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Abstract: In this paper, an inverse parabolic equation is solved by using the homotopy analysis method (HAM) and the homotopy
perturbation method (HPM). The approximation solution of this equation is calculated in the form of series which its components are
computed easily. HPM is shown not always to generate a continuous familyof solutions in terms of the homotopy parameter. By the
convergence-control parameter this can however be prevented to occur in the HAM. Illustrative examples are presented to exhibit a
comparison between the HAM and the HPM.
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1 Introduction

Consider the following inverse problem of simultaneously
finding unknown coefficientsp(t) and u(x, t) from the
following parabolic equation

ut(x, t) = uxx(x, t)+ p(t)u(x, t)+qux(x, t)+ f (x, t),

x ∈ (0,1), t ∈ (0,T ] (1)

with the initial-boundary conditions

u(x,0) = g(x),x ∈ (0,1) (2)

u(0, t) = h1(t), t ∈ (0,T ] (3)

u(1, t) = h2(t), t ∈ (0,T ] (4)

and the additional specification

u(x∗, t) = E(t),x∗ ∈ (0,1), t ∈ (0,T ] (5)

where f (x, t),g(x),h1(t),h2(t) and E(t) 6= 0 are known
functions, q is a known constant andx∗ is a fixed
prescribed interior point in(0,1). Physically, the inverse
coefficient problem is the reconstruction of a property of
a medium in some bounded region by using state
mesurements taken on the boundary. Inverse coefficient

problems for parabolic equations have been studied by
many people, for example, by [1,2,3,4,5,6,7]. The
homotopy method is a combination of the classical
perturbation technique and homotopy concept as used in
topology. Liao in [8,9], proposed for the first time this
technique, named the homotopy analysis method (HAM).
This method has been successfully applied in many
engineering [10,11,12,13]. Afterwards, He in [14] gave
the homotopy perturbation method (HPM). Different
from other methods, the HAM provides a simple way to
control and adjust the convergence region of solution
series by means of an auxiliary parameter [15,16].
Unfortunately, Sajid and Hayat [17] pointed out that the
so-called homotopy perturbation has nothing new except
its new name, because the HPM is only a special case of
the homotopy analysis method (HAM) so that all results
given by the HPM can also be obtained by the HAM as a
special case.

2 Homotopy methods

Homotopy methods as applied to the nonlinear equations
were first proposed by the Chinese mathematician Liao
[18]. The essential idea of this method is to introduce a
homotopy parameter, sayp, which varies continuously
from 0 to 1 and a nonzero auxiliary parameter so-called
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the convergence control parameterh̄. At p = 0, the
system of equations usually is reduced to a simplified
form which normally admits a rather simple solution. As
p gradually increases continuously toward 1, the system
goes through a sequence of deformations, and the solution
at each stage is close to that at the previous stage of the
deformation. Eventually, atp = 1, the system takes the
original form of the equation and the final stage of the
deformation gives the desired solution. To illuminate the
application of the homotopy method on the nonlinear
differential equations, consider the general problem

N(u) = 0,B(u,
du
dn

) = 0 (6)

whereu is the function to be solved under the boundary
constraints given in B. The homotopy on
u(r, p) : R× [0,1]→ R can be constructed so that

H(u, p) = (1− p)[L(u)−L(u0)]+ ph̄N(u) (7)

where L is a suitable auxiliary linear operator to
approximate the solution andu0 is an initial
approximation of Eq.(6) satisfying exactly the boundary
conditions. It is obvious from Eq.(7) that

H(u,0) = L(u)−L(u0),H(u,1) = N(u). (8)

Thus, asp moves from 0 to 1,u(r, p) deforms fromu0(r)
to u(r). Besides, the solution of Eq.(7) can be expressed
as a power series inp at p = 0 in the form

u(r, p) = u0(r)+
∞

∑
k=0

uk(r)pk
. (9)

At p = 1, on the condition that the convergence of series
(9) is guaranteed, an analytic series solution is determined
in the form

u(r, p) =
∞

∑
k=0

uk(r), (10)

where

uk(r) =
∂ ku(r, p)

∂ pk |p=0, (11)

Hence, the approximate solution to(6) can always be
written at theMth-order of approximation by truncating
the series(10)

u(r) =
M

∑
k=0

uk(r), (12)

It should be remarked that when̄h is set to unity in(7),
solutions will be independent of̄h and the resulting
homotopy is termed the homotopy perturbation method
(HPM), whereas as a general case ofh̄, it is named the
homotopy analysis method (HAM).
Theorem Suppose thatA ⊂ R be a Banach space donated
with a suitable norm, say‖.‖∞, over which the sequence
uk(r) of (9) is defined for a prescribed value ofh̄. Assume
also that the initial approximationu0(r) remains inside
the ball of the solutionu(r). Taking γ ∈ R as a constant,
the following statements hold.

(i)If there exists someγ ∈ [0,1], such that for allk, we
have‖uk+1(r)‖ 6 γ |uk(r)‖, then the series solution
u(r, p) = ∑∞

k=0 uk(r)pk, converges absolutely to(10),
at p = 1, over the domain of definition ofr.

(ii)If there exists someγ > 1, such that for allk, we have
‖uk+1(r)‖ 6 γ |uk(r)‖, then the series solution
u(r, p) = ∑∞

k=0 uk(r)pk, diverges atp = 1, over the
domain of definition ofr.[13]

3 Analysis of the methods

In this section, the homotopy method is considered for
solving problem (1) − (5). Applying a pair of
transformations [1] as follows

w(x, t) = u(x, t)exp(
q
2

x)r(t),x ∈ (0,1), t ∈ (0,T ] (13)

w(x,0) = g(x)exp(
q
2

x),x ∈ (0,1) (14)

w(0, t) = r(t)h1(t), t ∈ (0,T ] (15)

w(1, t) = r(t)h2(t)exp(
q
2
), t ∈ (0,T ] (16)

subject to

r(t) =
w(x∗, t)

E(t)
exp(−q

2
x∗),x ∈ (0,1), t ∈ (0,T ].

It is easy to show that the original inverse problem
(1) − (5) is equivalent to the auxiliary problem
(13)− (16). Firstly, let choose the linear operator

L[u(x, t; p)] =
∂u(x, t; p)

∂ t
(17)

with the propertyL[c] = 0, wherec is a constant. Also let
define

N[u(x, t; p)] =
∂w
∂ t

− ∂ 2w
∂x2 − r(t)exp(

q
2

x) f (x, t) (18)

Using the above definition, the zeroth deformation is
constructed

(1− p)L[u(x, t; p)−w0(x, t)] = ph̄N[u(x, t; p)] (19)

where from(14). Obviously, whenp = 0 andp = 1,

u(x, t;0) = w0(x, t),u(x, t;1) = w(x, t) (20)

Thus, themth-order deformation equation is obtained

L[wm(x, t)−κmwm−1(x, t)] = h̄Rm(wm−1) (21)

where

Rm(wm−1) =
∂w
∂ t

− ∂ 2w
∂x2 − r(t)exp(

q
2

x) f (x, t)
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and

κm =

{

0, m 6 1,
1, Otherwise

Now the solution of themth-order deformation equation is
for m > 1

wm(x, t) = κmwm−1(x, t)+ h̄
∫ t

0
Rm(wm−1(x, t))dτ +C

(22)
where the constant of integrationC is determined by the
initial conditionwm(x,0).

4 Numerical Examples

In order to assess the advantages and the accuracy of the
homotopy method for solving an inverse parabolic
equation, numerical examples are presented to determine
the error of the approximations.
Example 4.1 Consider problem(1) − (5) with the

following conditions [19]
u(x,0) = x,
u(0, t) = 0,
u(1, t) = exp(t),
f (x, t) =−(2+ xt2)exp(t),
E(t) = 1

2exp(t),
q = 2
with x∗ = 1

2. The exact solution of this problem is
u(x, t) = xexp(t)
and
p(t) = 1+ t2.

Using the HAM, it follows that
w0(x, t) = xexp(x),
w1(x, t) = xexp(x)1

3 h̄t(t2−3),
w2(x, t) = xexp(x) 1

18h̄t(t2−3)(h̄t3−3h̄t +6h̄+6),
w3(x, t) =

xexp(x) 1
162h̄t(t2−3)

(

h̄2t6−6h̄2t4+18h̄2t3+9h̄2t2

−54h̄2t +54h̄2+18h̄t3

−54h̄t +108̄h+54

)

...

Hence, with the third-order approximation by HAM
w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .

= xexp(x)

( h̄3t9

162 − h̄3t7

18 + h̄3t6

9 + h̄3t5

6 − 2h̄3t4

3 + h̄3t3

6

+h̄3t2− h̄3t + h̄2t6

6 − h̄2t4+ h̄2t3

+3h̄2t2

2 −3h̄2t + h̄t3−3h̄t +1

)

Homotopy perturbation method (HPM) solution is a
special case of Homotopy analysis method (HAM)
solution whenh̄ = −1. This fact has been pointed out by
many researchers such as Abbasbandy [20], Liao et
al.[16], Bataineh et al. [21], Van Gorder et al. [22], Hayat
and Sajid [23], Turkyilmazoglu [24], Das and Gupta [25].
A comparison between the absolute error for HAM
(h̄ = −1.09), HPM and the exact solution att = 1 and
various values ofx is presented in Table 1.

Suppose that N : R × [0,1] → R and taking
v0(x, t) = w0(x, t) = w(x,0) and using Eq.(22) we have

‖v0−w‖= ‖1− exp(t − t3

3 )‖
‖V1−w‖=

∥

∥

∥
1+ 1

3 h̄t(t2−3)− exp(t − t3

3 )
∥

∥

∥

6

∥

∥

∥
1− exp(t − t3

3 )
∥

∥

∥

∥

∥

∥
1+ h̄t(t2−3)

3−3exp(t− t3
3 )

∥

∥

∥

Since, for all

t ∈ [0,1] we have
∥

∥

∥
1+ h̄t(t2−3)

3−3exp(t− t3
3 ))

∥

∥

∥
6 γ < 1

whereγ = 0.0011 for HAM (h̄ = −1.42) andγ = 0.2966
for HPM (h̄ =−1).
Therefore,
‖V1−w‖6 γ

∥

∥

∥
1− exp(t − t3

3 )
∥

∥

∥
= γ‖v0−w‖

‖V2−w‖=
∥

∥

∥

∥

∥

1+ 1
3 h̄t(t2−3)− exp(t − t3

3 )

+ 1
18h̄t(t2−3)(h̄t3−3h̄t +6h̄+6)

∥

∥

∥

∥

∥

∥

∥

∥

∀t ∈ [0,1],
∥

∥

∥
1+ h̄t(t2−3)(h̄t3−3h̄t+6h̄+6)

18+6h̄t(t2−3)

∥

∥

∥
6 γ1 < γ

where γ1 = 0.0051 for HAM (h̄ = −1.16) and
γ1 = 0.2094 for HPM(h̄ =−1).
Thus,
‖V2−w‖6 γ2‖v0−w‖
‖V3−w‖=

∥

∥

∥

∥

∥

1+ 1
3 h̄t(t2−3)

+ 1
18h̄t(t2−3)(h̄t3−3h̄t +6h̄+6)− exp(t − t3

3 )

+ 1
162h̄t(t2−3)

(

h̄2t6−6h̄2t4+18h̄2t3+9h̄2t2

−54h̄2t +54h̄2+18h̄t3−54h̄t
+108̄ht +54)

)

∥

∥

∥

∥

∥

∀t ∈ [0,1],

∥

∥

∥

∥

∥

1+

h̄t(t2−3)

(

h̄2t6−6h̄2t4+18h̄2t3+9h̄2t2

−54h̄2t +54h̄2+18h̄t3

−54h̄t +108̄ht +54)

)

162+54(h̄t(t2−3))+9(h̄t(t2−3)(h̄t3−3h̄t+6h̄+6))

∥

∥

∥

∥

∥

6 γ2 < γ

where γ2 = 0.0058 for HAM (h̄ = −1.09) and
γ2 = 0.1608 for HPM(h̄ =−1).
Thus,
‖V3−w‖6 γ3‖v0−w‖
Therefore,‖Vn −w‖6 γn‖v0−w‖

Example 4.2 Consider problem(1) − (5) with the
following conditions [19]
u(x,0) = sin(π

2 x),
u(0, t) = 0,
u(1, t) = exp(t),

f (x, t) = ((π2

4 − t)sin(π
2 x)−πcos(π

2 x))exp(t),

E(t) =
√

2
2 exp(t),

q = 2,
with x∗ = 1

2. The exact solution of this problem is
u(x, t) = sin(π

2 x)exp(t)
and
p(t) = 1+ t
Using the HAM, it follows that
w0(x, t) = sin(π

2 x)exp(x),
w1(x, t) = sin(π

2 x)exp(x)1
2 h̄t(t −2),

w2(x, t) = sin(π
2 x)exp(x)1

8 h̄t(t −2)(h̄t2−2h̄t −4h̄+4),
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w3(x, t) =

sin(π
2 x)exp(x) 1

48h̄t(t −2)

(

h̄2t4−4h̄2t3+16h̄2t2

−24h̄2t +24h̄2+12h̄t2

−24h̄t +48h̄+24

)

...

Hence, with the third-order approximation by HAM
w(x, t) = w0(x, t)+w1(x, t)+w2(x, t)+w3(x, t)+ . . .

= sin(π
2 x)exp(x)

( h̄3t6

48 − h̄3t5

8 + h̄3t4

2 − 7h̄3t3

6 + 3h̄3t2

2

+3h̄2t4

8 − h̄3t − 3h̄2t3

2 +3h̄2t2

−3h̄2t + 3h̄t2

2 −3h̄t +1

)

A comparison between the absolute error for HAM
(h̄ = −1.07), HPM and the exact solution att = 1 and
various values ofx is presented in Table 2.
Suppose that N : R × [0,1] → R and taking
v0(x, t) = w0(x, t) = w(x,0) and using Eq.(22) we have

‖v0−w‖= ‖1− exp(t − t2

2 )‖
‖V1−w‖=

∥

∥

∥
1+ 1

2 h̄t(t −2)− exp(t − t2

2 )
∥

∥

∥

6

∥

∥

∥
1− exp(t − t2

2 )
∥

∥

∥

∥

∥

∥
1+ h̄t(t−2)

2−2exp(t− t2
2 )

∥

∥

∥

Since, for allt ∈ [0,1] we have
∥

∥

∥
1+ h̄t(t−2)

2−2exp(t− t2
2 )

∥

∥

∥
6 γ < 1

whereγ = 0.0020 for HAM (h̄ = −1.3) andγ = 0.2293
for HPM (h̄ =−1).
Therefore,
‖V1−w‖6 γ

∥

∥

∥
1− exp(t − t2

2 )
∥

∥

∥
= γ‖v0−w‖

‖V2−w‖=
∥

∥

∥

∥

∥

1+ 1
2 h̄t(t −2)− exp(t − t2

2 )
+1

8 h̄t(t −2)(h̄t2−2h̄t −4h̄+4)

∥

∥

∥

∥

∥

∀t ∈ [0,1],
∥

∥

∥
1+ h̄t(t−2)(h̄t2−2h̄t−4h̄+4)

8+4h̄t(t−2)

∥

∥

∥
6 γ1 < γ

where γ1 = 0.0099 for HAM (h̄ = −1.12) and
γ1 = 0.1595 for HPM(h̄ =−1).
Thus,
‖V2−w‖6 γ2‖v0−w‖
‖V3−w‖=

∥

∥

∥

∥

∥

1+ 1
2 h̄t(t −2)

+1
8 h̄t(t −2)(h̄t2−2h̄t −4h̄+4)− exp(t − t2

2 )

+ 1
48h̄t(t −2)

(

h̄2t4−4h̄2t3+16h̄2t2

−24h̄2t +24h̄2+12h̄t2

−24h̄t +48h̄+24

)

∥

∥

∥

∥

∥

∀t ∈ [0,1],

∥

∥

∥

∥

∥

1+

h̄t(t−2)

(

h̄2t4−4h̄2t3+16h̄2t2

−24h̄2t +24h̄2+12h̄t2

−24h̄t +48h̄+24

)

48+24h̄t(t−2)+6h̄t(t−2)(h̄t2−2h̄t−4h̄+4)

∥

∥

∥

∥

∥

6 γ2 < γ

where γ2 = 0.0060 for HAM (h̄ = −1.07) and
γ2 = 0.1217 for HPM(h̄ =−1).
Thus,
‖V3−w‖6 γ3‖v0−w‖
Therefore, ‖Vn −w‖6 γn‖v0−w‖ that is

Table 1: Comparison of the results of the HAM(h̄ =−1.09) and
the HPM(h̄ =−1) at t = 1.

x Exact HAM HPM Error Error
0 0 0 0 0 0

0.1 0.2152579 0.2152434 0.2142121 0.0000145 0.0010458
0.2 0.4757935 0.4757615 0.4734820 0.0000320 0.0023115
0.3 0.7887498 0.7886967 0.7849179 0.0000531 0.0038319
0.4 1.1622711 1.1621928 1.1566246 0.0000783 0.0056465
0.5 1.6056353 1.6055272 1.5978348 0.0001081 0.0078005
0.6 2.1294017 2.1292584 2.1190567 0.0001433 0.0103450
0.7 2.7455783 2.7453935 2.7322397 0.0001848 0.0133386
0.8 3.4678094 3.4675760 3.4509623 0.0002334 0.0168471
0.9 4.3115873 4.3112974 4.2906408 0.0002899 0.0209465
1 5.2944899 5.2941337 5.2687683 0.0003562 0.0257216

Table 2: Comparison of the results of the HAM(h̄ =−1.07) and
the HPM(h̄ =−1) at t = 1.

x Exact HAM HPM Error Error
0 0 0 0 0 0

0.1 0.2850422 0.2850506 0.2845429 0.0000084 0.0004993
0.2 0.6222838 0.6223022 0.6211938 0.0000184 0.0010900
0.3 1.0103744 1.0104042 1.0086046 0.0000298 0.0017698
0.4 1.4457184 1.4457612 1.4431860 0.0000428 0.0025324
0.5 1.9221156 1.9221723 1.9187487 0.0000567 0.0033669
0.6 2.4304214 2.4304931 2.4261642 0.0000717 0.0042572
0.7 2.9582458 2.9583333 2.9530642 0.0000875 0.0051816
0.8 3.4897084 3.4898117 3.4835958 0.0001033 0.0061126
0.9 4.0052738 4.0053921 3.9982581 0.0001183 0.0070157

limn→∞Vn = w = sin( π
2 x)exp(x + t − t2

2 ) which is an exact
solution.

5 Conclusion

In this paper, homotopy methods have been analyzed in
an inverse parabolic equation. Comparison of homotopy
analysis method (HAM) and homotopy perturbation
method (HPM) has been given with the convergence
control parameter. The theorem outlined in the paper have
demonstrated that if specific values are assigned to the
auxiliary parameters in the homotopy analysis method,
then the approximate homotopy results successfully
converge to the exact solution. HAM has been shown to
be a better tool with several examples.
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