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Abstract: Exact analytical solution of free vibration for a linearly tapered beam with multiple arbitrarily placed rotational 

dampers is developed by taking advantage of the numerical assembly method (NAM) and Bessel functions. A characteristic 
equation for a tapered beam with any number of rotational dampers is therefore addressed in complex domain. Corresponding 
results for beams with different boundary conditions are also presented. The presence of the rotational dampers renders the 
solution of the characteristic equation complex valued. Therefore, a method is proposed to solve the equation in complex 
domain. To ensure the reliability of this method, the finite elements method (FEM) is used to verify the results achieved via the 
characteristic equation. Furthermore, with consideration of a single-rotational-damper case, the curves of the total maximum 
damping ratios and total optimal damping coefficients varying with taper ratios are also depicted for convenience of 
engineering application. 
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1.  Introduction 

Using multiple dampers is benefit for 

simultaneously mitigating the vibrations of multiple 

modes. Free vibration of non-uniform beams has 
attracted many attentions. However, the study on 

the exact solutions of tapered beams with rotational 

dampers is rare. Thus, we are concerned with the 
exact analytical solution of transverse free vibration 

of a tapered beam attached with multiple rotational 

dampers.  

Besides the approximate approaches, many 

exact analytical results were obtained by using 

Bessel functions to address the free vibrations of 
linearly tapered beams those without attachments 

[1-7]. For a tapered beam with attachments (such as 

point masses, linear springs and/or rotational 
springs),who leads to real-valued eigenvalues, the 

free-vibration-based study has attracted many 
attentions [8-14]. 

In literature, to the best knowledge of authors of 

this article, there is no investigation on the vibration 
of a tapered beam with rotational damper which 

renders the eigenvalues of the system complex 

valued. A few studies on the vibration of a uniform 
beam with rotational dampers were conducted. 

Oliveto et al. presented an exact solution of the free 

vibration of a simply supported beam with two 
rotational dampers attached at each end [15]. Krenk 

presented complex mode analysis on this problem 

[16]. By solving the root locus of the transfer 

functions, Engelen et al. derived the complex 
eigenvalues of a flexible structure including a 

viscous damper in terms of the mass and stiffness 

matrix equation of motion, and derived the formulas 
for the maximum damping ratio and the optimal 

damping constant [17]. Impollonia et al. conducted 

an analytical study on the dynamic characterization 
of a taut-cable with viscous rotational dampers and 

springs applied at the two ends [18]. Consider a 

problem of a tall building with damped outriggers, 
Chen et al. developed a simplified model consisting 

of a uniform beam and an arbitrary placed rotational 

damper, and provided an exact analytical solution of 
the problem and an approximate estimation of the 

system's modal damping ratios [19]. 

In this paper, the exact analytical solution for a 

tapered beam with multiple rotational dampers is 

studied. The motion equation for a tapered beam 
with multiple arbitrarily placed rotational dampers 

is set up based on D'Alembert's principle. Then, the 

non-dimensional characteristic equation of the 
beam-damper system could be obtained in terms of 

the idea of the numerical assembly method (NAM) 

which divides the beam into segments and treats the 
force of rotational dampers as boundary conditions. 
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Corresponding characteristic equation is suitable for 
a tapered beam with multiple rotational dampers 

and arbitrary manageable boundary conditions at 

ends. The method to solve this complex equation is 
proposed. Finite elements analysis FEA is used to 

verify the complex-valued results obtained by 

characteristic equation. As a non-proportional 
damping system, it is evident that there exists an 

optimal damping and maximum damping ratio in 

the system. With consideration of a single-
rotational-damper case, natural frequencies and 

damping ratios for first five modes are attained, and 

curves for total maximum damping ratio and total 
optimal damping coefficient varying with taper 

ratios are also provided. 

2.  Problem formulations 

As shown in Fig. 2.1, the non-uniform beam is 

attached with N rotational dampers sequentially. 

With consideration of an Euler-Bernoulli beam, the 
differential equation of a non-uniform beam is 

given by 

 
   2 22

2 2 2

, ,
( ) 0

y x t y x t
EI x A x

x x t


  
  

    

           (1) 

where ( , )y x t is the transverse displacement, E is 

Young’s modulus,  is the mass density of the beam 

material, L is the span of the beam, and t is the time. 
Also, A(x) is the cross-sectional area at the position 

x, I(x) is the cross-sectional inertia, and they can be 
given by 
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   

                   (2b) 

where 1 0/b b   and 1 0/h h   are the taper ratios of 

the beam, A0 and I0 are the cross-sectional area and 
inertia at x=0 respectively, h0 and h1 are the cross-

section heights at x=0 and x=L respectively, b0 and 

b1 are the cross-section widths at x=0 and x=L 
respectively. 

The solution of Equation (1) can be expressed as 

( , ) ( ) i ty x t Y x e  , 1i                                        (3) 

 

 

Figure. 2.1. A non-uniform beam with N rotational 

dampers. 

By substitution of Equation (2) and Equation (3) 

into Equation (1), it yields 
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In this paper, we consider merely that the taper 

ratios   and   are equal. Define the non-

dimensional parameter   

( 1) 1 ( 1) 1
x x

L L
  

   
        
   

                           (5) 

and 

 
 

,
Y xx

x Y x
L L

                                                  (6) 

Thus, Equation (4) yields 

4 3 2 2 41
( ) 8 ( ) 12 ( ) ( ) 0

16
Y Y Y Y                   (7) 

where   

4 2 416 /( 1)                                                      (8) 

where non-dimensional  refers to the natural-

frequency-related eigenvalue, and is defined as 

  
1/ 22

0/ 12 /L h E                                           (9) 

The general solution of Equation (7) can be 

written as 
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and ( 1, , 4)jT j   are the integration 

constants,
2J and

2Y are the second order Bessel 

function of first and second kinds. Also,
2I and

2K are 

the second order modified Bessel function of first 
and second kinds. 

Equation (10) represents the eigenfunction of the 

transverse displacement of the beam. By 
disconnecting the beam at every rotational damper, 

the whole beam could be divided 

into  1N  segments. Free vibration of each 

segment has a form of Equation (10). The forces 

provided by rotational dampers can be therefore 

treated as boundary conditions. So the boundary 
conditions of the segments comprise displacement 

boundary conditions of the two ends, continuous 

conditions and force equilibrium conditions at the 
attaching point. By applying appropriate boundary 

conditions, and taking advantage of matrix, one can 

obtain the following coefficient equation for the 
beam system 

0DT                                                                  (11) 

For a tapered beam attached with N rotational 

dampers, the coefficient vector T can be expressed 

as  

 
T

1 1, , , ,n NT T T T                                          (12) 

where    
T

1 2 3 4, , , 1,2, , 1n n n n nT T T T n N  T  , n is 

the sequential number of the segment, and 

( 1, , 4)njT j   is the integration constants for the nth 

segment beam. The overall coefficient matrix D in 

Equation (11) can be expressed as 
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              (13) 

where 0 is a null matrix, Dn1 

and 2 ( 1, 2, , )n n ND  are 4×4 coefficient sub-

matrixes those would be attained by applying the 

continuous conditions and force equilibrium 
conditions at the nth damper’s location, DL and DR 

are 2×4 coefficient sub-matrixes those would be 

attained by applying the boundary conditions of the 

left and right ends respectively. These sub-matrixes 

of the overall coefficient matrix would be 
determined from the followings. 

2.1. Dn1 and Dn2 

According to Equation (10), the transverse 
displacement of the nth segment is 
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where 

 ( 1) 1n nx    ,  /n nx x L                              (15) 

Thus, the continuous conditions at the nth 
damper’s location requires that 

   R L

1n n n nY Y                                                    (16) 
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                                                   (17) 

Considering the force equilibrium conditions at 
the nth damper’s location, one has 
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(19) 

where dnC is the damping coefficient of the nth 

damper, the superscript ‘R’ refers to the right 
section of the segment, as well as  ‘L’ the left 

section of the segment. 

The substitution of Equation (14) into Equations 
(16)-(19) leads to 
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where 
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n
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C
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and the non-dimensional damping coefficient takes 
a form of 
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and 
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Taking advantage of matrix, Equation (20) can 
be rewritten as 
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2.2. DL and DR 

Fig. 2.2 illustrates four typically supported 
beams. The coefficient sub-matrixes DL and DR 

would be correspondingly obtained by applying the 

boundary conditions of the ends of these beams. 
Take a cantilever beam with its left end free and 

right end clamped as an example. Thus, the 

boundary conditions are 

 1 0Y    , (1) 0Y                                               (28) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure. 2.2. Beam-damper systems: (a) Cantilever beam. 

(b) Simply supported beam. (c) Hinged-clamped beam. 

(d) Clamped-clamped beam. 
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By substitution of Equation (10) into Equation 

(28), one obtains 

       11 4 12 4 13 4 14 4 0T J T Y T I T K               (29a) 

       11 5 12 5 13 5 14 5 0T J T Y T I T K               (29b) 

Taking the advantage of matrix, Equation (29) 

could be rewritten as 

L 1 0D T                                                                (30) 
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At the clamped right end, the boundary 

conditions are 

  0Y    ,    0Y                                             (32) 

In the same manner, one obtains 
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Accordingly, all sub-matrixes in coefficient 

matrix D are available, and they would be used to 
achieve the frequency equation.  

For the other beams those having different 

supports, as shown in Fig. 2.2, the corresponding 
coefficient sub-matrixes DL and DR could be 

addressed by the following Equations (36)-(38) 

respectively. 

For a simply supported beam as shown in Fig. 

2.2 (b), one has 
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For a hinged –clamped beam as shown in Fig. 
2.2 (c), one has 
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For a clamped-clamped beam as shown in Fig. 

2.2 (d), one has 
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3.  Solving Characteristic Equation  

The nontrivial solution of Equation (11) requires 
that the determinant of the matrix D is zero, i.e. 

det 0D                                                               (39) 

Equation (39) is the characteristic equation that 

governs the system’s complex natural frequencies. 

The presence of the rotational dampers renders 
the characteristic equation complex valued. And the 

explicit form of the solution of the Equation (39) is 

hard to be obtained due to the presence of the 
Bessel function. Thus, numerical method is 

introduced herein to achieve the numerical solutions 

of Equation (39). 

 The left term of Equation (39) is regarded as a 

function of , i.e. 

( ) detf   D                                                         (40)  

Accordingly, the zeros of function f would be the 
solutions of Equation (39).  

Then, we define an objective function  in a 

form of 
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   
2 2

Im( ( )) Re( ( ))f f                                   (41) 

By giving an acceptable error ε and appropriate 

initial values of   in advance, minimizing  would 

lead to approximate zeros of the function ( )f  . 

Note that the angular frequency  is in complex 

domain. Accordingly, there are two variables, i.e. 

the real and imaginary parts of the , in the defined 

function  . And, the optimizing methodology 

employed should be suitable for multi-variable 

searching.  

Note that there exist many complex valued zeros 

of ( )f  . The main difficulty in searching the zeros 

of   is to determinate the initial values. Tracing 

technique is used to determine the initial value. 
Consider an original system and a new system. The 

damping caused by the dampers of the new system 

is slightly greater than the original system. Note that 
there exists a sufficiently small difference of 

damping which let the optimizing method could 

find the zeros of   of the new system by letting the 

initial values are equal to those of the original 

system. Whereby, the solution of the damped 
system could be achieved by increasing the 

damping in steps, if the damping difference between 

the two adjacent steps is small enough. 

Actually, the natural frequencies appear in 

complex conjugate pairs. In this paper, we merely 

consider the natural frequencies having a form of 

2

0 01i i                                                 (42) 

where  is the damping ratio, and 0 is the pseudo-

undamped natural frequency. 

Then Gaussian elimination can be used to 

determine the unknown ijT , by substitution of the 

value of  1,2, ,5m m   into Equation (11). If the 

non-dimensional natural frequencies m and the 

constants  1,2, , 1n n N T  are available, one may 

then attain the mode shapes of the constrained 
beam.  

 

4.  Numerical Results and Discussions 

4.1. Comparing with FEA Results 

To ensure the reliability of the presented 

algorithm, Finite Elements Analysis (FEA) is 
employed for comparison. The cubic shape 

functions of the beam element are 

2 3

1 1 3( ) 2( )
n n

x x
W

L L
                                          (43a) 

2 3

2 2 ( ) ( )
n n

x x
W x L L

L L
                                   (43b) 

2 3

3 3( ) 2( )
n n

x x
W

L L
                                             (43c) 

2 3

4 ( ) ( )
n n

x x
W L L

L L
                                           (43d) 

where x is the abscissa in local coordinate system, 

and 
nL is the length of the element. Thus, the 

global mass, damping and stiffness matrixes, 

designated as M, C and K respectively, could be 

obtained by using (43) and the theory of the FEA. 
Accordingly, the motion equation of the beam-

damper system could be written in a discrete form 

of 

0  MU CU KU                                                (44) 

in which U is the vector of the nodal transverse 

displacements.  

Equation (44) can be rewritten in state-space as 

Ζ AZ                                                                 (45) 

where the system matrix A are 

1 1 

 
  

  

0 I
A

M K M C
                                         (46) 

in which 0 is a null matrix, I is an identity matrix. 

Thus, the complex valued eigenvalues of the system 
matrix A would lead to the pairs of conjugated 

natural frequencies of the whole system. And, the 

natural frequencies those having the form of 
Equation (42a) are selected for comparison.  

Two examples are considered herein for the 

verification of the validity of the present 
methodology. Example I is a hinged-clamped (h-c) 

tapered beam whose taper ratios 2   . Two 

rotational dampers are installed and located at 

1 0.3x   and 2 0.6x  respectively. The damping of 

the former (the first damper) is fixed, i.e. C1=1. 
Example II is a free-clamped (f-c) tapered beam 

attached with one rotational damper whose location 

is 1 0.5x  , and the taper ratios of the beam 

are 2   . In Example I, by altering the damping 

of the damper at 2 0.6x  , the root loci of the first 

five natural frequencies are illustrated in Fig. 4.1 
(a). In Example II, by altering the damping of the 
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damper, the root loci of the first five natural 

frequencies are illustrated in Fig. 4.1 (b). The 

arrows in Fig. 4.1 denote the increasing of the 
damping, and the increment is 0.01. In similar 

fashion, the curves of the damping ratios versus the 

damping of the altered damper were shown in Fig. 
4.2. 

For the sake of comparison, the FEA results are 

correspondingly plotted in both Fig. 4.1and Fig. 4.2. 
Good agreement is observed, which confirms the 

validity of the present method. 

Fig. 4.3 shows the first five normalized mode 

shapes of two examples. The 
0Y  in the figure is the 

value whose modulus is the maximum value of the 

whole mode, that is to say  0 maxY Y x   . In 

Example I, the value of damping of the second 
damper is 1. In Example II, the damping of the 

damper is 0.05. The comparison of the results 

obtained by FEA and the present methodology 
indicates a good agreement, which verified the 

validity of the method.  

 

(a) 

 

(b) 

Figure. 4.1. The root loci of the first five natural 

frequencies for the two examples: (a) Example I. (b) 
Example II. 

 

(a) 

 

(b) 

Figure. 4.2. The lowest five damping ratios versus the 
damping of the altered damper for the two examples: (a) 

Example I. (b) Example II. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.3. The first five normalized mode shapes of two 

examples: (a) Real part in Example I. (b) Imaginary part 
in Example I. (c) Real part in Example II. (d) Imaginary 

part in Example II. 

4.2. System Damping Ratio 

It could be observed from Fig. 4.1 that there 

exists a maximum modal damping ratio max . Also, 

for different modes, the maximum damping ratios 

and the corresponding damping coefficients are 
different. To investigate the relationship between 

the maximum damping ratio max and the taper 

ratio , eight types of ratio were considered herein. 

Fig. 4.4 illustrates the curves of the maximum 

damping ratio versus the damper’s position. It is 

observed that the value of max is varied with the 

position and taper ratio. It is found that the curves 

have peak values, and the number of the peak 
values of a curve is equal to its corresponding mode 

order whatever the taper ratio is. It is illustrated that 

the position of the peak value is slightly effected by 
the taper ratio, but significantly related to the mode 

order. The increasing of the taper ratio would 
reduce the peak values. It is found that the reduction 

would be relative small, if the taper ratio exceeds 7. 

The similar phenomena would be observed, 
according the curves those belong to the third, 

fourth and fifth modes and are not illustrated herein.  

The non-dimensional damping corresponding to 
the maximum damping ratio is designated as 

optimal damping coefficient
optC . It is varied with 

the damper’s position, and depicted in Fig. 4.5. It is 
found that the optimal damping coefficient of the 

damper would increase rapidly, if the damper is 

near the fixed end of the beam. This leads to a 
suggestion of the position of the damper that the 

damper’s position is less than 0.75, for the purpose 

of economy. The comparison of the curves of 
different taper ratios indicates that the optimal 

damping of the damper should increase quickly 

with the increment of the taper ratio.  

 

(a) 

 

(b) 

Figure. 4.4. Maximum damping ratio: (a) First mode. (b) 
Second mode. 

 

(a) 
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(b) 

Figure. 4.5. Optimal damping coefficient: (a) First 
model. (b) Second model. 

 

Figure. 4.6. Total maximum damping ratios for the first 

four modes. 

 

Figure. 4.7. Total optimal damping coefficients for the 

first four modes. 

For a given mode, the maximum of the peak 
values of a curve as depicted in Fig. 4.4 is 

designated as the total maximum damping ratio of 

this mode, and denoted as tmax . Accordingly, the 

damper is located at the optimal position. The value 

of it is merely related to the taper ratio and mode 

order. Fig. 4.6 shows the curves of tmax versus the 

taper ratio. It is found that the total maximum 

damping ratio decrease with increasing the taper 

ratio. Also, the higher the order of the mode is, the 
smaller the total maximum damping ratio is. 

Total optimal damping coefficient is denoted 

as
toptC , and corresponds to the total maximum 

damping ratio. Fig. 4.7 shows the varying of it with 
the taper ratio. It is found that the total optimal 

damping coefficient increase with increasing the 

taper ratio. The smaller it would be, the higher 
mode order it belongs to. For the second mode or 

the modes of higher order, the difference between 

the total optimal damping coefficients is relatively 
small. 

 

5.  Conclusions 

Free vibration of a tapered beam with multiple 

rotational dampers is examined. The Bessel 

functions are employed to address the exact free 
vibration of a double tapered beam without 

dampers. The continuous conditions at where the 

rotational dampers are installed are presented, so 
that NAM could be applied to achieve the exact 

solution of the system. The characteristic equation, 

which is described in complex domain, of the whole 
system is derived, and is suitable for different 

boundary conditions. 

To finding the solution of the characteristic 
equation, the left of it is regarded as a function of 

the natural frequency. A method to determine the 

zeros of this function is therefore proposed. By 
minimizing a constructed objective function, the 

proposed method is capable of attaining the real and 

imaginary part of the zeros simultaneously. The 
comparison of the results obtained by FEA and the 

present method indicates a good agreement, which 
confirms the validity of the present method. 

The analysis on a cantilever beam with one 

rotational damper is conducted. It is found that there 
exists a maximum damping ratio and corresponding 

optimal damping. The effectiveness of the rotational 

damper is observed. The maximum damping ratio 
would decreases and corresponding optimal 

damping would increases, if the taper ratio 

increases. For the first four modes, a lower mode 
order leads to a larger optimal damping and a higher 

maximum damping ratio. The similar phenomena 

would be found, if one surveys the total maximum 
damping ratio and the total optimal damping 

coefficient those determined by installing the 

damper at the optimal location and tuning the 
damper to the optimal. 
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