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Abstract: In this paper, we focus on the exact solution of the coupled nonlineab&clger type equation by means of the simplest
equation method for the cases when the simplest equation is the equatiemotii or the equation of Riccati. We use the appropriate
ansatz to convert the above-mentioned equations to an ordinary differeufigtion and reduced to nonlinear algebraic systems of
relationships among the parameters of the equations and the paramétersalution. The method used here can be also extended to
many other nonlinear partial differential equations. The propertiesragssolutions for this system are shown by some figures.
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1 Introduction developed by Kudryashow[10] and used successfully
by many authors for finding exact solutions of ODEs in

As is well-known, many phenomena in physics, Mathematical physicsl]. _
mechanics, chemistry, biology, etc. are often described by 11iS paper is organized as follows. In section 2, we
nonlinear partial differential equations (PDEs), such as3\Veé & brief algorithm for the simplest equation method.
Korteweg Vries equation, Burgers equation, Sctinger N Section 3, we apply this method to the coupled
equation, Boussinesq equation and so on. When we warftonlinéar Sctrdinger type equation and find out several
to understand the physical mechanism of phenomena igxact sqluuons for this model. We give the conclusion in
nature, described by nonlinear PDEs, exact solutions hav€ Section 4.

to be explored. These solutions has long been a major

concern for both mathematicians and physicists. So we

search for a mathematical algorithm to discover the exac2 The algorithm of the simplest equation
solutions of nonlinear partial differential equations.Mya  method

papers has been focused on the application of the known

methods to construct the solutions of nonlinear evolutiongey given a nonlinear equation

equation (NLEE), among them the inverse scattering

transform [fL]-[3]] and Hirota method 4], tanh method ~ H(U, U, Ux, Ux,...) = 0. 1)

[1,2,3,4,5,6], multiple exp-function method 7], - . Step
Backlund transformation method][ simplest equation -{hgyml?slpn;t?ﬁ: \?v;?/grtfgﬁggosr%jazfﬂgl\gan:aus&o)" 7 =

method P, 10], and so on. L . -~ kax+ et + &o, @o, &o are constants, we can convert ED. (
From the standpoint of application , nonlinear partial ;4 an ordinary differential equation (ODE)
differential equations describe the motion of the isolated

waves, such as in physics, in which applications extend H(u,uz,Uzz,...) = 0. 2

over water surface, gravity waves, and electromagnetic

radiation reactions, chemistry, and several other fields.
The simplest equation method is a very powerful

mathematical technique for finding exact solutions of uZ) = - ai_fi(z) 3)

nonlinear ordinary differential equations. It has been ;) ’

Step 2.We seek the solution of EQ)in the following
ms
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which a (i = 0,1,2,...,n) are constants to be determined. 3 The simplest equation method for the

The balancing numbaeris a positive integer which can be Coup]ed nonlinear Schbdinger type equation
determined by balancing the highest order derivative

terms with the highest power nonlinear terms in Ep.(

and f({) are the functions that satisfy the simplest Now we consider the new coupled nonlinear Sctinger
equations (ordinary differential equations). The simiples type (CNLST) equation

equation has two properties, first it is lesser order than

Eq.@2) and we know the general solution of the simplest y,, =y, + 17232 |u|2u+u(v—w),

equation L2. _ _ (JuP)

In this paper, we shall use as simplest equation the t = — ;5 + (1+8)%, : (13)
equations of Bernoulli and Riccati which are well known _ (P 1—

; : ; ’ : W= 4 (1 B)wi
nonlinear ordinary differential equations and their

solutions can be expressed by elementary functions. F

r .
the Bernoulli equation oVVhereB is a real constantf| # 1, was proposed by Ma

and Geng via a spectral problem and its auxiliary drg.[
/() =af() +bf?(Q). (4) By using the transformation

We found that the use of the Bernoulli equation leads to _ i (KoX—opt+0) vV —W

new traveling-wave and wavefront solutions of Hjj.( uixt) =U(g)et V. Vi) (@, wix) ((fé)f)

Eq.@) admits the following exact solutions whered = kix+ cnt + &, do, & are constants.

()= aexpla( + &)] 5) Substituting Eq14) into Eq.(L3), we obtain
1-bexpla( +&o)]’ 5
whena > 0,b < 0 and (K + kian)U” — (kS + kooop)U + 1_32U3+U(V ~W) =0,
aexpla(d +&o)] 2
= , 6 e N r_
= T bexpla@ + &) © wvis TRUU BV =0,
whena < 0, b > 0 and&p is a constant of integration. For , 2w , ;o
the Riccati equation W' — 173UU +(1=-BkaW'=0. (15)

o) = afz(Z) +B @) Where the prime denotes to the derivative with respect to
Eq.(7) admits the following exact solutiond§| the variable. From the imaginary part of EQ.8) we
(2 — J/aB —  ving) B find ap = f%(wﬁ 2k1). Integrating Eq15), we obtain
(€)== tan(y/—ap¢ 20 ) f0>0 v=:=1 the relation between the variabl$(), U({) andW({),

®)
wherea8 < 0, and U({) as follows

wherea 3 > 0. _ w1 2
Step 3. Derive the algebraic system for the coefficients W) (1-B)(wn+ki(1-pB)) (& (18)
a(i = 0,1,2,...,n) to generate the system for the
unknown coefficientsg (i = 0,1,2,...,n), a,b and wave  Substitutingv({), W({) in Eq.(@), we obtain
parameterc, substituting EqJ) into Eq.@) with Eq.@)
and set the coefficients of the polynomial to zero yields a 1-p?

(w1 +k1)? — kB2

set of algebraic equations fey,a, b, c.
system and substituting the results into Bjjo obtain  Exact solution for EqY5) can be constructed as a finite

ko
ki

U” — ()% — ud=o. (17)

Step 4. Solving the nonlinear parameterized algebraic

the exact traveling wave solutions for EB.( series
Remark. Whena= d,b= —1the Eq.4) has a another
form of Bernoulli equation u() N () (18)
= (o] s
t(0) = 8f(0) — f3(Q), (10) 2,°

which has the exact solutions whén> 0, _ _ _ . .
where f({) is a solution of some ordinary differential

o o
f(Q)= E[1+tanf(§(Z +&0))], (11)  equation referred to as the simplest equation.
BalancingU” with U3, we find thatN = 1.
and Wherg<0 5 Substituting Eq18) along with Eq.¢) in Eq.(17) and
_ then setting the coefficients df(i = 1,2,3,4) to zero in
f =—[1-t = . 12 : R .
(€ 2[ ank(z(ZJrEo))] (12) the resultant expression, we obtain a set of algebraic
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equations fowwr, ki, ko, a, b, o, c1, a, B as follows

(1_B2)C8 Coikgzo
(k+o)2—p2%¢ K
3(1-p? 2
o |a®+ ( E)C%“Hig =0,
(k1+(4}_l_) _B kl k]_

(1-B%cocs | _
3c1 <ab+ (k]_—i-(l)_]_)z—sz% =0,
1-p)c

2b%c; + =
R

(19)

With the aid of Mathematica, we find the special
solutions of the above system as follows
Case 1

a\/(1-B2) ¢ + 2o +

o 2y
by/2(1— )G + ka1 + })
G == ;
-1
_ .
o=+, (20)

Using solution §) of Eq.@). Then the exact solution to
Eq.(13) can be written as

(1—B2)K2 + 2kyan + @? ‘<i%
e 2

V(BE-1)
(ab\fZexp(a(aht+k1X+Eo))+ a>

k- 2kq )t
W)t (kg (1+2)0) )

1-bexp(a(mt+kx+&))  v2)’
(1- B2k + 2+ 6F
VXY =¥ 11p wl+k1(1+B))( VB -1
( aby/2exp(a( a)1t+k1><+fo))+ )2
1—bexp(a(wt+kix+&))  v2 )’
. @ (1-BIK + 2w+ f
WO = F T B+ k(3T B) VD
abv2exp(a(wmt +kix+&))  a
(< 1-bexp(a@t + kX + &) ﬁ)ﬁ @D
whena > 0, b < 0. Similarly fora< 0,b > 0.
Case 2
. a\/(1-2) K + 2o + 7
- V2(B?-1) ’
BV Zaco+ f)
C1 = )
B%-1
akq
ko = F—. 22
2 $ﬁ (22)

Fig. 1: The solutions of Eq13) whena > 0,b < 0.

Using solution §) of Eq.4). Then the exact solution to

Eq.(13) can be written as

n \/ (1-P?) K+ 2k + f | o (75 bt (@ 20)0) o)
V(B2-1)

abv2exp(a(wt+kix+&))  a
1-bexp(a(wt+kix+&))  v2)’

andw(x,t) are the same in the

u(x,t) =

(23)

(
and the solutions/(x,t)
case 1.

Fora> 0,b < 0. Similarly fora < 0, b > 0. Substituting
(18) along with @0) in Eq. (13) and setting all the
coefficients of powersf({) to zero in the resultant
expression. With the aid of Mathematica, we find the
special solutions of the Eql3) as follows

Case 1

5,/(1- B2)K + 2kaon + f
+ )

Co

2(B>-1)
V2((1-B2)K + 2kan + )
c1== ;
-1
_ Ok
ko = 7 (24)

Using solution 11) of Eq.(10). Then the exact solution to
Eq.(L3) can be written as
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T Fig. 3: The solutions of Eq1(3) whend > 0.

Fig. 2: The solutions of Eq13) whena < 0,b > 0.

Case 2

5,/ (1—B2)k2+ 2k 2

t) = (1= B K2 + 2k + @ ( \f(k1><+ &i+2k1)t)+"‘b) Co=F \/( B ) 1+ 1a)l+wla
uxt) =T N e Z(BZ -1

(6\/§exp(6(w1t+k1x+fo)) [ )

1-bexp(a(wt+kx+&)) 2/’

cL== > )
(1-P)K + 2w + o pe-1
V(x,t) =F ( )2
TP k@) VB K = 2K (26)
abfexp (@it +kix+&)) & 12 \/E
1—-bexp(a(wt +kix+&)) 2 . . .
Using solution 1) of Eq.(10). Then the exact solution to
Wixt) = 2 WAl K+ 2w +af Eq.(L3) can be written as
YT AR @ k(1 B) VB - 5
([3V2emB @t taxi &) 8 ), @5 uxt) = e )kl+2klwl+wlg(%<klx+<‘*’l+2"1)‘>+%)
1-bexp(a(wit +kix+&)) 2/’ V=7 \/([32_1)

- bexplalart T kXt &) V3 @7

and the solutions(x,t) andw(x,t) are the same in the case
1. Similarly ford < 0.

<abﬁexp<a(wlt+k1x+so>> 5 )
whend > 0.Similarly ford < 0.
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Fig. 4: The solutions of Eq13) whend < 0.

4 Conclusion

In this paper, we have applied the method of the simplest
equation for obtaining exact traveling wave solution of
the coupled nonlinear Sabdinger type equation. We
have used the equations of Bernoulli and Riccati as the
simplest equations. Furthermore, the proposed method is
readily computerizable by using the symbolic software.
Using the proposed method, we have shown that the
traveling wave solutions of a coupled nonlinear
Schibdinger type equation depend on the explicit
solvability of a simple system of ordinary differential
equations. Finally, we point out that this method can be
applied to a large class of either integrable or
non-integrable nonlinear coupled systems.
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