
C 2021 NSP 
Natural Sciences Publishing Cor. 

*Corresponding author e-mail: amal_foad9@hotmail.com 
   

 
Sohag J. Math. 8, No.3, 81-87 (2021)          81 

 
 
 

http://dx.doi.org/10.18576/sjm/080302 
  

On the Numerical Solution of Partial Differential Equation with 
Convection Term by using Bernoulli Wavelets 
A. F. Soliman1,2 

1Department of Basic Science, Benha Faculty of Engineering, Benha University, Banha, Egypt 
2Department of Mathematics, College of Arts and Science-Wadi Al-dawaser, Prince Sattam bin Abdulaziz University, Riyadh region, 
Saudi Arabia 
 
Received:15 Mar. 2021, Revised: 21 May 2021, Accepted: 23 Jul. 2021 
Published online: 1Sep. 2021 

 
 
Abstract: A numerical method for solving a partial differential equation with a convection term is presented. The proposed 
method is based on the Bernoulli wavelet in which Bernoulli polynomial is used. First, we use the 2-point Euler backward 
differentiation formula, and then we use collocation points that convert the differential equation into a system of algebraic 
equations. Explaining examples are added to demonstrate the validity and applicability of the method. . 
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1 Introduction  

Partial differential equations are used in many 
branches of science and engineering for simulating the 
physical process. These equations describe different 
processes in gas dynamics, viscous fluid flow, heat 
conduction, chemical reactions, filtration of liquids, 
biological species, environmental pollution, etc [1-2]. 
Partial differential equations have been numerically solved 
by different techniques [3-6]. We can convert all types of 
equations: parabolic, elliptic, and hyperbolic equations by 
using the method of finite element [7]. The finite point [8], 
Galerkin method [9], method of local Petrov-Galerkin [10], 
the method of reproducing kernel particle [11]. 

Wavelet theory is a relatively modern and emerging 
tool in the applied mathematical part. It has been used in an 
enormous range of engineering disciplines; especially, 
signal analysis for waveform representation and 
segmentation, time-frequency analysis, and fast algorithms 
for easy application. Wavelets allow the accurate 
exemplification of a collection of functions and factors. 
Further, wavelets establish a relation with quick numerical 
algorithms. Since 1991 the different types of wavelet 
methods have been used for numerical solutions of various 
kinds of the integral equation, elaborated research on these 
papers can be formed in [12]. 

The present paper is concerned with an efficient 
numerical approximation scheme to find the solution of the 

following linear parabolic differential equation. Given 
≡ [𝑎, 𝑏] and 𝐼 = (0, 𝑇), find 𝑢(𝑥, 𝑡) such that 

𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) + 𝛾𝑢𝑥(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑖𝑛	𝑄 ≡ × 𝐼,            
(1.1) 

connected with the conditions of boundary and initial 
𝑢(𝑎, 𝑡) = 𝑔%(𝑡),												𝑢(𝑏, 𝑡) = 𝑔&(𝑡),						𝑡 ∈ (0, 𝑇)                    

(1.2) 
𝑢(𝑥, 0) = 𝑢'(𝑥),										∀𝑥 ∈ Ω.                        (1.3) 

Where the real-valued function 𝑓 is defined on × 𝐼 and 
𝑔1, 𝑔2 are continuous functions in their variables. 
For solving this problem, we introduce a new nonstandard 
feasible and the method that we propose can be obtained by 
Bernoulli wavelet collocation with the characteristic 
method in time. The stability and analysis of convergent for 
the approximate solution will be presented. The numerical 
outcomes obtained by the suggested technique display the 
prospective convergence to the exact solution.  
Our main target is to display a fully discretized numerical 
method to find the solution of (1.1). We utilize the 
backward Euler method for the discretization in time (also 
called the Rothe method; (see, e.g., M.S. El-azab [13])), 
and method of Bernoulli wavelet collocation for space-
discretization. The numerical outcomes gained by the 
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suggested technique are compared with the exact solution 
of the problem; the numerical solution displays the 
expected convergence to the exact one as the mesh size is 
refined. 

The rest of this article is orderly as follows. We stat 
notations, assumptions, and definitions that use in our 
problem in section 2. Section 3, give the semi-discretization 
scheme, prior estimates. In section 4, we give the 
description Bernoulli wavelet, then function approximation 
used to solve PDE, then the method of solution of our 
problem is described. Section 5, gives specific two 
examples to test the suggested method. The conclusion is 
present in section 6. 

 
2 Notations, Assumptions and Definitions 
 

We use the standard functional spaces 𝐿> " #, 𝑉 ≡

𝑊?
@,> " #, 𝐶 (𝐼; 𝐿> " #+, 𝐿> (𝐼; 𝐿> " #+, and  (see e.g. 

[14, 15]). We shall denote either the inner product in 

𝐿> " #, or the duality between V and𝑉∗ (dual of V). We 

denote by |∙|, ‖∙‖, ‖∙‖∗, ‖∙‖	𝐿2(𝐼;𝑉), the norms in𝐿> " #,V, 

𝑉∗and 𝐿2(𝐼; 𝑉), respectively. all the constants which occur 
in the course of this paper will be denoted by C (e is small 
and ). 
The following elementary relations will be used in the 
following analysis: 
2∑ (𝑤E , 𝑤E −𝑤EF@)G

EH@ = ‖𝑤G‖> − ‖𝑢?‖> +∑ ‖𝑤E −𝑤EF@‖>G
EH@ , 

  (2.1) 
and Young’s inequality 

𝑎𝑏 ≤ e
>
𝑎> + @

>e
𝑏>,						𝑎, 𝑏 ∈ 𝑅                                      (2.2) 

We will assume, throughout this work, the following 
hypotheses on the given data. 
•(H1)  The function 𝑓: × I × R → R, is Lipschitz 
continuous in the meaning of 
2𝑓(𝑥, 𝑡, 𝑠) − 𝑓3𝑥, 𝑡′, 𝑠′52

≤ 𝑐62𝑡 − 𝑡′23|𝑠| + 2𝑠′25 + 2𝑠 − 𝑠′27, 
∀𝑡, 𝑡8 ∈ 𝐼,					∀𝑠, 𝑠8 ∈ 𝑅.      (2.3) 

Moreover, the function satisfy the growth condition 
|𝑓(𝑥, 𝑡, ℑ)| ≤ 𝐶(1 + |ℑ|),						∀(𝑥, 𝑡, ℑ) ∈ Ω × 𝐼 × 𝑅                       

(2.4) 
• (H2) 𝑢0 ∈ 𝑉. 
Under these assumptions, we can define the various 
solution of problem (1.1)-(1.3). 
Problem (P):  Find 𝑢:𝑄 → 𝑅 such that for all 𝜑 ∈ 𝑉 and 
a.e. , 

𝑢 ∈ 𝐶 (𝐼; 𝐿> " #+ ∩ 𝐿>(𝐼; V)   with  𝜕S𝑢 ∈ 𝐿> (𝐼; 𝐿> " #+,  

                (2.5) 
(𝑢𝑡, 𝜑) + 3𝑢𝑥, 𝜑𝑥5 + (𝛾𝑢𝑥, 𝜑) = (𝑓, 𝜑),              (2.6) 

𝑢(𝑥, 0) = 𝑢'(𝑥),													∀𝑥 ∈                  (2.7) 

 
3 The Semi Discretization Scheme. Prior 
Estimates 
 

Our main goal is to approximate (1.1) - (1.3) from a 
numerical point of view and to prove its convergence. The 
suggested technique is based on the combination of the 
characteristics and Roth methods. Using a 2-point Euler 
backward differentiation formula for the time derivative, 
and then applying the characteristic method to compensate 
the convection term which is discretized explicitly so that 
the underlying equation is converted into a linear system of 
algebraic equations that easily solved numerically at each 
subsequent time level. To this purpose, let n be a positive 
integer. Subdivide the time interval I by the points 𝑡𝑖 where 
𝑡𝑖 = 𝑖𝜏, 𝜏 = 𝑇 𝑛⁄ , 𝑖 = 0,1, … , 𝑛. The suggested 
discretization scheme of the problem (1.1) consists of the 
following problem 
Problem(𝑃𝜏):  Find 𝑢𝑖 ≅ 𝑢(∙, 𝑡𝑖) ∈ 𝑉, 𝑖 = 1,2, … such that 

𝑢'(𝑥) = 𝑢(𝑥, 0)                          (3.1) 
(𝑢𝑖 − 𝑢𝑖−1∗ , 𝜑) + 𝜏3𝑢𝑖′ , 𝜑′5 = 𝜏3𝑓𝑖, 𝜑5,				∀𝜑 ∈ 𝑉,        (3.2) 

𝑢𝑖∗(𝑥) = 𝑢>𝑖(𝑥 − 𝜏𝛾),                                     (3.3) 
where 𝑓𝑖 = 𝑓(𝑥, 𝑡𝑖, 𝑢𝑖−1) and 𝑢> ∈ 𝑉 is an extension of 𝑢 ∈

𝑉 "
∗
#,  satisfying 
‖𝑢‖?(Ω∗) ≤ 𝐶‖𝑢‖?(Ω)                                      (3.4) 

The presence of a weak solution 𝑢𝑖 ∈ 𝑉 is guaranteed by 
Lax–Milgram argument. The application of the coercivity 
condition requires the application of the inequality  

2(𝜑A , 𝜑) = ∫ B
BA
𝜑&

C
= [𝜑&(𝑥)]

C
≥ 0,        (3.5) 

with the convection term. 
Using 𝑢𝑖, (𝑖 = 0,1, … , 𝑛) determined by the recommended 
scheme (3.2) in each time step 𝑡𝑖, we introduce the 
following piecewise linear functions (Rothe functions) 
𝑢𝑛(0) = 𝑢0,			𝑢𝑛(𝑡) = 𝑢𝑖−1 + (𝑡 − 𝑡𝑖−1)𝛿𝑢𝑖,			for𝑡

∈ (𝑡𝑖−1, 𝑡𝑖],			𝑖 = 1,2, … 𝑛,									 
                                                                             (3.6) 

and the corresponding step function 
𝑢F𝑛(0),			𝑢F𝑛(𝑡) = 𝑢𝑖,			for𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖]                       (3.7) 

Using the notation of Rothe function and its corresponding 
step function, a piecewise constant interpolation of equation 
(1.3) over I yields ∀𝜑 ∈ 𝑉: 
(𝜕𝑡𝑢𝑛, 𝜑) + (𝜕𝑥𝑢F𝑛, 𝜕𝑥𝜑) + (𝛾𝜕𝑥𝑢F𝑡𝑛, 𝜑) = 3𝑓F

𝑛, 𝜑5,    (3.8) 
where 𝑢F𝜏𝑛(𝑡) = 𝑢F𝑛(𝑡 − 𝜏), 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖, and  𝑓F𝑛 = 𝑓(∙, 𝑡̅𝑛) 
with 𝑡̅𝑛 = 𝑡𝑖. 
To show the stability of the separated solution and prove 
the convergence results, we shall derive some a priori 
estimates. 
Lemma 3.1  Under the assumptions (H1) and (H2), there 
exists a positive constant C such that 
∑ 𝜏|𝛿𝑢𝑖|2𝑠
𝑖=1 +max

𝑠
‖𝑢𝑠‖2 +∑ ‖𝑢𝑖 − 𝑢𝑖−1‖2𝑠

𝑖=1 ≤ 𝐶,  (3.9) 
for any s. 
Proof.  Putting 𝜑 = 𝜏𝛿𝑢K in (3.2) and sum over 𝑖 for 𝑖 =
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1,2, … , 𝑠 we obtain 

F(
𝑢!"#(𝑥) − 𝑢!∗(𝑥)

𝜏 , 𝜏𝛿𝑢!+
%

!&#

+F(𝑢!"#' , 𝑢!"#' − 𝑢!')
%

!&#

=F(𝑓!"#, 𝜏𝛿𝑢!)
%

!&#

 

                                   (3.10) 
The first term I is estimated by  where 

𝐼1 = ∑ 𝜏(𝛿𝑢𝑖, 𝛿𝑢𝑖)𝑠
𝑖=1 = ∑ 𝜏|𝛿𝑢𝑖|2𝑠

𝑖=1 ,           (3.11) 

|𝐼>| ≤ KF𝜏(𝑢EF@e , 𝛿𝑢E)
G

EH@

K ≤ 𝐶fF𝜏‖𝑢EF@‖>
G

EH@

+ 𝜀F𝜏|𝛿𝑢E|>
G

EH@

 

 (3.12) 
In estimating (3.12), we have used Schwarz and Young’s 
inequalities. Taking into consideration the elementary 
identity (2.1), the elliptic term of (3.10) is bounded by 

2F(𝑢Ee, 𝑢Ee − 𝑢EF@e )
G

EH@

= ‖𝑢G‖> − ‖𝑢?‖> +F‖𝑢E − 𝑢EF@‖>
G

EH@

 

         (3.13) 
On collecting (3.10)-(3.13), choosing 𝜀, ŋ sufficiently small 
and applying the discrete version of Gronwall’s lemma, one 
conclude the estimates (3.9). 
Lemma 3.2  There exists a constant C such that 

‖𝑢F𝑛‖𝐿2(𝐼;𝑉) ≤ 𝐶,					‖𝑢𝑛 − 𝑢F𝑛‖𝐿2(𝐼;𝑉) ≤
𝐶

√𝑛
, 

‖𝑢𝑛 − 𝑢F𝑛‖
𝐿2M𝐼;𝐿2N OP ≤

𝐶
𝑛
,					‖𝑢𝑛 − 𝑢F𝜏𝑛‖𝐿2M𝐼;𝐿2N OP ≤

𝐶
𝑛

 

      (3.14) 
Proof.  The estimate (3.14)1 is a consequence of (3.9) and 
the estimates (3.14)2 is a consequence of the definitions of 
𝑢𝑛 and 𝑢F𝑛 the fact that 

|𝑢𝑛 − 𝑢F𝑛| ≤ |𝑢𝑖 − 𝑢𝑖−1|,                           (3.15) 
and thus the proof completes. 
Now we show the uniqueness of a solution to the problem 
(P). 
Theorem 3.1. Let 𝑢1 and 𝑢2 be two solutions to the 
problem (P). Then 𝑢1 = 𝑢2. 
Proof.  Denoting by 𝑒𝑢 = 𝑢1 − 𝑢2 and 𝑒𝑓 = 𝑓(𝑢1) −
𝑓(𝑢2). Since we assume that 𝑢1 and 𝑢2 are two solutions to 
the Problem (P), then from (2.6) we can write 

(𝜕𝑡𝑒𝑢, 𝜑) + 3𝜕𝑥𝑒𝑢, 𝜑𝑥5 + (𝛾𝜕𝑥𝑒𝑢, 𝜑) = 3𝑒𝑓, 𝜑5          
(3.16) 

Put 𝜑 = 𝑒O, we get 
1

2

𝑑

𝑑𝑡
|𝑒𝑢|2 + ‖𝑒𝑢‖2 = 3𝑒𝑓, 𝑒𝑢5                (3.17) 

The integration of (3.17)  over(0, 𝑡∗)  yields 
1

2
|𝑒𝑢(𝑡∗)|2 + ∫ ‖𝑒𝑢‖2𝑑𝑡

𝑡∗

0 = ∫ 3𝑒𝑓, 𝑒𝑢5𝑑𝑡
𝑡∗

0                 (3.18) 
Due to (2.3) we arrive at 

|𝑒𝑢(𝑡∗)|2 + ∫ ‖𝑒𝑢‖2𝑑𝑡
𝑡∗

0 ≤ 𝐶∫ ‖𝑒𝑢‖2𝑑𝑡
𝑡∗

0                               
(3.19) 

Apply Gronwall lemma we conclude that |𝑒𝑢(𝑡∗)|2 = 0. 
This is valid for an arbitrary 𝑡∗and thus	𝑢1 = 𝑢2. 
We can now formulate the following convergence results. 
Theorem 3.2  Let the assumptions (H1)-(H2) be fulfilled 
and let 𝑢𝑛 and 𝑢F𝑛 be the sequences defined by (3.6) and 
(3.7), respectively. Then there exists 𝑢 ∈ 𝐿&(𝐼; 𝑉), which is 
the solution of Problem (P), with 𝜕𝑡𝑢 ∈ 𝐿2 R𝐼; 𝐿23 5S 

such that 
𝑢F𝑛 → 𝑢,											in				𝐶 R𝐼; 𝐿23 5S ∩ 𝐿2(𝐼; 𝑉),  (3.20) 

𝜕𝑡𝑢F𝑛 → 𝜕𝑡𝑢,											in𝐿2 R𝐼; 𝐿23 5S                  (3.21) 
(in the sense of subsequences). Moreover, 

‖𝑢 − 𝑢n‖
o!pq;o!r st

> + ‖𝑢 − 𝑢n‖o!(q;u)
> ≤ 𝐶 "

1
𝑛> +

1
𝑛# 

        (3.22) 
Proof.  From lemma 3.2, 𝑢F𝑛 is bounded in the reflexive 
space 𝐿2(𝐼; 𝑉) and this implies the existence of 
subsequences of 𝑢F𝑛  (we denote it by 𝑢F𝑛 again) such that 

𝑢F𝑛 → 𝑢,																in𝐿2(𝐼; 𝑉)                     (3.23) 
The estimate (3.14)2 implies 

∫ ‖𝑢𝑛 − 𝑢F𝑛‖2𝑄 ≤ 𝐶𝜏                                   (3.24) 

Hence, {𝑛F𝑛} is compact in 𝐿2 R𝐼; 𝐿23 5S and also 
pointwise in Q. because of Kolmogorov’s compactness 
argument (see [15]). So we can conclude that  

,   in𝐿2(𝐼; 𝑉),                              (3.25) 

, in			𝐿2 R𝐼; 𝐿23 5S,                       (3.26) 
For each 𝑡 ∈ 𝐼, by lemma 3.1, 𝜕𝑡𝑢𝑛 is uniformly bounded in 
the reflexive Banach space 𝐿23 5 and hence has a 
subsequence which converges weakly to an element ℑ ∈
𝐿> M P (Eberlin-Smulian theorem [15]). Thus 

𝜕𝑡𝑢𝑛
𝑤
→ ℑ  in 𝐿23 5∀𝑡 ∈ 𝐼   (3.27) 

Using Fubini theorem, we get 
(𝑢𝑛 − 𝑢0, 𝑥) = ∫ (𝜕𝑡𝑢𝑛, 𝑥)𝑑𝑡

𝑡
0                            (3.28) 

Taking the limit as 𝑛 → ∞, we obtain 
(𝑢 − 𝑢0, 𝑥) = ∫ (ℑ, 𝑥)

𝑡
0 𝑑𝑡,                             (3.29) 

which implies 
3𝑢 − 𝑢0 − ∫ ℑ(𝑡)𝑡

0 𝑑𝑡, 𝑥5 = 0                      (3.30) 
Therefore, we have 𝜕𝑡𝑢 = ℑ. Due to Arzela-Ascoli 
theorem, the convergence 
𝑢𝑛 → 𝑢,      in 					𝐿2 R𝐼; 𝐿23 5S,                            (3.31) 

and the estimate 

∫ ‖𝜕𝑡𝑢𝑛‖2𝐼 + ∫ ‖𝜕𝑡𝑢‖2𝐼 ≤ 𝐶,                                 (3.32) 
mean that there is a subsequence  for which 

𝑢F𝑛 → 𝑢,     in 			𝐶 w𝐼; 𝐿& x yz,                       (3.33) 
Now, we have to prove that u is the solution of the problem 
(P). 
On integrating (3.8) over the interval (0, 𝑡∗) and then pass 
to the limit as 𝑛 → ∞. We will demonstrate separately this 
on each term of the equation 

T (𝜕S𝑢n, 𝜑)𝑑𝑡
S∗

?
+T (𝜕{𝑢Xn, 𝜕{𝜑)𝑑𝑡

S∗

?
+T (𝛾𝜕{𝑢XSn, 𝜑)𝑑𝑡

S∗

?

= T N𝑓̅n, 𝜑O𝑑𝑡
S∗

?
 

                                                   (3.34) 
as 𝑛 → ∞, (3.21) implies that 

21 III +=
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∫ (𝜕𝑡𝑢𝑛, 𝜑)𝑑𝑡
𝑡∗

0 → ∫ (𝜕𝑡𝑢, 𝜑)
𝑡∗

0 𝑑𝑡                                 (3.35) 
For the second and third terms of (3.34), 
𝐼𝐼 = ∫ (𝜕{𝑢n, 𝜕{𝜑)𝑑𝑡

S∗

? + ∫ (𝜕{(𝑢n − 𝑢Xn), 𝜕{𝜑)𝑑𝑡
S∗

? = (𝐼𝐼)@ +
(𝐼𝐼)>,  

                                                                (3.36) 
|(𝐼𝐼)2| ≤ 𝐶‖𝑢𝑛 − 𝑢F𝑛‖‖𝜑‖ ≤ 𝐶‖𝜑‖√𝜏                            
(3.37) 
Thus, (3.20) gives 
∫ (𝜕𝑥𝑢F𝑛, 𝜕𝑥𝜑)𝑑𝑡
𝑡∗

0 → ∫ (𝜕𝑥𝑢, 𝜕𝑥𝜑)𝑑𝑡
𝑡∗

0     as 𝑛 → ∞   (3.38) 
Similarly, we conclude that 

∫ (𝛾𝜕𝑥𝑢F𝜏𝑛, 𝜑)𝑑𝑡
𝑡∗

0 → ∫ (𝛾𝜕𝑥𝑢, 𝜑)𝑑𝑡
𝑡∗

0 	as			𝑛 → ∞                          
(3.39) 

For the right-hand side, we write 

                                           (3.40) 
|𝑓(𝑡̅𝑛, 𝑢F𝜏𝑛) − 𝑓(𝑡̅𝑛, 𝑢F𝑛)| ≤ 𝐶‖𝑢F𝑛 − 𝑢F𝜏𝑛‖‖𝜑‖ ≤ 𝐶𝜏‖𝜑‖ 

   (3.41) 
|𝑓(𝑡̅𝑛, 𝑢F𝑛) − 𝑓(𝑡̅𝑛, 𝑢𝑛)| ≤ 𝐶‖𝑢𝑛 − 𝑢F𝑛‖‖𝜑‖ ≤ 𝐶𝜏‖𝜑‖ 

       (3.42) 
(𝑓(𝑡̅𝑛, 𝑢𝑛), 𝜑) → (𝑓, 𝜑)   as n → ∞   (3.43) 

Thus we have proved 
∫ 3𝑓F𝑛, 𝜑5𝑡∗

0 𝑑𝑡 → ∫ (𝑓, 𝜑)𝑡∗

0 𝑑𝑡    as  n → ∞   (3.44) 
Therefore, on passing to the limit as	n → ∞, and 
differentiate both sides of the result with respect to 𝑡∗, we 
see that u is the solution of problem (P). 
Subtracting (3.8) from (2.6) and using 𝜑 = 𝑒O(𝑡) = 𝑢(𝑡) −
𝑢Y(𝑡) as a test function we obtain 
1
2
𝑑
𝑑𝑡
|𝑒}|> + ‖𝑒}‖> ≤ 𝜀]𝑒~]

> + 𝐶f|𝑒}|> + ŋ‖𝑒}‖>

+ 𝐶ŋ‖𝑢n − 𝑢Xn‖>, 
                                                              (3.45) 

where 𝑒𝑓(𝑡) = 𝑓(𝑡, 𝑢) − 𝑓F𝜏
𝑛.  Now we consider 

≤ |𝑒}|> + |𝑢n − 𝑢X�n|> + 𝜏>    (3.46) 
On integrating (3.45) over I, substituting from lemma 3.1, 
choosing 𝜀, ŋ sufficiently small and applying Gronwall’s 
lemma the proof completes. 

4 Wavelet 

4.1Bernoulli Wavelet 
 
Dilation and translation of a function (mother 

wavelet) construct a family of functions called wavelets and 
is defined as follows [16-19] 

𝜑𝑎,𝑏(𝑡) = |𝑎|
−1
2 𝜑 R𝑡−𝑏

𝑎
S ,												𝑎 ≠ 0,                 (4.1.1) 

where 𝑎, 𝑏 ∈ 𝑅 are dilation and translation parameters that 
vary continuously. The family of discrete wavelets that 
form a basis for 𝐿2(𝑅) is defined as follows 

𝜑𝑘,𝑛(𝑡) = |𝑎0|
𝑘
2𝜑(𝑎0𝑘𝑡 − 𝑛𝑏0)                      (4.1.2) 

where 𝑛	and	𝑘 are positive integers and 𝑎0 > 1, 𝑏0 > 1. 
When we choose Bernoulli polynomial as a mother 
function we get Bernoulli wavelet. Bernoulli wavelets are 
𝜑𝑛,𝑚(𝑡) = 𝜑(𝑘, 𝑛_, 𝑚, 𝑡) have four arguments; 𝑛_ = 𝑛 −
1, 𝑛 = 1,2,3, … , 2𝑘−1, 𝑘 is any positive integer, 𝑚 is the 
order of Bernoulli polynomials and 𝑡 is the normalized 
time. The definition of Bernoulli wavelets [20, 21] in the 
interval [0,1) is given by 
 
φ`,a(𝑡) =

= � 2
&'(
) 𝐵�b(2cd%𝑡 − 𝑛�),					 for

𝑛�
2cd% ≤ 𝑡 <

𝑛� + 1
2cd%

0,																																												 otherwise,
 

 
                    (4.1.3) 

where 
𝐵e𝑚(𝑡) =

f
1,																																																								 for𝑚 = 0,

1

_(−1)
𝑚−1(𝑚!)2
(2𝑚)! ∝2𝑚

𝐵𝑚(𝑡),								 for𝑚 > 0(4.1.4) 

where 𝑚 = 0,1,… ,𝑀 − 1 order of the Bernoulli 
polynomial for a constant positive integer M. The 
coefficient 1

_(−1)
𝑚−1(𝑚!)2
(2𝑚)! ∝2𝑚

 is used for orthonormality, and 

The Bernoulli polynomial is defined over the interval [0,1] 
is given by 

𝐵𝑚(𝑡) = ∑ R𝑚𝑖 S ∝𝑚−𝑖 𝑡
𝑖𝑚

𝑖=0 (4.1.5) 
where the relation of Bernoulli numbers 𝛼𝑖, 𝑖 = 0,1, … ,𝑚 is 
given by 

𝑡

𝑒𝑡−1
= ∑ 𝛼𝑖

𝑡𝑖

𝑖!
∞
𝑖=0                      (4.1.6) 

Hence we can see the first seven Bernoulli numbers as 
𝛼0 = 1, 𝛼1 =

−1

2
, 𝛼2 =

1

6
, 𝛼3 = 0, …            (4.1.7) 

and hence the six-four Bernoulli polynomials can found 
from equation (4.1.5) as 

𝐵0(𝑡) = 1, 𝐵1(𝑡) = 𝑡 −
1
2
,

𝐵2(𝑡) = 𝑡2 − t +
1
6
, … 

   (4.1.8) 
 
4.2Function Approximation 

 
Bernoulli wavelet form an orthonormal basis for 

[0,1), so we can approximate a function 𝑦(𝑡) which is 
defined on [0,1) as 

𝑦(𝑡) = ∑ ∑ 𝑎Y,b𝜑Y,b(𝑡)l
bm'

l
Ym% ,                      (4.2.1) 

where  
𝑎𝑛,𝑚 = 3𝑦(𝑡), 𝜑𝑛,𝑚(𝑡)5      (4.2.2) 

in which (∙,∙) denotes the inner product. The truncated form 
of the series is 

𝑦(𝑥) ≈ ∑ ∑ 𝑎Y,b𝜑Y,b(𝑥) = 𝐴∅(𝑥)nd%
bm'

&.'(
`m%      (4.2.3) 

( ) ( ), ( , ) ( , ) ( , ) ( , ) ( , ) ,n n n n n n n n n n nf f t u f t u f t u f t u f t utj = - + - + j

2 2 22
( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n n

f ie f t u f t u f t u f t u f t u f t ut t t£ - + - + -
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where 𝐴 and ∅ are 2𝑘−1𝑀 × 1 matrices given by 
𝐴
= �𝑎%,', … , 𝑎%,nd%, 𝑎&,', … , 𝑎&,nd%, … , 𝑎&&'(,', … , 𝑎&&'(,nd%�, 

(4.2.4) 
∅ = 
o𝜑1,0, … , 𝜑1,𝑀−1, 𝜑2,0, … , 𝜑2,𝑀−1, … , 𝜑2𝑘−1,0, … , 𝜑2𝑘−1,𝑀−1q

𝑇
. 

(4.2.5) 
 

4.3 Method of Solution 
 

The 2-point Euler backward differentiation formula 

is used to approximate  given in equation (1.1), 

at the time-level  for 𝑖 = 1,2, … , 𝑙. Therefore, we have 

𝑢𝑖(𝑥)−𝑢𝑖−1(𝑥)
𝜏

− 3𝑢′′5𝑖(𝑥) + 𝛾3𝑢′5𝑖−1(𝑥) = 𝑓𝑖(𝑥)       (4.3.1) 

where 𝑓𝑖(𝑥) = 𝑓(𝑥, 𝑡𝑖) and 	𝑢𝑖(𝑥) = 𝑢(𝑥, 𝑡𝑖). 
Equivalently, we can rewrite equation (4.3.1) as 

𝑢𝑖(𝑥) − 𝜏3𝑢′′5𝑖(𝑥) = 𝐹𝑖(𝑥), (4.3.2) 

where 
𝐹𝑖(𝑥) = 𝜏𝑓𝑖(𝑥) + (𝑢∗)𝑖−1(𝑥).(4.3.3) 

(𝑢∗)𝑖−1(𝑥) = (𝑢>)𝑖−1(𝑥 − 𝜏𝛾)                    (4.3.4) 
Then we approximate the unknown function 𝑢𝑖(𝑥) with 
help of Bernoulli wavelet as 

𝑢𝑖(𝑥) = ∑ ∑ 𝑐𝑛,𝑚𝑖 𝜑𝑛,𝑚(𝑥) = 𝐶𝑖	∅(𝑥).𝑀−1
𝑚=0

2𝑘−1
𝑛=1  (4.3.5) 

Where 𝐶𝑖 and ∅ are 2𝑘−1𝑀 × 1 matrices given by equation  
𝐶𝑖 = o𝑐1,0𝑖 , … , 𝑐1,𝑀−1𝑖 , 𝑐2,0𝑖 , … , 𝑐2,𝑀−1𝑖 , … , 𝑐2𝑘−1,𝑀−1

𝑖 q, (4.3.6) 
𝜑 = �𝜑%,', … , 𝜑%,nd%, 𝜑&,', … , 𝜑&,nd%, … , 𝜑&&'(,nd%�, 

 (4.3.7) 
then we can rewrite equation (4.3.2) as 

(Ci)T∅(𝑥) − 𝜏(Ci)T∅′′(𝑥) = Fi(𝑥),             (4.3.8) 
subject to the boundary conditions 
(𝐶𝑖)𝑇∅(𝑎) = 𝑔1(𝑡𝑖),    (𝐶

𝑖)𝑇∅(𝑏) = 𝑔2(𝑡𝑖)  (4.3.9) 
Now collocating equation (4.3.8) at points 

𝑥𝑖 =
𝑖−0.5

2𝑘𝑀
, 𝑖 = 1,2, … , 2𝑘−1𝑀− 2 ,                   (4.3.10) 

Using the collocation points in equation (4.3.10), we get 
(Ci)T∅3𝑥𝑗5 − 𝜏(Ci)T∅′′3𝑥𝑗5 = Fi(𝑥𝑗)                 (4.3.11) 

From equation (4.3.5) there are 2𝑘−1𝑀 unknown constants. 
To find out the values of these unknown, we need 2𝑘−1𝑀 
equation out of which 2 equations are obtained from 
boundary conditions (4.3.11) which the remaining 
2𝑘−1𝑀− 2 equations are obtained from (4.3.11). By 
solving this system of equations given the unknown 
constants. 
 
5 Illustrative Examples 
 
 

In this section, we solve partial differential equations with 
boundary conditions to test the efficiency of our method. 
We first develop a system of the algebraic equation from 

boundary conditions and with the help of collocation 
points. We use the MATLAB program to obtain the 
solution. 
Example 1: 
Consider the following partial differential equation 
𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) + 𝛾𝑢𝑥(𝑥, 𝑡)

= 𝑒𝑥𝑡(𝑥 − 𝑡2 + 𝑡) + 2𝑥 − 2,			 
𝑖𝑛				𝑄 ≡ (0,1) × (0, 𝑇), 

             (5.1) 
with the boundary conditions 
𝑢(0, 𝑡) = 6,																										𝑢(1, 𝑡) = 𝑒% + 6               (5.2) 

the exact solution of equation (5.1) is as follows 
𝑢(𝑥, 𝑡) = 𝑒Ax + 𝑥& + 5                   (5.3) 

 
Table 5.1. Comparison between exact and numerical solution. 

 
 
Example 2: 
 
 

 
Figure 5.1: Exact and numerical solution 
 
Example 2: 
 
Consider the following partial differential equation  
𝑢𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) + 𝛾𝑢𝑥(𝑥, 𝑡) = 𝑥2 − 2𝑡 + 2𝑥𝑡,			  (5.4) 

with the boundary conditions 

),,( txut

it
x t = 0.1, 𝛾 = 1, 𝑀 = 4, and𝑘 = 1 

 Exact 
solution 

numerical 
solution Error 

0.0 6.000000 6.000000 0.000000E+00 
0.1 6.020050 6.020050 5.199959E-08 
0.2 6.060201 6.060201 2.485691E-08 
0.3 6.120455 6.120455 3.470314E-07 
0.4 6.200811 6.200812 8.197794E-07 
0.5 6.301271 6.301272 1.338052E-06 
0.6 6.421837 6.421838 1.786392E-06 
0.7 6.562508 6.562510 2.038828E-06 
0.8 6.723287 6.723289 1.958773E-06 
0.9 6.904174 6.904176 1.398912E-06 
1.0 7.105171 7.105171 0.000000E+00 
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𝑢(0, 𝑡) = 3,																													𝑢(1, 𝑡) = 𝑡 + 3         (5.5) 
the exact solution of equation (5.4) is as follows 

𝑢(𝑥, 𝑡) = 𝑥&𝑡 + 3                                     (5.6) 
 

Table 5.2. Comparison between exact and numerical solution. 

 
 
 

 
Figure 5.2: Exact and numerical solution 

 
From the numerical results in Tables and figures 5.1 and 
5.2, it is easy to conclude that the obtained results by the 
proposed method are in perfect concord with the exact 
solution. 
 
 
6 Conclusions 
 

The present work aims to improve an efficient and 
accurate method for solving the partial differential 
equation. The problem has been reduced to solving a 
system of linear algebraic equations. Two test problems 
were presented to demonstrate the validity of the technique. 
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