 8.10E+02 0 5.12E+01 0

g11 0.7499 Best 0.7499 0.7499 0.7499 0.7499
Average 0.7499 0.7499 0.7499 0.7499
St.d 3.48E-06 0 0 0

g12 -1 Best -1 -1 -1 -1
Average -1 -1 -1 -1
St.d 0 0 0 0

g13 0.053941 Best 0.053941 0.053942 0.053942 0.053942
Average 0.17709 0.053942 0.053942 0.053942
St.d 1.83E-01 0 0 0

g14 -47.764888 Best -46.467894 -47.764888 -47.76479 -47.764887
Average -45.016895 -47.764888 -47.76479 -47.764874
St.d 9.84E-01 0 1.00E-04 1.40E-05

g15 961.715022 Best 961.71502 961.71502 961.71502 961.71502
Average 961.71502 961.71502 961.71502 961.71502
St.d 1.10E-08 0 0 0

g16 -1.905155 Best -1.905155 -1.905155 -1.905155 -1.905155
Average -1.904055 -1.905155 -1.905155 -1.905155
St.d 1.25E-03 0 0 0

g17 8853.53967 Best 8927.5917 8853.5397 8853.5398 8853.5397
Average 8927.5918 8823.5397 8888.4876 8853.5397
St.d 1.39E-04 0 2.90E+01 0

g18 -0.866025 Best -0.866025 -0.866025 -0.866025 -0.866025
Average -0.864223 -0.866025 -0.865925 -0.866025
St.d 2.46E-03 0 1.00E-04 0

g19 32.655592 Best 32.655593 32.655593 32.655593 32.64827
Average 37.160608 32.655593 32.655593 33.34125
St.d 8.45E+00 0 0 8.47E-01

g20 0.2049794 Best - - - -
Average - - - -
St.d - - - -

g21 193.72451 Best - 193.72451 196.63301 193.72451
Average - 193.72451 199.51581 193.72451
St.d - 0 2.36E+00 0

g22 236.430976 Best - 236.370313 - -
Average - 245.738829 - -
St.d - 9.05E+00 - -

g23 -400.0551 Best -400.0023 -400.0551 -399.7624 -400.0551
Average -399.9196 -400.0551 -394.7627 -400.0551
St.d 2.78E-01 0 3.87E+00 0

g24 -5.50801327 Best -5.508013 -5.508013 -5.508013 -5.508013
Average -5.508013 -5.508013 -5.508013 -5.508013
St.d 2.70E-11 0 0 0

IMBFOA was compared in Tables13 (10D) and14 (30D)
against Memetic-SAMSDE,ε constrained Differential
Evolution [43], and a Genetic Algorithm based algorithm
(IEMA) [42] in the second set of benchmark problems.
All algorithms required 500,000 FEs for the reported
results. Based on Table13 IMBFOA obtained very
competitive results in most of the 10D test problems.

The Friedman test indicated significant differences among
the algorithms compared with a p−value of 0.04.Test
problem C11 was not considered because IMBFOA did
not find feasible solutions.

In the case of 30D test problems (Table14) the Friedman
test suggested significant differences among the
algorithms in the comparison with a p−value of 0.0293.
Test problems C03, C04, C11 and C12 were not

considered because IEMA did not find feasible solutions
and IMBFOA did not reach the feasible region in test
problem C03 as well.

Table 13: Statistical comparison of IMBFOA and state-of-the-
art nature-inspired algorithms in the second set of test problems
(10D).

Prob. Criteria IMBFOA Memetic-SAMSDE εDEag IEMA
Fes 200,000 200,000 200,000 200,000
Runs 25 25 25 25

C01 Best -0.7473104 -0.7473104 -0.7473104 -0.74731
Average -0.723775 -0.7473104 -0.7470402 -0.743189
St.d 3.14E-02 0 1.32E-03 4.33E-03

C02 Best -2.2777066 -2.2777099 -2.277702-2.27771
Average -2.0803575 -2.2776477 -2.25887 -2.27771
St.d 3.64E-01 5.9704E-05 2.39E-02 1.82E-07

C03 Best 7.20E-05 0 0 1.47E-16
Average 1.242E+11 4.8159E-21 0 6.23E-07
St.d 4.65E+11 6.862E-21 0 1.40E-06

C04 Best -6.04E-04 -1.00E-05 -9.99E-06 -9.99E-06
Average 1.02E-01 -1.00E-05 -9.92E-06 -9.91E-06
St.d 2.76E-01 2.28E-10 1.55E-07 8.99E-08

C05 Best -483.599468 -483.610625 -483.6106 -483.611
Average -296.059023 -483.610625 -483.6106 -379.156
St.d 1.60E+02 1.4883E-07 3.89E-13 1.79E+02

C06 Best -578.66231 -578.66236 -578.6581 -578.662
Average -507.301756 -578.6622 -578.6528 -551.47
St.d 1.13E+02 1.18E-04 3.63E-003 7.36E+01

C07 Best 7.13E-09 0 0 1.75E-08
Average 9.57E-01 9.30E-24 0 3.26E-09
St.d 1.74E+00 1.71E-23 0 3.39E-09

C08 Best 2.95E-09 0 0 1.01E-10
Average 7.37E+01 9.51E-20 6.73E+00 4.07E+00
St.d 1.55E+02 3.49E-19 5.56E+00 6.38E+00

C09 Best 2.81E-11 0 0 1.20E-09
Average 3.28E+07 1.29E-21 0 1.95E+12
St.d 1.33E+08 2.87E-21 0 5.40E+12

C10 Best 4.08E+01 0 0 5.40E-09
Average 4.29E+06 7.46E-23 0 2.56E+12
St.d 7.08E+06 1.56E-22 0 3.97E+12

C11 Best - 1.52E-03 1.52E-03 1.52E-03
Average - 1.52E-03 1.52E-03 -1.15E-03
St.d - 1.36E-08 6.34E-11 2.73E-08

C12 Best -0.1992 -570.0899 -570.0899 -10.9735
Average -0.1948 -3.3553 -336.7349 -0.648172
St.d 1.14E-02 1.16E+02 1.78E+02 2.20E+00

C13 Best -62.27639 -68.42937 -68.42937 -68.4294
Average -58.15052 -68.42937 -67.42937 -68.0182
St.d 2.63E+00 0 1.03E-06 1.40E+00

C14 Best 4.08E-08 0 0 8.04E-10
Average 2.22E+05 9.78E-21 0 5.63E+01
St.d 8.34E+05 2.10E-20 0 1.83E+02

C15 Best 4.50E+00 0 0 9.35E-10
Average 2.22E+07 2.48E-20 1.80E-01 1.58E+08
St.d 5.45E+07 1.01E-19 8.81E-01 6.04E+08

C16 Best 0 0 0 4.44E-16
Average 3.81E-02 0 3.70E-01 3.30E-02
St.d 7.99E-02 0 3.71E-01 2.26E-02

C17 Best 3.07E-16 0 1.46E-017 9.48E-15
Average 1.00E+00 8.17E-16 1.25E-01 3.15E-03
St.d 1.50E+00 1.45E-15 1.94E-01 1.58E-02

C18 Best 5.61E-16 0 3.73E-20 2.24E-15
Average 4.09E-10 3.04E-25 9.68E-19 1.62E-14
St.d 1.31E-09 1.50E-24 1.81E-18 3.82E-14

It is worth noticing that the competitive performance
IMBFOA showed in the 10D test problems is not
significantly affected when solving them on 30D. One
shortcoming of IMBFOA is that the number of FEs to
deal with the 30D test problems increased considerably
with respect to the number computed on 10D (e.g. test
problem C04).

The conclusions of this third experiment are that
IMBFOA provided competitive results against five
state-of-the-art nature-inspired algorithms to solve
CNOPs on 60 test problems. The performance of
IMBFOA slightly decreased in presence of high
dimensionality, but it remained as competitive. However,

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

620 B. Hdez et al. : Improved modified bacterial foraging...

Table 14: Statistical comparison of IMBFOA and state-of-the-
art nature-inspired algorithms in the second set of test problems
(30D).

Prob. Criteria IMBFOA Memetic-SAMSDE εDEag IEMA
FEs 600,000 600,000 600,000 600,000
Runs 25 25 25 25

C01 Best -0.3996041 -0.8218843 -0.8218255 -0.821883
Average -0.2914506 -0.8156324-0.8208687 -0.817769
St.d 3.79E-02 4.41E-03 7.10E-04 4.79E-03

C02 Best -2.2806521 -2.2880962 -2.169248 -2.28091
Average -2.2191412 -2.2777017 -2.151424 -1.50449
St.d 1.90E-01 9.85E-04 1.20E-02 2.14E+00

C03 Best - 1.15E-20 2.87E+01 -
Average - 9.85E-18 2.88E+01 -
St.d - 3.48E-17 8.05E-01 -

C04 Best 3.50E-08 -3.33E-06 4.70E-03 -
Average 1.44E-04 1.51E-05 8.16E-03 -
St.d 2.16E-04 9.11E-05 3.07E-03 -

C05 Best -483.59086 -483.61062 -453.1307 -286.678
Average -181.502159 -483.61058 -449.546 -270.93
St.d 2.76E+02 9.60E-05 2.90E+00 1.41E+01

C06 Best -530.543 -530.637 -528.575 -529.593
Average -527.2404 -530.098 -527.9068 -132.876
St.d 6.55E+00 3.08E-01 4.75E-01 5.61E+02

C07 Best 3.47E-10 5.02E-25 1.15E-15 4.82E-10
Average 1.59E+00 9.34E-20 2.60E-15 8.49E-10
St.d 1.99E+00 1.67E-19 1.23E-15 4.84E-10

C08 Best 2.96E-10 3.40E-21 2.52E-14 1.12E-09
Average 1.13E+01 1.65E-17 7.83E-14 1.77E+01
St.d 2.94E+01 3.89E-17 4.86E-14 4.08E+01

C09 Best 3.92E-11 9.82E-23 2.77E-16 7.31E+03
Average 4.10E+06 1.38E-14 1.07E+01 2.99E+07
St.d 6.22E+06 4.59E-14 2.82E+01 4.50E+07

C10 Best 3.67E-11 4.88E-25 3.25E+01 2.77E+04
Average 3.21E+03 1.62E-15 3.33E+01 1.58E+07
St.d 5.49E+03 3.64E-15 4.55E-01 1.68E+07

C11 Best -3.33E-04 -3.92E-04 -3.27E-04 -
Average -1.11E-04 -3.92E-04 -2.86E-04 -
St.d 9.04E-05 4.80E-07 2.71E-05 -

C12 Best -0.1992434 -0.1992611 -0.1991453 -
Average 1.38E+00 -1.99E-01 3.56E+02 -
St.d 6.33E+00 2.01E-06 2.89E+02 -

C13 Best -62.7518 -68.42936 -66.42473 -68.4294
Average -59.2295 -68.2398 -65.3531 -67.4872
St.d 2.20E+00 3.45E-01 5.73E-01 9.84E-01

C14 Best 1.26E-08 1.57E-19 5.02E-14 3.29E-09
Average 2.28E+06 2.81E-12 3.09E-13 7.38E-09
St.d 6.28E+06 6.25E-12 5.61E-13 3.07E-01

C15 Best 1.06E-08 7.47E-21 2.16E+01 3.12E+04
Average 2.69E+04 3.94E-15 2.16E+01 2.29E+08
St.d 8.79E+04 1.31E-14 1.10E-04 4.64E+08

C16 Best 1.44E-15 0 0 6.16E-12
Average 5.16E-01 0 2.17E-21 1.63E-03
St.d 5.01E-01 0 1.06E-20 8.16E-03

C17 Best 3.47E-15 6.91E-11 2.17E-01 9.28E-10
Average 6.54E+01 1.23E-07 6.33E+00 8.84E-02
St.d 2.60E+02 1.48E-07 4.99E+00 1.51E-01

C18 Best 2.78E-15 3.00E-20 1.23E+00 1.38E-14
Average 4.58E-11 8.36E-15 8.75E+01 4.74E-14
St.d 8.32E-11 3.84E-14 1.66E+02 6.57E-14

the number of FEs required by IMBFOA in such large
scale search spaces increased significantly.

5 Conclusions

An improved modified bacterial foraging optimization
algorithm was presented in this paper. Two swim
operators to be applied within the chemotaxis cycle were
proposed. Both swims aimed to improve the capabilities
of the algorithm to explore and exploit the search space,
while tackling the already documented sensitivity to the
stepsize used in the tumble-swim operator of the original
MBFOA by adopting a dynamic value which decreases
along the search. Moreover, a skew mechanism to divide
the initial swarm in three groups, one skewed to the lower
bounds of the search space, another one located in the
upper bounds and finally one located in all the search
space, was added to favor the exploration/exploitation of

the search space combined with the two-swim operator.
Finally, a local search operator based on SQP was applied
twice during the search (one time after the first cycle of
the algorithm and another one at half of the GMAX
cycles). Finally, the reproduction step was scarcely
applied so as to discourage premature convergence due to
the duplication of bacteria.

Three experiments were carried out, where two
well-known benchmarks with a total of 60 test problems
were solved (1) to provide preliminary evidence of the
behavior from the new mechanisms added to the
algorithm, (2) to provide an in-depth comparison between
IMBFOA and the original MBFOA based on final results
and also on four performance measures, and (3) to
compare the results of IMBFOA against those provided
by five state-of-the-art nature-inspired algorithms to solve
CNOPs.

From the preliminary experiments it was found that
IMBFOA improved the MBFOA ability to reach the
feasible region of the search space (even in tiny feasible
regions), and it was also found that the combination of the
two swims improved the generation of better solutions
during all the search. Such findings were confirmed by
the results of the second experiment, where IMBFOA
clearly outperformed MBFOA based on final results,
besides showing a better capacity to move inside the
feasible region after reaching it. Finally, IMBFOA
provided a competitive performance against
state-of-the-art algorithms, and, to the best of the authors’
knowledge, this is the first attempt to design a
BFOA-based algorithm to solve a wide set of CNOPs.

One shortcoming found in IMBFOA was the high number
of FEs required to find good results in high-dimensional
CNOPs. This is the starting point of the future work,
where a more suitable way to combine IMBFOA with the
local search operator will be studied. Furthermore, the
swim operators will be revisited to increase their
probability to generate better solutions with less
evaluations per swim.

Acknowledgement

The first author acknowledges support from Universidad
Juárez Autónoma de Tabasco (UJAT) and the Mexican
Consejo Nacional de Ciencia y Tecnologı́a (CONACyT)
through a scholarship to pursue Ph.D studies at UJAT,
México. Third author acknowledges support from
CONACyT through project No. 220522.

References

[1] Arijit Biswas, Swagatam Das, Ajith Abraham, and Sambarta
Dasgupta. Analysis of the reproduction operator in an

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 607-622 (2016) /www.naturalspublishing.com/Journals.asp 621

artificial bacterial foraging system.Applied Mathematics
and Computation, 0(215):3343–3355, 2010.

[2] Arijit Biswas, Sambarta Dasgupta, Swagatam Das, and Ajith
Abraham. A Synergy of Differential Evolution and Bacterial
Foraging Optimization for global optimization.Neural
Network World, 17:607–626, 2007.

[3] Arijit Biswas, Sambarta Dasgupta, Swagatam Das,
and Ajith Abraham. Synergy of pso and bacterial
foraging optimization - a comparative study on numerical
benchmarks. In E. Corchado et al., editor,Innovations
in Hybrid Intelligent Systems 2007, pages 255–263.
Springer-Verlag, 2007.

[4] Hans J. Bremermann. Chemotaxis and optimization.J.
Franklin Inst, 297:397–404, 1974.

[5] Carlos A. Coello Coello. Theoretical and Numerical
Constraint Handling Techniques used with Evolutionary
Algorithms: A Survey of the State of the Art.Computer
Methods in Applied Mechanics and Engineering, 191(11-
12):1245–1287, January 2002.

[6] G.W. Corde and D.I. Foreman.Nonparametric Statistics for
Non-Statisticians: A Step-by-Step Approach. John Wiley,
Hoboken, NJ, 2009.

[7] Kalyanmoy Deb. An Efficient Constraint Handling Method
for Genetic Algorithms. Computer Methods in Applied
Mechanics and Engineering, 186(2/4):311–338, 2000.

[8] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and
swarm intelligence algorithms.Swarm and Evolutionary
Computation, 1(1):3–18, 2011.

[9] Saber M. Elsayed, Ruhul A. Sarker, and Daryl L. Essam.
On an evolutionary approach for constrained optimization
problem solving.Applied soft computing, 12(0):3208–3227,
2012.

[10] Andries P. Engelbrecht.Fundamentals of Computational
Swarm Intelligence. John Wiley & Sons, 2005.

[11] Betania Herández-Ocaña, Efrén Mezura-Montes, andPilar
Pozos-Parra. A review of the bacterial foraging algorithm in
constrained numerical optimization. InProccedings of the
Congress on Evolutionary Computation (CEC’2013), pages
2695–2702. IEEE, 2013.

[12] Betania Hernández-Ocaña, Ma. Del Pilar Pozos-Parra, and
Efrén Mezura-Montes. Stepsize control on the modified
bacterial foraging algorithm for constrained numerical
optimization. InProceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO ’14, pages
25–32, New York, NY, USA, 2014. ACM.

[13] Hsiang-Cheh Huang, Yueh-Hong Chen, and Ajith Abraham.
Optimized watermarking using swarm-based bacterial
foraging. Information Hiding and Multimedia Signal
Processing, 1(1):51–58, 2010.

[14] The MathWorks Inc. Friedman. URL
http://www.mathworks.com/help/stats/friedman.html,
2015. Accessed 8-05-2015.

[15] D. Karaboga and B. Basturk. powerful and efficient
algorithm for numerical function optimization: Artificialbee
colony (abc) algorithm. Journal of Global Optimization,
39(3):459–471, 2007.

[16] Alireza Kasaiezadeh, Amir Khajepour, and Steven L.
Waslander. Spiral bacterial foraging optimization
method: Algorithm, evaluation and convergence analysis.
Engineering Optimization, 46(4):439–464, 2014.

[17] Borhan Kazimipour, Xiaodong Li, and AK. Qin. A review
of population initialization techniques for evolutionary
algorithms. In Evolutionary Computation (CEC), 2014
IEEE Congress on, pages 2585–2592, July 2014.

[18] James Kennedy and Russell C. Eberhart. Swarm
Intelligence. Morgan Kaufmann, UK, 2001.

[19] Dong Hwa Kim, Ajith Abraham, and Jae Hoon Cho. A
hybrid genetic algorithm and bacterial foraging approach for
global optimization. Information Sciences, 177(18):3918–
3937, 2007.

[20] Wael Korani. Bacterial foraging oriented by particle swarm
optimization strategy for pid tuning. InProceedings of
the Genetic and Evolutionary Computation Conference
(GECCO 2008), pages 1823–1826, Atlanta, GA, USA,
2008. ISBN:978-1-60558-131-6.

[21] J.J. Liang, Thomas Philip Runarsson, Efrn Mezura-Montes,
Maurice Clerc, P.N. Suganthan, Carlos A. Coello Coello,
and K. Deb. Problem definitions and evaluation criteria for
the cec 2006 special session on constrained real-parameter
optimization. Technical report, School of EEE Nanyang
Technological University, Singapore, September 2006.

[22] Manuel López-Ibáñez, Jéremie Dubois-Lacoste, Thomas
Sttzle, and Mauro Birattari. The irace package, iterated
race for automatic algorithm configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium, 2011.

[23] R. Mallipeddi and P.N. Suganthan. Problem definitions
and evaluation criteria for the cec 2010 competition
on constrained real-parameter optimization. Technical
report, School of EEE Nanyang Technological University,
Singapore, April 2010.

[24] E. Mezura-Montes, J. Velazquez-Reyes, and C.A.
Coello Coello. Modified differential evolution for
constrained optimization. InEvolutionary Computation,
2006. CEC 2006. IEEE Congress on, pages 25–32, 2006.

[25] Efrén Mezura-Montes, editor. Constraint-Handling in
Evolutionary Optimization, volume 198 of Studies in
Computational Intelligence. Springer-Verlag, 2009.

[26] Efrén Mezura-Montes and Omar Cetina-Domı́nguez.
Empirical analysis of a modified artificial bee colony for
constrained numerical optimization.Applied Mathematics
and Computation, 218(18):10943 – 10973, 2012.

[27] Efrén Mezura-Montes and Carlos A. Coello Coello.
Identifying on-line behavior and sources of difficulty in
constrained optimization using evolutionary algorithms.In
In Proceedings of the IEEE Congress on Evolutionary
Computation 2005 (CEC2005), pages 1477–1484,
Edinburgh, UK., 2005. IEEE Press.

[28] Efrén Mezura-Montes and Carlos A. Coello Coello.
Constraint-handling in nature-inspired numerical
optimization: Past, present and future. Swarm and
Evolutionary Computation, 1(4):173–194, 2011.

[29] Efren Mezura-Montes and Jorge Isacc Flores-Mendoza.
Improved particle swarm optimization in constrained
numerical search spaces. In Raymond Chiong, editor,
Nature-Inspired Algorithms for Optimization, volume 193,
pages 299–332. Springer-Verlag, Studies in Computational
Intelligence Series, 2009, ISBN: 978-3-540-72963-1., 2009.

[30] Efrén Mezura-Montes and Betania Hernández-Ocaña.
Modified bacterial foraging optimization for engineering
design. In Cihan H. Dagli and et al., editors,Proceedings of

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

622 B. Hdez et al. : Improved modified bacterial foraging...

the Artificial Neural Networks in Enginnering Conference
(ANNIE’2009), volume 19 of Intelligent Engineering
Systems Through Artificial Neural Networks, pages 357–
364, St. Louis, MO, USA, November 2009. ASME Press.

[31] Efrén Mezura-Montes and Elyar A. López-Davila.
Adaptation and local search in the modified bacterial
foraging algorithm for constrained optimization. In
Proccedings of the IEEE Congress on Evolutionary
Computation 2012, pages 497–504. ISBN:978-1-4673-
1508-1, 2012.

[32] Efrén Mezura-Montes, Edgar Alfredo Portilla-Flores, and
Betania Hernández-Ocaña. Optimum synthesis of a
four-bar mechanism using the modified bacterial foraging
algorithm. International Journal of Systems Science, 2013.
DOI:10.1080/00207721.2012.745023.

[33] Ferrante Neri and Carlos Cotta. Memetic algorithms
and memetic computing optimization: A literature review.
Swarm and Evolutionary Computation, 2:1–14, 2012.

[34] Ben Niu, Yan Fan, Han Xiao, and Bing Xue. Bacterial
foraging based approaches to portfolio optimization with
liquidity risk. Neurocomputing, 98(0):90 – 100, 2012.

[35] Nicole Pandit, Anshul Tripathi, Shashikala Tapaswi, and
Manjaree Pandit. An improved bacterial foraging algorithm
for combined static/dynamic enviromental economic
dispatch.Applied Soft Computing, 0(12):3500–3513, 2012.

[36] Kevin M. Passino. Biomimicry of bacterial foraging for
distributed optimization and control.IEEE Control Systems
Magazine, 22(3):52–67, 2002.

[37] M. J. D. Powell. Algorithms for Nonlinear Constraints that
use Lagrangian Functions.Mathematical Programming,
14:224–248, 1978.

[38] P. Praveena, K. Vaisakh, and S. Rama Mohana Rao. A
bacterial foraging and pso-de algorithm for solving dynamic
economic dispatch problem with valve-point effects. In
First International Conference on Integrated Intelligent
Computing, pages 227–232. IEEE, 2010.

[39] Kukkonen S. and Lampinen J. Constrained real-parameter
optimization with generalized differential evolution.
In Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 207–214, Vancouver, BC, Canada, July
2006. IEEE.

[40] Ahmed Yousuf Saber. Economic dispatch using particle
swarm optimization with bacterial foraging effect.
Electrical Power and Energy Systems, 0(34):38–46,
2012.

[41] Patrick Siarry and Zbigniew Michalewicz, editors.
Advances in Metaheuristic Methods for Hard Optimization.
Springer, Berlin, 2008. ISBN 978-3-540-72959-4.

[42] H.K. Singh, T. Ray, and W. Smith. Performance of
infeasibility empowered memetic algorithm for cec 2010
constrained optimization problems. InEvolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1–8,
July 2010.

[43] T. Takahama and S. Sakai. Constrained optimization by
e constrained differential evolution with an archive and
gradient-based mutation. InEvolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1–9, July 2010.

[44] B. Tessema and G.G. Yen. An adaptive penalty formulation
for constrained evolutionary optimization.Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 39(3):565–578, May 2009.

[45] K. Vaisakh, P. Praveena, S. Rama Mohana Rao, and
Kala Meah. Solving dynamic economic dispatch problem
with security constraints using bacterial foraging pso-de
algorithm.Electrical Power and Energy Systems, 0(39):56–
67, 2012.

[46] Yudong Zhang, Lenan Wu, and Shuihua Wang. Bacterial
foraging optimization based neural network for short-term
load forecasting. Computational Information Systems,
6(7):2099–2105, 2010.

Betania Hernández
Ocaña graduated with honors
from the MsC on Applied
Computing at LANIA A.C.
in Xalapa, Veracruz, México,
and is currently pursuing
Ph.D studies at the Juárez
Autonomous University
of Tabasco, México.
Her research interests are

nature-inspired algorithms to solve complex optimization
problems.

Ma. Del Pilar
Pozos-Parra received her
M.S. (1998) and Ph.D (2002)
both in Computer Sciences
(Knowledge Representation
and Formalization of
Reasoning) from SUPAERO
College, France. She
is currently a Professor in the
Department of Informatics

and Systems, University of Tabasco, Mexico. Her
research interests include classical logic, belief merging
and revision, automated reasoning and meta-heuristic
algorithms.

Efr én Mezura Montes
is a full-time researcher
at the Artificial Intelligence
Research Center, University
of Veracruz, México,
His research interests
are the design, analysis and
application of bio-inspired
algorithms to solve complex
optimization problems. He

has published over 100 papers in peer-reviewed journals
and conferences. He also has one edited book and several
book chapters published by international publishing
companies.

c© 2016 NSP
Natural Sciences Publishing Cor.

	Introduction
	Bacterial Foraging Optimization Algorithm
	Improved MBFOA (IMBFOA)
	Results and analysis
	Conclusions

