Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/110413

Some Inequalities of Jensen Type and Lazhar Type for the Class of Harmonically and Strongly Reciprocally Convex Functions

L. Azócar¹, M. Bracamonte^{2,3,*} and J. Medina²

¹ Departamento de Matemática, Universidad Nacional Abierta (UNA), Caracas, Venezuela

Received: 10 Jun. 2016, Revised: 22 May 2017, Accepted: 26 May 2017

Published online: 1 Jul. 2017

Abstract: In recent years, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations, in [12], Iscan gave the definition of harmonically convex functions and in [2] Bracamonte et al. extended the concept of harmonically convex functions due to Iscan, and obtained the concept of strongly reciprocally convex functions. We give some inequalities of Jensen type and Lazhar type for the class of harmonically and strongly reciprocally convex functions.

Keywords: Harmonically convex functions, Jensen type inequalities, Lazhar type inequalities

1 Introduction

As noted by Polyak [25], "Inequalities play a role in most branches of mathematics and have different applications". Inequalities are one of the most important instruments in many branches of mathematics such as functional analysis, theory of differential and integral equations, interpolation theory, harmonic analysis, probability theory, etc. They are also useful in mechanics, physics and other sciences. A systematic study of inequalities was started in the classical book [10] and continued in [21, 16]. In the eighties and nineties of the last century an impetuous increase of interest in inequalities took place. One result of this fact was a great number of published books on inequalities (see e.g. [3,5,19,20,18]) and on their applications (see e.g. [6]). Nowadays the theory of inequalities is still being intensively developed. This fact is comented by a great number of recent published books (see e.g. [4,23]) and a huge number of articles on inequalities. Thus, the theory of inequalities may be regarded as an independent area of mathematics. One of the most important convex function inequalities is Jensen's inequality; in fact it is almost no exaggeration to say that all known inequalities are particular cases of this famous result. It has been the object of much research full details of which can be found in the various references;

Jensen's Inequality, was an inequality discovered by the Danish mathematician and engineer Johan Ludwig William Valdemar Jensen (1859 – 1925), relates the value of a convex function of an integral to the integral of the convex function. The concept of convexity and its various generalizations is very important in various fields of mathematics as well as the area of applied mathematics. The origen of interest in convexity arises from areas of application related to fixed point theory and optimization theory.

The convexity of functions plays a significant role in many fields, for example, in biological system, economy, optimization, and so on [9,27]. And many important inequalities are established for the class of convex functions. For example, Jensen's inequality and Hermite-Hadamard's inequality are the best known results in the literature.

The main aim of this paper is to introduce new inequalities of the type of Jensen and Lazhar type for newly introduced notions of strongly reciprocally convex functions and for harmonically convex functions. Our paper is structured as follows. Section 2 provides some

² Departamento de Matemática, Universidad Centroccidental Lisandro Alvarado (UCLA), Barquisimeto, Venezuela

³ Facultad de Ciencias Naturales y Matemática, Departamento de Matemática, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, Campus Gustavo Galindo, Guayaquil, Ecuador

^{*} Corresponding author e-mail: mireyabracamonte@ucla.edu.ve

definitions and preliminaries results concerning with harmonically convex functions and strongly reciprocally convex functions. We recall important facts about the Jensen and Lazhar inequalities. In Section 3 we state and prove our main result: We present Jensen type inequalities (discrete and integral) for strongly reciprocally convex functions. We also obtained Lazhar type inequality for strongly reciprocally convex functions and for harmonically convex functions.

2 Preliminaries, terminology and auxiliary results

This section is devoted to recall some notations, definitions and results that will be needed in the following. We present some definitions and recall known results concerning the Jensen inequality and Lazhar inequality.

Definition 1.Let f be a real valued function defined on the interval I = [a,b]. f is said to be convex if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

for all $x, y \in I$ and all $t \in [0, 1]$.

The inequality in the next theorem is known as the discrete version of Jensen's inequality. The Jensen inequality for convex functions plays a crucial role in the Theory of Inequalities due to the fact that other inequalities such as that arithmetic mean-geometric mean (AM-GM), Holder and Minkowski inequalities, Ky Fan's inequality etc. can be obtained as particular cases of it.

Theorem 1(Discrete Jensen's inequality, see [14]). Let f be a convex function defined on an interval I. If $x_1, x_2, \dots, x_n \in I$ and $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$, then

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right)\leq\sum_{i=1}^{n}\lambda_{i}f\left(x_{i}\right).$$

The measure theoretical setting of Jensen's inequality:

Theorem 2(Classical Jensen's inequality, see [13]). *Let g* be an integrable function on a probability space (X, \mathfrak{A}, μ) taking values in an interval $I \subseteq \mathbb{R}$. Then $\int_X gd\mu$ lies in I. If f is a convex function on I such that $f \circ g$ is integrable, then

$$f\left(\int_X g d\mu\right) \le \int_X (f \circ g) d\mu.$$

By using the Jensen's inequality and convexity of the function f, Lazhar Bougoffa proved the following inequality.

Theorem 3([1]). *If* f *is a convex function and* x_1, x_2, \dots, x_n *lie in its domain, then*

$$\sum_{i=1}^{n} f(x_i) - f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)$$

$$\geq \frac{n-1}{n} \left[f\left(\frac{x_1 + x_2}{2}\right) + \dots + f\left(\frac{x_{n-1} + x_n}{2}\right) + f\left(\frac{x_n + x_1}{2}\right) \right].$$

For more information related to theorem 2.4 (see [24, 28]).

Next, we cite the following results related to some type of generalized convexity:strong convexity, harmonically convexity and strongly reciprocally convexity. In 1966 Polyak [25] introduced the notions of strongly convex and strongly quasi-convex functions. They play an important role in optimization theory and mathematical economics. Nikodem et al. have obtained some interesting properties of strongly convex functions (see [8,11,15]).

Definition 2(See [11,17,26]). *Let* D *be a convex subset of* \mathbb{R} *and let* c > 0. *A function* $f : D \to \mathbb{R}$ *is called strongly convex with module* c *if*

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - ct(1-t)(x-y)^{2}$$
for all $x, y \in D$ and $t \in [0, 1]$.

The classical notion of convex function correspond to the case c = 0.

For instance, if f is strongly convex, then it is bounded from below, its level sets $\{x \in I : f(x) \le \lambda\}$ are bounded for each λ and f has a unique minimum on every closed subinterval of I ([22, p. 268]). Any strongly convex function defined on a real interval admits a quadratic support at every interior point of its domain.

Theorem 4.Let D be a convex subset of \mathbb{R} and c be a positive constant. A function $f: D \to \mathbb{R}$ is strongly convex with module c if and only if the function $g(x) = f(x) - cx^2$ is convex.

Lemma 1([26]). The following are equivalent:

- $1.f(tx+(1-t)y) \le tf(x)+(1-t)f(y)-t(1-t)c(x-y)^2$, for all $x,y \in (a,b)$ and $t \in [0,1]$.
- 2. For each $x_0 \in (a,b)$, there is a linear function T such that $f(x) \ge f(x_0) + T(x-x_0) + c(x-x_0)^2$ for all $x,y \in (a,b)$.
- 3. For differentiable f, for each $x_0 \in (a,b)$: $f(x) \ge f(x_0) + f'(x_0)(x x_0) + c(x x_0)^2$, for all $x, y \in (a,b)$.
- 4. For twice differentiable f, $f''(x) \ge 2c$, for all $x, y \in (a,b)$.

In [12], Imdat Iscan gave the definition of harmonically convex functions:

Definition 3.[12] Let I be an interval in $\mathbb{R} \setminus \{0\}$. A function $f: I \to \mathbb{R}$ is said to be harmonically convex on I if the inequality

$$f\left(\frac{xy}{tx+(1-t)y}\right) \le tf(y) + (1-t)f(x),\tag{2}$$

holds, for all $x, y \in I$ and $t \in [0, 1]$.

If the inequality in (2) is reversed, then f is said to be harmonically concave.

Dragomir [7] proved the following Jensen type inequality (discrete version) for harmonically convex functions:

Theorem 5.If $f:[a,b]\subset (0,+\infty)\to \mathbb{R}$ is harmonically convex function, then

$$f\left(\frac{1}{\sum_{i=1}^{n} \frac{t_i}{x_i}}\right) \le \sum_{i=1}^{n} t_i f\left(x_i\right),\tag{3}$$

for all $x_1, \dots, x_n \in [a, b], t_1, \dots, t_n \ge 0$ with $t_1 + \dots + t_n = 1$.

In [2] Bracamonte et al. introduced a new class of convex functions, they extended the concept of harmonically convex functions due to Iscan [12], and obtained the concept of strongly reciprocally convex functions and some results for this new class.

Definition 4([2]). Let I be an interval in $\mathbb{R} \setminus \{0\}$ and let $c \in (0,\infty)$. A function $f: I \to \mathbb{R}$ is said to be strongly reciprocally convex with module c on I, if the inequality

$$f\left(\frac{xy}{tx+(1-t)y}\right) \le tf(y) + (1-t)f(x) - ct(1-t)\left(\frac{1}{x} - \frac{1}{y}\right)^2,\tag{4}$$

holds, for all $x, y \in I$ and $t \in [0, 1]$.

The symbol $SRC_{(I,c)}$ will denote the class of functions that satisfy the inequality (4).

Theorem 6(Properties of strongly reciprocally convex. See [2]). *Let* $I \subset \mathbb{R} \setminus \{0\}$ *be a real interval and* $c \in (0, \infty)$ *. Let* $f : I \to \mathbb{R}$ *be a function.*

1.If $f \in SRC_{(I,c)}$, then f is harmonically convex. 2. $f \in SRC_{(I,c)}$ if and only if the function $g: I \to \mathbb{R}$, defined by $g(x) := f(x) - \frac{c}{x^2}$ is harmonically convex.

3. The function $g: \left[\frac{1}{b}, \frac{1}{a}\right] \to \mathbb{R}$, defined by $g(t) = f\left(\frac{1}{t}\right)$ is strongly convex in $\left[\frac{1}{b}, \frac{1}{a}\right]$ if and only if $f \in SRC_{([a,b],c)}$.

It is easy to see that the theorem is also valid for intervals $(a,b) \subset \mathbb{R} \setminus \{0\}.$

Theorem 7([2]). *The following are equivalent:*

 $(i)f \in SRC_{((a,b),c)}$.

(ii) For each $x_0 \in (a,b)$, there is a linear function T such that

$$f\left(\frac{1}{x}\right) \ge c(x-x_0)^2 + T(x-x_0) + f\left(\frac{1}{x_0}\right),$$
 (5)

for all
$$x \in \left(\frac{1}{b}, \frac{1}{a}\right)$$
.

(iii)For differentiable f and $x_0 \in (a,b)$,

$$f\left(\frac{1}{x}\right) \ge f\left(\frac{1}{x_0}\right) - f\left(\frac{1}{x_0}\right) \frac{x - x_0}{x_2} + c(x - x_0)^2,\tag{6}$$

for all $x, y \in (a, b)$.

(iv)For twice differentiable f,

$$\frac{1}{x^4} \left[f''\left(\frac{1}{x}\right) + 2xf'\left(\frac{1}{x}\right) \right] \ge 2c, \tag{7}$$

$$for \ all \ x \in \left(\frac{1}{x}, \frac{1}{x}\right).$$

3 Main results

In this section, we will state our main results and give their proofs as follows.

Using Theorem 5, we obtain the two following results.

Theorem 8(Lazhar type inequality). *If* $f: [a,b] \subseteq (0,+\infty) \to \mathbb{R}$ *is a harmonically convex function and* $x_1, \dots, x_n \in [a,b]$ *, then*

$$\frac{n}{n-1} \left[\sum_{i=1}^{n} f(x_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) \right] \\
\geq f\left(\frac{2x_1x_2}{x_1 + x_2}\right) + \dots + f\left(\frac{2x_{n-1}x_n}{x_{n-1} + x_n}\right) + f\left(\frac{2x_nx_1}{x_{n-1} + x_1}\right).$$
(8)

*Proof.*Using (2) with $t = \frac{1}{2}$, we get

$$f\left(\frac{2x_{1}x_{2}}{x_{1}+x_{2}}\right) + \dots + f\left(\frac{2x_{n-1}x_{n}}{x_{n-1}+x_{n}}\right) + f\left(\frac{2x_{n}x_{1}}{x_{n}+x_{1}}\right)$$

$$\leq \frac{1}{2}\left[f(x_{1}) + f(x_{2})\right] + \dots + \frac{1}{2}\left[f(x_{n-1}) + f(x_{n})\right] + \frac{1}{2}\left[f(x_{n}) + f(x_{1})\right]$$

$$= f(x_{1}) + \dots + f(x_{n}) = \sum_{i=1}^{n} f(x_{i}). \tag{9}$$

On the other hand,

$$\sum_{i=1}^{n} f(x_i) = \frac{n}{n-1} \sum_{i=1}^{n} f(x_i) - \frac{1}{n-1} \sum_{i=1}^{n} f(x_i)$$

$$= \frac{n}{n-1} \left[\sum_{i=1}^{n} f(x_i) - \sum_{i=1}^{n} \frac{1}{n} f(x_i) \right]. \tag{10}$$

Using (10) in (9), we get (8) which completes the proof.

Theorem 9.If $f: [a,b] \subseteq (0,+\infty) \to \mathbb{R}$ is a harmonically convex function and $a_1, \dots, a_n \in [a,b]$, then

$$\sum_{i=1}^{n} f(b_i) \le \frac{n}{n-1} \left[\sum_{i=1}^{n} f(a_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}\right) \right],\tag{11}$$

where
$$b_i = \frac{n-1}{n\alpha^{-1} - a_i^{-1}}$$
 $i = 1, \dots, n$ and $\alpha = \frac{n}{a_1^{-1} + \dots + a_n^{-1}}$.

Proof.

$$\begin{split} &\sum_{i=1}^{n} f(b_i) \\ &= f(b_1) + \dots + f(b_n) \\ &= f\left(\frac{n-1}{n\alpha^{-1} - a_1^{-1}}\right) + \dots + f\left(\frac{n-1}{n\alpha^{-1} - a_n^{-1}}\right) \\ &= f\left(\frac{n-1}{a_1^{-1} + \dots + a_n^{-1} - a_1^{-1}}\right) + \dots + f\left(\frac{n-1}{a_1^{-1} + \dots + a_n^{-1} - a_n^{-1}}\right) \\ &\leq \frac{1}{n-1} \left[f(a_2) + \dots + f(a_n)\right] + \dots + \frac{1}{n-1} \left[f(a_1) + \dots + f(a_{n-1})\right], \\ &= f(a_1) + \dots + f(a_n) \\ &= \frac{n}{n-1} \left[f(a_1) + \dots + f(a_n)\right] - \frac{1}{n-1} \left[f(a_1) + \dots + f(a_n)\right] \\ &= \frac{n}{n-1} \left\{f(a_1) + \dots + f(a_n) - \left[\frac{1}{n} f(a_1) + \dots + \frac{1}{n} f(a_n)\right]\right\} \\ &\leq \frac{n}{n-1} \left[\sum_{i=1}^{n} f(a_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}\right)\right]. \end{split}$$

This completes the proof.

Next we obtain two Jensen type inequalities for strongly reciprocally convex functions.

Theorem 10(Version discrete). *If* $f \in SRC_{([a,b],c)}$, *then*

$$f\left(\frac{1}{\overline{x}}\right) \le \sum_{i=1}^{n} t_i f\left(\frac{1}{x_i}\right) - c \sum_{i=1}^{n} t_i (x_i - \overline{x})^2,$$

for all $x_1, \dots, x_n \in [a, b]$, $t_1, \dots, t_n > 0$ with $t_1 + \dots + t_n = 1$ and $\overline{x} = t_1 x_1 + \dots + t_n x_n$.

*Proof.*Fix $x_1, x_2, \cdots, x_n \in [a, b]$ and $t_1, t_2, \cdots, t_n > 0$ such that $t_1 + t_2 + \cdots + t_n = 1$. Put $\overline{x} = t_1 x_1 + t_2 x_2 + \cdots + t_n x_n$. By Theorem 6, the function $g: \left[\frac{1}{b}, \frac{1}{a}\right] \to \mathbb{R}$ defined by $g(x) = f\left(\frac{1}{x}\right)$ is strongly convex on $\left[\frac{1}{b}, \frac{1}{a}\right]$. So by [17, Theorem 4], we have that

$$g\left(\sum_{i=1}^n t_i x_i\right) \le \sum_{i=1}^n t_i g(x_i) - c \sum_{i=1}^n t_i (x_i - \overline{x})^2.$$

or, equivalently, that

$$f\left(\frac{1}{\overline{x}}\right) \leq \sum_{i=1}^{n} t_i f\left(\frac{1}{x_i}\right) - c \sum_{i=1}^{n} t_i (x_i - \overline{x})^2.$$

In a similar way we can prove a counterpart of the integral Jensen inequality for strongly reciprocally convex functions.

Theorem 11(Version integral). Let (X, Σ, μ) be a probability measure space and $\varphi : X \to (a,b)$ be a Lebesgue integrable function. If $f : (a,b) \to \mathbb{R}$ is strongly reciprocally convex functions with module c, then

$$f\left(\frac{1}{\int_X \varphi(x)d\mu}\right) \le \int_X f\left(\frac{1}{\varphi(x)}\right) d\mu - c \int_X (\varphi(x) - m)^2 d\mu$$

where $m = \int_X \varphi(x) d\mu$.

*Proof.*By Theorem 6, the function $g: \left(\frac{1}{b}, \frac{1}{a}\right) \to \mathbb{R}$ defined by $g(x) = f\left(\frac{1}{x}\right)$ is strongly convex on $\left(\frac{1}{b}, \frac{1}{a}\right)$. So by [17, Theorem 5], we have that

$$g\left(\int_X \varphi(x)\right) d\mu \leq \int_X g\left(\varphi(x)\right) d\mu - c\int_X (\varphi(x) - m)^2 d\mu,$$

where $m = \int_X \varphi(x) d\mu$. Or, equivalently, that

$$f\left(\frac{1}{\int_X \varphi(x)}\right) d\mu \le \int_X f\left(\frac{1}{\varphi(x)}\right) d\mu - c \int_X (\varphi(x) - m)^2 d\mu.$$

In view of the interest in this type of inequalities, we obtained the following Lazhar type inequality for strongly reciprocally convex functions, with module c on I.

Theorem 12(Lazhar type inequality in SRC_(I,c)). Suppose $f:[a,b]\subseteq(0,+\infty)\to\mathbb{R}$ is a function. If $f\in SRC_{([a,b],c)}$ and $x_1,\cdots,x_n\in[a,b]$, then

$$\frac{n}{n-1} \left\{ \sum_{i=1}^{n} f(x_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) - c\left[\sum_{i=1}^{n} \frac{1}{x_i^2} - \frac{1}{n^2} \left(\sum_{i=1}^{n} \frac{1}{x_i}\right)^2\right] \right\}$$
(12)

$$\geq f\left(\frac{2x_{1}x_{2}}{x_{1}+x_{2}}\right) - c\left(\frac{x_{1}+x_{2}}{2x_{1}x_{2}}\right)^{2} + \dots + f\left(\frac{2x_{n-1}x_{n}}{x_{n-1}+x_{n}}\right) \\ - c\left(\frac{x_{n-1}+x_{n}}{2x_{n-1}x_{n}}\right)^{2} + f\left(\frac{2x_{n}x_{1}}{x_{n}+x_{1}}\right) - c\left(\frac{x_{n}+x_{1}}{2x_{n}x_{1}}\right)^{2}.$$

$$(13)$$

*Proof.*By Theorem 6 we have that the function $g(x) := f(x) - \frac{c}{x^2}$ is harmonically convex. Now making use of Theorem 8, we get

$$\frac{n}{n-1} \left[\sum_{i=1}^{n} g(x_i) - g\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) \right]$$

$$\geq g\left(\frac{2x_1x_2}{x_1 + x_2}\right) + \dots + g\left(\frac{2x_{n-1}x_n}{x_{n-1} + x_n}\right) + g\left(\frac{2x_nx_1}{x_n + x_1}\right).$$

Then we have the following inequalities:

$$\frac{n}{n-1} \left\{ \sum_{i=1}^{n} \left[f(x_i) - \frac{c}{x_i^2} \right] - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) + c\left(\frac{\sum_{i=1}^{n} \frac{1}{x_i}}{n}\right)^2 \right\} \\
\ge f\left(\frac{2x_1x_2}{x_1 + x_2}\right) - c\left(\frac{x_1 + x_2}{2x_1x_2}\right)^2 + \dots + f\left(\frac{2x_{n-1}x_n}{x_{n-1} + x_n}\right) \\
- c\left(\frac{x_{n-1} + x_n}{2x_{n-1}x_n}\right)^2 + f\left(\frac{2x_nx_1}{x_n + x_1}\right) - c\left(\frac{x_n + x_1}{2x_nx_1}\right)^2.$$

and

$$\frac{n}{n-1} \left\{ \sum_{i=1}^{n} f(x_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}\right) - c\left[\sum_{i=1}^{n} \frac{1}{x_i^2} - \frac{1}{n^2} \left(\sum_{i=1}^{n} \frac{1}{x_i}\right)^2\right] \right\}$$

$$\geq f\left(\frac{2x_1x_2}{x_1 + x_2}\right) - c\left(\frac{x_1 + x_2}{2x_1x_2}\right)^2 + \dots + f\left(\frac{2x_{n-1}x_n}{x_{n-1} + x_n}\right)$$

$$-c\left(\frac{x_{n-1} + x_n}{2x_{n-1}x_n}\right)^2 + f\left(\frac{2x_nx_1}{x_n + x_1}\right) - c\left(\frac{x_n + x_1}{2x_nx_1}\right)^2.$$

The proof of Theorem (12) is completed.

Remark. Letting $c \to 0^+$, in the inequalities (12), we obtain (8), which is the Lazhar type inequalities for harmonically convex functions.

Theorem 13.Suppose $f:[a,b]\subseteq (0,+\infty)\to \mathbb{R}$ is a function. If $f\in SRC_{([a,b],c)}$ and $a_1,\cdots,a_n\in [a,b]$, then

$$\sum_{i=1}^{n} \left[f(b_i) - \frac{c}{b_i^2} \right] \le \frac{n}{n-1} \left\{ \left[\sum_{i=1}^{n} f(a_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}\right) \right] - c \left[\sum_{i=1}^{n} \frac{1}{a_i^2} - \frac{1}{n^2} \left(\sum_{i=1}^{n} \frac{1}{a_i}\right)^2 \right] \right\},$$
(14)

where
$$\alpha = \frac{n}{a_1^{-1} + \dots + a_n^{-1}}$$
 and $b_i = \frac{n-1}{n\alpha^{-1} - a_i^{-1}}$, $i = 1, \dots, n$.

*Proof.*By Theorem 6 we have that the function $g(x):=f(x)-\frac{c}{x^2}$ is harmonically convex. Now making use of Theorem 9, we get

$$(n-1)\sum_{i=1}^{n}g(b_i) \leq n \left[\sum_{i=1}^{n}g(a_i) - g\left(\frac{n}{\sum\limits_{i=1}^{n}\frac{1}{a_i}}\right)\right].$$

Then we have the following inequalities:

$$(n-1)\sum_{i=1}^{n} \left[f(b_i) - \frac{c}{b_i^2} \right]$$

$$\leq n \left\{ \sum_{i=1}^{n} \left[f(a_i) - \frac{c}{a_i^2} \right] - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}\right) + c\left(\frac{\sum_{i=1}^{n} \frac{1}{a_i}}{n}\right)^2 \right\}$$

and

$$\sum_{i=1}^{n} \left[f(b_i) - \frac{c}{b_i^2} \right] \le \frac{n}{n-1} \left\{ \left[\sum_{i=1}^{n} f(a_i) - f\left(\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}\right) \right] - c \left[\sum_{i=1}^{n} \frac{1}{a_i^2} - \frac{1}{n^2} \left(\sum_{i=1}^{n} \frac{1}{a_i}\right)^2 \right] \right\},$$

which is the required inequality. Theorem (13) is proved

Remark. By letting $c \to 0^+$ in (14), we obtain (11).

4 Conclusions

The main contributions of this paper has been some inequalities of Jensen type and Lazhar type for the class of harmonically and strongly reciprocally convex functions, concepts introduced by Iscan and Bracamonte et al., respectively. We hope that the ideas and techniques used in this paper may are useful for other readers interested in exploring some new applications of these kinds of functions, both in applied and pure sciences.

References

- L. Bougoffa, New inequalities about convex functions, Journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 4, Article 148 (2006).
- [2] J. Bracamonte, M. Giménez and J. Medina, Sandwich theorem for strongly reciprocally convex functions, Submitted for publication (2016).
- [3] P.S. Bullen, *A dictionary of inequalities*, Pitman Monographs and Surveys in Pure and applied mathematics 97, Addison Wesley Longman Ltd. UK., 1998.
- [4] P.S. Bullen, *Handbook of means and their inequalities*, Kluwer Academic Publishers, Dordrecht, 2003.
- [5] P.S. Bullen, D.S. Mitrinović, and P.M. Vasić, *Means and their inequlities*, Reidel Publishing Company, Dordrecht, Boston, Lancester, Tokyo, 1998.
- [6] M.J. Cloud and B. C. Drachman, *Inequalities with applications to engineering*, 1998.
- [7] S. Dragomir, Inequalities of Jensen type for HA-convex functions, RGMIA Monographs, Victoria University (2015).
- [8] S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2000.
- [9] M. Grinalatt and Linnainmaa J.T., Jensen's inequality, parameter unccertainty, and multiperiod investment, Review of Asset Pricing Studies, Vol. 1 (2011), 1–34.
- [10] G.H. Hardy, J.E. Littlewood, and G. Polya, *Inequalities*, Cambridge Univ. Press., 1934.
- [11] J. Hiriart-Urruty and C. Lemaréchal, *Fundamentals of convex analysis*, Springer-Verlag, Berlin-Heidelberg, 2001.
- [12] İ. Işcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics Volume 43 (6) (2014), 935 – 942.
- [13] J.L.W.V. Jensen, On konvexe funktioner og uligheder mellem middlværdier, Nyt Tidsskr. Math.16 (1905), 49–69.
- [14] J.L.W.V. Jensen, Sur les fonctions convexes et les ingalits entre les valeurs moyennes, Acta Mathematica 30 (1906), 175–193.

- [15] M.V. Jovanovič, A note on strongly convex and strongly quasiconvex functions, Notes 60 (1996), 778–779.
- [16] A.A. Martynyuk and R. Gutowski, *Integral inequalities and stability of motion*, Naukova Dumka, Kiev (Russian), 1979.
- [17] N. Merentes and K. Nikodem, *Remarks on strongly convex functions*, Aequationes mathematicae, Volume 80, Issue 1 (2010), 193–199.
- [18] D.S. Milovanović, J.E. Pečarić, and A.M. Fink, *Inequalities involving functions and their integrals and derivatives*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
- [19] D.S. Milovanović, J.E. Pečarić, and A.M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, London, 1993.
- [20] G.V. Milovanović, Recent progress in inequalities, Kluwer Academic Publishers, London, 1998.
- [21] D.S. Mitgrinović, Analytic inequalities, Springer-Verlag, Berlin - Heidelberg, New York, 1970.
- [22] C. Niculescu and L. Persson, Convex functions and their applications, A Contemporary Approach, CMS Books in Mathematics, vol. 23, Springer, New York, 2006.
- [23] J. Pečarić, F. Proschan, and Y.L Tong, Convex functions, partial orderings and statistical applications, Academic Press, Inc. Boston, 1992.
- [24] I.M.R Pinheiro, Lazhar's inequalities and the s-convex phenomenon, N.Z. J. Math. 38 (2008), 57-62.
- [25] B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Dokl. Akad. Nauk. SSSR 166 (1966), 287– 290.
- [26] A. Roberts and D. Varberg, Convex functions, Academic Press, New York-London, 1973.
- [27] J.J. Ruel and M.P. Ayres, Jensen's inequality predicts effects of environmental variation, Trend in Ecology & evolution, vol. 14, N 9 (1999), 361–366.
- [28] C. Xinkuan and Yu M., Several variants of via Titu Andreescu type and Popoviciu type inequalities, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis. 27 (2011), 173–178.

Luis Α. Azócar B. Associate Professor of Mathematics at the Department of Mathematics. National Open University of Venezuela. Education: Ms.c in Mathematics, University California, Berkeley ,USA.Advance Candidate,

University of California, Santa Barbara, USA. His areas of research are set valued analysis, convex analysis, social problems: Measuremente of poverty and inequality, game theory (Cooperative Games) and mathematical applied to environmental problems.

Mireya R. Bracamonte P. is Associate Professor of Mathematical at University Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela, and Invited Professor in Escuela Superior del Politécnica Litoral. Guayaquil Ecuador. She

received her Ph.D. from the Universidad de los Andes, Mérida, Venezuela (2012). His main research interests are: real and complex analysis and operator theory.

Jesus Medina is Assistant Professor in the Department Mathematics at the University Centroccidental Lisandro Alvarado, Venezuela. Received the academic degree of Magíster Scientiarum Sciences Mention in

Optimization at the University Centroccidental Lisandro Alvarado (Venezuela). His main research interests are: optimization theory, convex analysis and nonlinear analysis.