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Abstract: A numerical method for solving a partial differential equation with a convection term is presented. The proposed
method is based on the Bernoulli wavelet in which Bernoulli polynomial is used. First, we use the 2-point Euler backward
differentiation formula, and then we use collocation points that convert the differential equation into a system of algebraic
equations. Explaining examples are added to demonstrate the validity and applicability of the method. .

Keywords: partial differential equation, 2-point Euler backward differentiation formula, Bernoulli wavelets, collocation method.

1 Introduction

Partial differential equations are used in many
branches of science and engineering for simulating the
physical process. These equations describe different
processes in gas dynamics, viscous fluid flow, heat
conduction, chemical reactions, filtration of liquids,
biological species, environmental pollution, etc [1-2].
Partial differential equations have been numerically solved
by different techniques [3-6]. We can convert all types of
equations: parabolic, elliptic, and hyperbolic equations by
using the method of finite element [7]. The finite point 8],
Galerkin method [9], method of local Petrov-Galerkin [10],
the method of reproducing kernel particle [11].

Wavelet theory is a relatively modern and emerging
tool in the applied mathematical part. It has been used in an
enormous range of engineering disciplines; especially,

signal analysis for waveform representation and
segmentation, time-frequency analysis, and fast algorithms
for easy application. Wavelets allow the accurate

exemplification of a collection of functions and factors.
Further, wavelets establish a relation with quick numerical
algorithms. Since 1991 the different types of wavelet
methods have been used for numerical solutions of various
kinds of the integral equation, elaborated research on these
papers can be formed in [12].

The present paper is concerned with an efficient
numerical approximation scheme to find the solution of the

following linear parabolic differential equation. Given Q
= [a,b] and I = (0, T), find u(x, t) such that

U (4 1) — e (60 + Y, (0, 0) = f(x, ), inQ = 2 x1,

(1.1)
connected with the conditions of boundary and initial
u(a, t) = g,(t), u(b,t) = g,(t), te(0,7)
(1.2)
u(x,0) = uy(x), Vx € Q. (1.3)

Where the real-valued function f is defined on Q x [ and
g, 9, are continuous functions in their variables.

For solving this problem, we introduce a new nonstandard
feasible and the method that we propose can be obtained by
Bernoulli wavelet collocation with the characteristic
method in time. The stability and analysis of convergent for
the approximate solution will be presented. The numerical
outcomes obtained by the suggested technique display the
prospective convergence to the exact solution.

Our main target is to display a fully discretized numerical
method to find the solution of (1.1). We utilize the
backward Euler method for the discretization in time (also
called the Rothe method; (see, e.g., M.S. El-azab [13])),
and method of Bernoulli wavelet collocation for space-
discretization. The numerical outcomes gained by the
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suggested technique are compared with the exact solution
of the problem; the numerical solution displays the
expected convergence to the exact one as the mesh size is
refined.

The rest of this article is orderly as follows. We stat
notations, assumptions, and definitions that use in our
problem in section 2. Section 3, give the semi-discretization
scheme, prior estimates. In section 4, we give the
description Bernoulli wavelet, then function approximation
used to solve PDE, then the method of solution of our
problem is described. Section 5, gives specific two
examples to test the suggested method. The conclusion is
present in section 6.

2 Notations, Assumptions and Definitions

We use the standard functional spaces L, (Q ), V=

W, (Q ), c <I; L, (Q )), L, <1; L, ( Q )), and (see e.g.
[14, 15]). (
L, ( Q ) or the duality between V andV* (dual of V). We

ey )We shall denote either the inner product in

denote by |, 11, 111, I1l i) the norms int, (€2 )7,

V*and L,(I; V), respectively. all the constants which occur
in the course of this paper will be denoted by C (& is small
and CEZC(é‘_l)).

The following elementary relations will be used in the
following analysis:

255wy wi = wisg) = Iwsll? = lluoll? + Zi=illw; — wiq 1%,

2.1)

and Young’s inequality
abS§a2+2l€b2, a,b€R (2.2)
We will assume, throughout this work, the following
hypotheses on the given data.
e(H1) The function f: {2 xIxR-R, is Lipschitz
continuous in the meaning of
|f(x, t,s) — f(x, t,s )|
< c{|t— t |(|s| + |s |) + |s—s |},
vt,t' €1, Vs,s' €R.
Moreover, the function satisfy the growth condition
lf(t, D <Cc@+I3]), v(xt,I) eQxIxR
(2.4)

(2.3)

e (H2) u, €V.

Under these assumptions, we can define the various
solution of problem (1.1)-(1.3).

Problem (P): Find u: Q — R such that for all ¢ € V and

ae tel,

uE C<I;L2<Q )) NL,(I;V) with d,u€lL, <1; L2<Q ))

(2.5)
(o @) + (uo 9,) + Gu, 0) = (f, 0), (2.6)
u(x,0) = uy(x), vx € Q 2.7

3 The Semi Discretization Scheme. Prior

Estimates

Our main goal is to approximate (1.1) — (1.3) from a
numerical point of view and to prove its convergence. The
suggested technique is based on the combination of the
characteristics and Roth methods. Using a 2-point Euler
backward differentiation formula for the time derivative,
and then applying the characteristic method to compensate
the convection term which is discretized explicitly so that
the underlying equation is converted into a linear system of
algebraic equations that easily solved numerically at each
subsequent time level. To this purpose, let n be a positive
integer. Subdivide the time interval / by the points t; where
t,=it, T= T/n,i =01,..,n The suggested
discretization scheme of the problem (1.1) consists of the
following problem
Problem(P,): Findu; = u(-, t;) € V,i = 1,2, ... such that

uy(x) = u(x,0) (3.1
w—uy,0) +t(w @) =1(f,0), YoV, (3.2
u; (x) = 4;(x — 7y), (3.3)

where f, = f(x,t;,u;_;) and @i € V is an extension of u €
1% ( Q ), Q" 5 Q satisfying

llully @y < Cllully g (3.4)
The presence of a weak solution u; € V is guaranteed by

Lax—Milgram argument. The application of the coercivity
condition requires the application of the inequality

2009 =] oz =9P@] 20, ()

with the convection term.
Using u;, (i = 0,1, ...,n) determined by the recommended
scheme (3.2) in each time step t;, we introduce the
following piecewise linear functions (Rothe functions)
u(0) = uy, u"(t) =uq + (t —t,_1)0u;, fort
€ (ti_,t;], i=12,..n,
(3.6)

and the corresponding step function

u"(0), u"(t) =w, fort € (t;_q,t;] (3.7
Using the notation of Rothe function and its corresponding
step function, a piecewise constant interpolation of equation
(1.3) over [ yields Vo € V:

@, 9) + (0.4, 0,0) + (0., ) = (F,0). (3.8)
where W'(t) = u"(t — 1), t;y <t < t,and f = f(, )
with t" = t,.

To show the stability of the separated solution and prove
the convergence results, we shall derive some a priori
estimates.

Lemma 3.1 Under the assumptions (H1) and (H2), there
exists a positive constant C such that

i1 7| Su, | + mSaX||uS||2 + 2w - u 4> < C, (3.9
for any s.

Proof. Putting ¢ = téu; in (3.2) and sum over i for i =
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1,2, ..., s we obtain
S

S S
Ui () —ui (x) , , ,
Z (M%'T&‘i + Z(qu'qu —u) = Z(ﬁ'+1'76ui)
i=1 i=1

i=1

(3.10)
The first term / is estimated by / = /| + I, where
I = ¥, t(6w, 6uy) = Xiy 7| 6u,|?, (3.11)
S S S
1 <D iy, 8u)| < € ) llual + 2 ) clowl?
=1 =1 =1
(3.12)

In estimating (3.12), we have used Schwarz and Young’s
inequalities. Taking into consideration the elementary
identity (2.1), the elliptic term of (3.10) is bounded by

S N

2> (g = i3) = sl = Il + Y Tty = g2
i=1 i=1

(3.13)
On collecting (3.10)—(3.13), choosing ¢, ij sufficiently small
and applying the discrete version of Gronwall’s lemma, one
conclude the estimates (3.9).
Lemma 3.2 There exists a constant C such that

Cc
&,y < €0 N =g < ﬁ:
e -l =
n Wk Lz(I:Lz(Q )) T n
(3.14)

Proof. The estimate (3.14)1 is a consequence of (3.9) and
the estimates (3.14)2 is a consequence of the definitions of
u™ and u" the fact that

[u —u"| < u; — w4,
and thus the proof completes.
Now we show the uniqueness of a solution to the problem
(P).
Theorem 3.1. Let u; and u, be two solutions to the
problem (P). Then u; = u,.
Proof.  Denoting by e, =u; —u, and ey = f(u;) —

[l — an”LZ(I:LZ(Q )) <

(3.15)

f(uy). Since we assume that u; and u, are two solutions to
the Problem (P), then from (2.6) we can write

(0cew ) + (0500 0,) + (Y0, 9) = (ef,0)

(3.16)
Put ¢ = e, we get
1d
S lenl® +llell® = (epren) (3.17)
The integration of (3.17) over(0,t*) yields
1 " t* t*
e @ + [ llellPde = [ (ef e,)dt (3.18)

Due to (2.3) we arrive at

le ()2 + [ lle,lI?dt < C [ lle,lI%dt

(3.19)

Apply Gronwall lemma we conclude that |e,(t*)|? = 0.
This is valid for an arbitrary t*and thus u; = u,.
We can now formulate the following convergence results.
Theorem 3.2 Let the assumptions (H1)—(H2) be fulfilled
and let u" and 4" be the sequences defined by (3.6) and
(3.7), respectively. Then there exists u € L,(I; V), which is

the solution of Problem (P), with d,u € L, (I ; Lz( Q ))

such that
" >u  in C (1; L(O )) n L,(I; V), (3.20)
0" > 0, inky (1 1,( Q2 )) (3.21)

(in the sense of subsequences). Moreover,

1 1
Rk ) =l gy < € (o5 +5)

<< Q)
(3.22)

Proof. From lemma 3.2, 4" is bounded in the reflexive

nz n

space L,(I;V) and this implies the existence of
subsequences of u" (we denote it by 4" again) such that
u' -, inL,(I; V) (3.23)
The estimate (3.14)2 implies
fQ [[u —u"||? < Ct (3.24)

Hence, {n"} is compact in L, (1; LZ(Q)) and also
pointwise in Q. because of Kolmogorov’s compactness
argument (see [15]). So we can conclude that

n w
W —=U a1, (1;V), (3.25)

n
W in 1, (1 1,( €2 )), (3.26)
For each t € I, by lemma 3.1, d,u™ is uniformly bounded in

the reflexive Banach space LZ(Q) and hence has a
subsequence which converges weakly to an element J €
L, ( Q ) (Eberlin-Smulian theorem [15]). Thus

w
dur >3 inL,(Q)veel (327)
Using Fubini theorem, we get

(" —uy,x) = fot(atu”, x)dt (3.28)
Taking the limit as n — oo, we obtain
(= uo, %) = [[(3,%) dt, (3.29)
which implies
(u—u— f, 3@ dt,x) =0 (3.30)

o~

Therefore, we have d,u=3J.
theorem, the convergence

Due to Arzela-Ascoli

wou i L (5L,(€2)). (3.31)
and the estimate
S, Mo ll? + f, llowull® < c, (3.32)
mean that there is a subsequence for which
T >u in C (1; L(© )) (3.33)

Now, we have to prove that u is the solution of the problem
(P).

On integrating (3.8) over the interval (0,t*) and then pass
to the limit as n — oo. We will demonstrate separately this
on each term of the equation

t* t* t*
f @™, p)dt + f @,", 0,0)dt + f (o, p)dt
0 0 0

.
NGO
0
(3.34)
asn — oo, (3.21) implies that
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fy @™, @)dt - f, (0w, ) dt

For the second and third terms of (3.34),
1= f; @™, 9p)dt + [ (@,(u" =", 8, 9)dt = (ID), +
(11)2:

(3.35)

(3.36)
|(D,| < cllv" @ llllell < Cllolive
(3.37)
Thus, (3.20) gives
Jy @ 8,0)dt > [} (0,u,0,9)dt asn— oo (3.38)
Similarly, we conclude that
Jy G, @)dt > [; (Y p)dt as n - oo
(3.39)
For the right-hand side, we write

(77 o) = (@ @ - r @@+ f @7 = fE"u") + £ ") o)
(3.40)

IF@,w) - @] < clla” - el < Crllell
(3.41)

IF@ 4" = f@&,u)] < cllw" = a@llell < crlloll
(3.42)

(FEu"),9) - (f,p) asn— o (3.43)
Thus we have proved
t* = &
fo (7", (p) dt - fo (f,p)dt as n—- o (3.44)
Therefore, on passing to the limit asn — oo, and
differentiate both sides of the result with respect to t*, we
see that u is the solution of problem (P).
Subtracting (3.8) from (2.6) and using ¢ = e, (t) = u(t) —
u™(t) as a test function we obtain
1d 2
S lewl? + lleull? < eler|” + Colewl? + nlle, P
+ Gllu™ —a"|l?,
(3.45)
where e(t) = f(t,u) — ]_c: Now we consider
2 2
les [ <| - s [ +| reuy - e an | +| ra - ra.a
< ley® + [u™ —@}? + 12 (3.46)
On integrating (3.45) over /, substituting from lemma 3.1,

choosing ¢,1 sufficiently small and applying Gronwall’s
lemma the proof completes.

4 Wavelet

2

4.1Bernoulli Wavelet

Dilation and translation of a function (mother
wavelet) construct a family of functions called wavelets and
is defined as follows [16-19]

b
®,,() =lal Z(P(T). (4.1.1)
where a,b € R are dilation and translation parameters that
vary continuously. The family of discrete wavelets that
form a basis for L2(R) is defined as follows

k
@) = lag[2p(agt — nby)

a+0,

(4.1.2)

where n and k are positive integers and ay > 1, by > 1.

When we choose Bernoulli polynomial as a mother
function we get Bernoulli wavelet. Bernoulli wavelets are
(pn,m(t) = @(k,fi,m,t) have four arguments; 1 =n—

1,n=1,23, ...,Zk_l,k is any positive integer, m is the
order of Bernoulli polynomials and t is the normalized
time. The definition of Bernoulli wavelets [20, 21] in the
interval [0,1) is given by

(pn,m(t) =
=5 fl A+l
= { 22 By (2t - M), for i < ¢ < o
0, otherwise,
(4.1.3)
where
Bm(t) =
L form = 0,
1
JWBWL&). form > 0(4.1.4)
W“Zm
where m=20,1,..,M—1 order of the Bernoulli

polynomial for a constant positive integer M. The

coefficient is used for orthonormality, and

Commn?
(2m)! 2m
The Bernoulli polynomial is defined over the interval [0,1]

is given by
m .
B, (t) = X, ( l.) o, ti(4.1.5)
where the relation of Bernoulli numbers «;,i = 0,1, ..., m is
given by

t ¢

-1 izo a5 (4.1.6)
Hence we can see the first seven Bernoulli numbers as
-1 1
ay=1,a; = % =7,a3 = 0,.. 4.1.7)

and hence the six-four Bernoulli polynomials can found
from equation (4.1.5) as

1
By(t) =1, Bi(t) = t_E'

1
B,(t) = t* — tho
(4.1.8)

4.2Function Approximation

Bernoulli wavelet form an orthonormal basis for
[0,1), so we can approximate a function y(t) which is
defined on [0,1) as

y(t) = Z:f:l Z;.;:O an,m(pn,m (t),
where

4.2.1)

@ = (¥(©),0,,,(0)  (422)
in which (+,) denotes the inner product. The truncated form

of the series is
k-1 M—

Y(x) ~ 1?1=1 m=é an,mgon,m(x) = A(Z)(X) (423)

C 2021 NSP
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where A and @ are 2¥"1M x 1 matrices given by

A

= [allo, o Qg -1, Q2,05 -+ Ao Y15 -0y Aok=1 g, «e) azk—l'M_l],
(4.2.4)

0=

T
Do P10 Por eees Py s ey Pok=1 0y eees Pok=1 4,4 | -
1,0 1,M—-1’ 72,0 2,M—-1 210 2t M—1

(4.2.5)

4.3 Method of Solution

The 2-point Euler backward differentiation formula

is used to approximate U, ()C, t ), given in equation (1.1),

at the time-level ti fori = 1,2, ..., L. Therefore, we have

() —u" )

O (W) ) +r() @ = £
FG) = f(xn 1) U (x) = u(x, t).

Equivalently, we can rewrite equation (4.3.1) as

ut(x) — r(u”)i(x) = F'(x), (4.3.2)

4.3.1)

where and

where
Fi(x) = tf'(x) + (W) (x).(4.3.3)
W) =@ - (4.3.4)
Then we approximate the unknown function u'(x) with

help of Bernoulli wavelet as
k=1

w(x) = Lict Xmst Crn®Py () = C' B(x). (4.3.5)
Where C' and @ are 2" M x 1 matrices given by equation
C' = [011,0' s CL 15 Co 00 s Copr—1s ""CLZk_l,M—l]’ (4.3.6)
¢ = [901,0' o P1M-1 P2,00 = P2,M—17 ) (sz-l_M_1]'

“4.3.7)
then we can rewrite equation (4.3.2) as
(@)T8(x) — ()"0 (x) = Fi(x),
subject to the boundary conditions
(€)'0(a) = g,(t), (C)'0(b) = g,(t) 4.3.9)
Now collocating equation (4.3.8) at points
, 43100, = 52, 0= 12,.., 27 M - 2
Using the collocation points in equation (4.3.10), we get
(@)"8(x;) — ()"0 (x;) = Fi(x)) 4.3.11)
From equation (4.3.5) there are 2¥"*M unknown constants.
To find out the values of these unknown, we need 2¥"1M
equation out of which 2 equations are obtained from
boundary conditions (4.3.11) which the remaining
2t -2 equations are obtained from (4.3.11). By
solving this system of equations given the unknown
constants.

(4.3.8)

5 Illustrative Examples

In this section, we solve partial differential equations with
boundary conditions to test the efficiency of our method.
We first develop a system of the algebraic equation from

boundary conditions and with the help of collocation
points. We use the MATLAB program to obtain the
solution.
Example 1:
Consider the following partial differential equation
ut(x! t) = Uy (x, t) + YUy (X, t)
=et(x—t?+t)+2x—2,
in Q=(01)x(0,T),

(5.1)
with the boundary conditions
u(0,t) = 6, u(l,t) =el +6 (5.2)
the exact solution of equation (5.1) is as follows
u(x, t) =e** +x2+5 (5.3)

Table 5.1. Comparison between exact and numerical solution.

X t=0.1,y=1,M =4,andk =1
Exact numerical
. . Error
solution solution
0.0 | 6.000000 6.000000 0.000000E+00
0.1 | 6.020050 6.020050 5.199959E-08
0.2 | 6.060201 6.060201 2.485691E-08
0.3 | 6.120455 6.120455 3.470314E-07
0.4 | 6.200811 6.200812 8.197794E-07
0.5 | 6.301271 6.301272 1.338052E-06
0.6 | 6.421837 6.421838 1.786392E-06
0.7 | 6.562508 6.562510 2.038828E-06
0.8 | 6.723287 6.723289 1.958773E-06
0.9 | 6.904174 6.904176 1.398912E-06
1.0 | 7.105171 7.105171 0.000000E+00
the behavior of numerical and exact at t=0.1 , M=4, and k=1
74
O - Approximate
Exact
72}
7k
68
66
641
621
& );}o',':/ 0z 03 05 06 07 08 08

Figure 5.1: Exact and numerical solution
Example 2:
Consider the following partial differential equation

u,(x,t) —u, (2 t) + yu,(x,t) = x2 — 2t + 2xt,
with the boundary conditions

(5.4)

c2021NSP
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u(0,t) =3, u(l,t) =t+3 (5.5)
the exact solution of equation (5.4) is as follows
u(x, t) = x%t+3 (5.6)

Table 5.2. Comparison between exact and numerical solution.

X t=0.1,y=1,M = 4,andk =1
Exact numerica

. . Error
solution 1 solution

0.0 3.000000 3.000000 | 0.000000E+00

0.1 3.010000 3.010000 | 5.048582E-09

0.2 3.040000 3.040000 | 2.355715E-09

0.3 3.090000 3.090000 | 3.213047E-08

0.4 3.160000 3.160000 | 7.419323E-08

0.5 3.250000 3.250000 | 1.184615E-07

0.6 3.360000 3.360000 | 1.548529E-07

0.7 3.490000 3.490000 | 1.732849E-07

0.8 3.640000 3.640000 | 1.636750E-07

0.9 3.810000 3.810000 | 1.159409E-07

1.0 4.000000 4.000000 | 0.000000E+00

the behavior of numerical and exact at t=1 , M=4, and k=1
ar 153
— O— - Approximate
Exact

39t
38f o
37+ /
36+ /

35t d

34t /

33t e
32t v

31t /;/7‘/
Al

L ! L J
3

0 o1 02 03 04 05 06 07 08 09 1
Figure 5.2: Exact and numerical solution

From the numerical results in Tables and figures 5.1 and
5.2, it is easy to conclude that the obtained results by the
proposed method are in perfect concord with the exact
solution.

6 Conclusions

The present work aims to improve an efficient and
accurate method for solving the partial differential
equation. The problem has been reduced to solving a
system of linear algebraic equations. Two test problems
were presented to demonstrate the validity of the technique.
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