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Abstract: In this paper, we focus on the exact solution of the coupled nonlinear Schrödinger type equation by means of the simplest
equation method for the cases when the simplest equation is the equation of Bernoulli or the equation of Riccati. We use the appropriate
ans̈atz to convert the above-mentioned equations to an ordinary differentialequation and reduced to nonlinear algebraic systems of
relationships among the parameters of the equations and the parameters of the solution. The method used here can be also extended to
many other nonlinear partial differential equations. The properties of some solutions for this system are shown by some figures.
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1 Introduction

As is well-known, many phenomena in physics,
mechanics, chemistry, biology, etc. are often described by
nonlinear partial differential equations (PDEs), such as
Korteweg Vries equation, Burgers equation, Schrödinger
equation, Boussinesq equation and so on. When we want
to understand the physical mechanism of phenomena in
nature, described by nonlinear PDEs, exact solutions have
to be explored. These solutions has long been a major
concern for both mathematicians and physicists. So we
search for a mathematical algorithm to discover the exact
solutions of nonlinear partial differential equations. Many
papers has been focused on the application of the known
methods to construct the solutions of nonlinear evolution
equation (NLEE), among them the inverse scattering
transform [[1]-[3]] and Hirota method [4], tanh method
[1,2,3,4,5,6], multiple exp-function method [7],
Backlund transformation method [8], simplest equation
method [9,10], and so on.

From the standpoint of application , nonlinear partial
differential equations describe the motion of the isolated
waves, such as in physics, in which applications extend
over water surface, gravity waves, and electromagnetic
radiation reactions, chemistry, and several other fields.

The simplest equation method is a very powerful
mathematical technique for finding exact solutions of
nonlinear ordinary differential equations. It has been

developed by Kudryashov [9,10] and used successfully
by many authors for finding exact solutions of ODEs in
mathematical physics [11].

This paper is organized as follows. In section 2, we
give a brief algorithm for the simplest equation method.
In section 3, we apply this method to the coupled
nonlinear Schr̈odinger type equation and find out several
exact solutions for this model. We give the conclusion in
the section 4.

2 The algorithm of the simplest equation
method

For given a nonlinear equation

H(u,ut ,ux,uxt , ...) = 0. (1)

The main steps of our proposed are given as followsStep
1. By using the wave transformationu(x, t) = u(ζ ), ζ =
k1x+ω1t+ξ0, ϕ0,ξ0 are constants, we can convert Eq. (1)
into an ordinary differential equation (ODE)

H(u,uζ ,uζ ζ , ...) = 0. (2)

Step 2.We seek the solution of Eq.(2) in the following
forms

u(ζ ) =
n

∑
i=0

ai f i(ζ ), (3)
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which ai(i = 0,1,2, ...,n) are constants to be determined.
The balancing numbern is a positive integer which can be
determined by balancing the highest order derivative
terms with the highest power nonlinear terms in Eq.(2)
and f (ζ ) are the functions that satisfy the simplest
equations (ordinary differential equations). The simplest
equation has two properties, first it is lesser order than
Eq.(2) and we know the general solution of the simplest
equation [12].

In this paper, we shall use as simplest equation the
equations of Bernoulli and Riccati which are well known
nonlinear ordinary differential equations and their
solutions can be expressed by elementary functions. For
the Bernoulli equation

f ′(ζ ) = a f (ζ )+b f 2(ζ ). (4)

We found that the use of the Bernoulli equation leads to
new traveling-wave and wavefront solutions of Eq.(1).
Eq.(4) admits the following exact solutions

f (ζ ) =
a exp[a(ζ +ξ0)]

1−b exp[a(ζ +ξ0)]
, (5)

whena > 0, b < 0 and

f (ζ ) =
a exp[a(ζ +ξ0)]

1+b exp[a(ζ +ξ0)]
, (6)

whena < 0, b > 0 andξ0 is a constant of integration. For
the Riccati equation

f ′(ζ ) = α f 2(ζ )+β . (7)

Eq.(7) admits the following exact solutions [13]

f (ζ ) =−
√

−αβ
α tanh(

√

−αβζ − ν ln(ξ0)
2 ), ξ0 > 0, ν =±1,

(8)
whereαβ < 0, and

f (ζ ) =
√

αβ
α

tan(
√

αβζ +ξ0), ξ0 = constant, (9)

whereαβ > 0.
Step 3. Derive the algebraic system for the coefficients
ai(i = 0,1,2, ...,n) to generate the system for the
unknown coefficientsai(i = 0,1,2, ...,n), a,b and wave
parameterc, substituting Eq.(3) into Eq.(2) with Eq.(4)
and set the coefficients of the polynomial to zero yields a
set of algebraic equations forai,a,b,c.
Step 4. Solving the nonlinear parameterized algebraic
system and substituting the results into Eq.(3) to obtain
the exact traveling wave solutions for Eq.(1).

Remark. Whena= δ ,b=−1 the Eq.(4) has a another
form of Bernoulli equation

f ′(ζ ) = δ f (ζ )− f 2(ζ ), (10)

which has the exact solutions whenδ > 0,

f (ζ ) =
δ
2
[1+ tanh(

δ
2
(ζ +ξ0))], (11)

and whenδ < 0

f (ζ ) =
δ
2
[1− tanh(

δ
2
(ζ +ξ0))]. (12)

3 The simplest equation method for the
coupled nonlinear Schr̈odinger type equation

Now we consider the new coupled nonlinear Schrödinger
type (CNLST) equation

uxt = uxx +
2

1−β 2 |u|2 u+u(v−w),

vt =− (|u|2)t
1+β +(1+β )vx,

wt =
(|u|2)t
1−β +(1−β )wx.

. (13)

Whereβ is a real constant,|β | 6= 1, was proposed by Ma
and Geng via a spectral problem and its auxiliary one [14].
By using the transformation

u(x, t) =U(ζ )ei(k2x−ω2t+ϕ0), v(x, t) =V (ζ ), w(x, t) =W (ζ ),
(14)

whereζ = k1x+ω1t +ξ0, ϕ0,ξ0 are constants.
Substituting Eq.(14) into Eq.(13), we obtain

(k2
1+ k1ω1)U

′′− (k2
2+ k2ω2)U +

2
1−β 2U3+U(V −W ) = 0,

ω1V ′+
2ω1

1+β
UU ′+(1+β )k1V ′ = 0,

ω1W ′− 2ω1

1−β
UU ′+(1−β )k1W ′ = 0. (15)

Where the prime denotes to the derivative with respect to
the variableζ . From the imaginary part of Eq.(13) we
find ω2 = − k2

k1
(ω1+ 2k1). Integrating Eq.(15), we obtain

the relation between the variablesV (ζ ), U(ζ ) andW (ζ ),
U(ζ ) as follows

V (ζ ) =− ω1

(1+β )(ω1+ k1(1+β ))
U(ζ )2

,

W (ζ ) =
ω1

(1−β )(ω1+ k1(1−β ))
U(ζ )2

. (16)

SubstitutingV (ζ ), W (ζ ) in Eq.(8), we obtain

U ′′− (
k2

k1
)2U − 1−β 2

(ω1+ k1)2− k2
1β 2

U3 = 0. (17)

Exact solution for Eq.(15) can be constructed as a finite
series

U(ζ ) =
N

∑
i=0

ci f i(ζ ), (18)

where f (ζ ) is a solution of some ordinary differential
equation referred to as the simplest equation.
BalancingU ′′ with U3, we find thatN = 1.
Substituting Eq.(18) along with Eq.(4) in Eq.(17) and
then setting the coefficients off i(i = 1,2,3,4) to zero in
the resultant expression, we obtain a set of algebraic
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equations forω1,k1,k2,a,b,c0,c1,α,β as follows

(

1−β 2
)

c3
0

(k1+ω1)2−β 2k2
1

+
c0k2

2

k2
1

= 0,

c1

(

a2+
3
(

1−β 2
)

c2
0

(k1+ω1)2−β 2k2
1

+
k2

2

k2
1

)

= 0,

3c1

(

ab+

(

1−β 2
)

c0c1

(k1+ω1)2−β 2k2
1

)

= 0,

2b2c1+

(

1−β 2
)

c3
1

(k1+ω1)2−β 2k2
1

= 0. (19)

With the aid of Mathematica, we find the special
solutions of the above system as follows
Case 1:

c0 = ±
a
√

(1−β 2)k2
1+2k1ω1+ω2

1
√

2(β 2−1)
,

c1 = ±
b
√

2((1−β 2)k2
1+2k1ω1+ω2

1)
√

β 2−1
,

k2 = ±ak1√
2
. (20)

Using solution (5) of Eq.(4). Then the exact solution to
Eq.(13) can be written as

u(x, t) =±

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
e

i

(

± a√
2
(k1x+(ω1+2k1)t)+φ0

)

(

ab
√

2exp(a(ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
+

a√
2

)

,

v(x, t) =∓ ω1

(1+β )(ω1+ k1(1+β ))
(

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
)2

(

(

ab
√

2exp(a(ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
+

a√
2

)

)2
,

w(x, t) =∓ ω1

(1+β )(ω1+ k1(1+β ))
(

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
)2

(

(

ab
√

2exp(a(ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
+

a√
2

)

)2
, (21)

whena > 0, b < 0. Similarly fora < 0, b > 0.
Case 2:

c0 = ±
a
√

(1−β 2)k2
1+2k1ω1+ω2

1
√

2(β 2−1)
,

c1 = ±
b
√

2((1−β 2)k2
1+2k1ω1+ω2

1)
√

β 2−1
,

k2 = ∓ak1√
2
. (22)

Fig. 1: The solutions of Eq.(13) whena > 0, b < 0.

Using solution (5) of Eq.(4). Then the exact solution to
Eq.(13) can be written as

u(x, t) =±

√

(

1−β 2
)

k2
1+2k1ω1+ω2

1
√

(β 2−1)
e

i
(

∓ a√
2
(k1x+(ω1+2k1)t)+φ0

)

(

ab
√

2exp(a(ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
+

a√
2

)

, (23)

and the solutionsv(x, t) and w(x, t) are the same in the
case 1.
For a > 0, b < 0. Similarly fora < 0, b > 0. Substituting
(18) along with (10) in Eq. (13) and setting all the
coefficients of powersf (ζ ) to zero in the resultant
expression. With the aid of Mathematica, we find the
special solutions of the Eq. (13) as follows
Case 1:

c0 = ∓
δ
√

(1−β 2)k2
1+2k1ω1+ω2

1
√

2(β 2−1)
,

c1 = ±

√

2((1−β 2)k2
1+2k1ω1+ω2

1)
√

β 2−1
,

k2 = −δk1√
2
. (24)

Using solution (11) of Eq.(10). Then the exact solution to
Eq.(13) can be written as
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Fig. 2: The solutions of Eq.(13) whena < 0, b > 0.

u(x, t) =∓

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
e

i

(

− δ√
2
(k1x+(ω1+2k1)t)+φ0

)

(

δ
√

2exp(δ (ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
− δ√

2

)

,

v(x, t) =∓ ω1

(1+β )(ω1+ k1(1+β ))
(

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
)2

(

(

ab
√

2exp(δ (ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
− δ√

2

)

)2
,

w(x, t) =∓ ω1

(1+β )(ω1+ k1(1+β ))
(

√

(1−β 2)k2
1 +2k1ω1+ω2

1
√

(β 2−1)
)2

(

(

δ
√

2exp(δ (ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
− δ√

2

)

)2
, (25)

whenδ > 0.Similarly forδ < 0.

Fig. 3: The solutions of Eq.(13) whenδ > 0.

Case 2:

c0 = ∓
δ
√

(1−β 2)k2
1+2k1ω1+ω2

1
√

2(β 2−1)
,

c1 = ±

√

2((1−β 2)k2
1+2k1ω1+ω2

1)
√

β 2−1
,

k2 =
δk1√

2
. (26)

Using solution (11) of Eq.(10). Then the exact solution to
Eq.(13) can be written as

u(x, t) =∓

√

(

1−β 2
)

k2
1+2k1ω1+ω2

1
√

(β 2−1)
e

i
(

δ√
2
(k1x+(ω1+2k1)t)+φ0

)

(

ab
√

2exp(a(ω1t + k1x+ξ0))

1−bexp(a(ω1t + k1x+ξ0))
− δ√

2

)

, (27)

and the solutionsv(x, t) andw(x, t) are the same in the case
1. Similarly forδ < 0.
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Fig. 4: The solutions of Eq.(13) whenδ < 0.

4 Conclusion

In this paper, we have applied the method of the simplest
equation for obtaining exact traveling wave solution of
the coupled nonlinear Schrödinger type equation. We
have used the equations of Bernoulli and Riccati as the
simplest equations. Furthermore, the proposed method is
readily computerizable by using the symbolic software.
Using the proposed method, we have shown that the
traveling wave solutions of a coupled nonlinear
Schr̈odinger type equation depend on the explicit
solvability of a simple system of ordinary differential
equations. Finally, we point out that this method can be
applied to a large class of either integrable or
non-integrable nonlinear coupled systems.
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