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Abstract: This paper proposes an improved automotive target tracking sch@ngegRMCW radar which is necessary for the advanced
collision warning systems. Since there exist strong nonlinear relationséipgen the FMCW radar measurements and the target state,
the target tracking and data association in dense road clutters havecloegnized as a quite challenging problem. It is obvious that
the use of accurate range rate measurement might be an excelléce thamprove both target tracking and clutter suppression
performances. This motivates us to develop a novel linear recuasit@motive target tracking filter based on the measurement
conversion in the predicted line-of-sight (LOS) Cartesian coordinagtesy (PLCCS). Since theaxis of the PLCCS is set by the
predicted LOS vector from the host to the target, if the LOS prediction exiorperceptible, the range rate can be approximated to the
x component of the relative target velocity in PLCCS. Employing the PLCi@Stidally reduces the complexity of the problem and
allows us to solve it within the framework of linear recursive Kalman filteriffgrough the simulations, the superiority of the proposed
method is compared to the existing nonlinear automotive target tracking filter

Keywords: FMCW Radar, Automotive Target Tracking, Data Association, Preditied-of-Sight Cartesian Coordinate System
(PLCCS)

1 Introduction The automotive target tracking using FMCW radar is
plagued by two difficulties. First, the automotive target

Recently, the collision warning system (CWS) based ontracking filter should be able to discriminate the target
the autom(’)tive FMCW radar plays an important role in measurement from the clutters which can often be faced

the next generation automobile with enhanced safety” the real—roa_d Qriving conditions. In such heavy clutter
features 1,2,3]. The FMCW radar has a significant merit _€nvironment, it is known that the performance of the
of robustness against the changeable weather conditiorfé,onve”t'ona| probabilistic data association filter (PDAF)

compared to other automotive sensors such as lasefs frequently degraded severely][In order to find an
vision, sonar and so ord] Moreover, it can provide efficient data association in dense clutter environment, we

relatively accurate target measurements even at lon oncentrated on the fact that most FMCW radars provide

range. In this reason, the FMCW radar has compelled th elatively accurate range rate measurements as well as
attention of many engineers as an attractive solution fof@nge and line-of-sight (LOS) angle measurements. The
the CWS with high fidelity. Using the FMCW radar YS€ of range rate llnformatlon could be an effective way to
measurements, the CWS tracks target vehicles, classifid@'Prove the tracking performance even in the dense road
the treating ones, and makes decision for CollisionCI_uf‘ter enywonment&l However, at th.IS point, the.second
warning if necessary. Since the overall performance of theifficulty in automotive target tracking may arise; one

decision making depends on the accuracy of the targe$hould devise a new filtering scheme which can
state estimates, the automotive radar target trackin ffectively deal with the strong nonlinearity between the

becomes one of the core technologies for ensuring thé@nge rate information measured in polar coordinated
reliability of the CWS b, 6].
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system (PCS) and the relative target motion described in Table 1: Definitions of coordinate systems
Cartesian coordinate system (CCS). —
So far, many researchers have focused on the frame | Definition
usefulness of the range rate information and tried to Cartesian coordinate systeiiCS)
develop a performed automotive target tracking scheme
using range rate measurement. To do this, the famous ¢ C
extended Kalman filter (EKF) has been attempted as a X~ : FMCW radar boresight direction
viable solution 9]. However, it involves a number of AR right direction on the horizontal plane
flaws in practice; poor convergence behavior under low : -
SNR conditions and sensitiveness to the initial guess. L'Te of sight CCLCCS)
Besides, these problems could be magnified when the L X" FMCW radar boresight direction
range rate measurements are used for the automotive
target tracking because the use of range rate :
measurements causes severe nonlinearity compared to the Predicted LCCPLCCS
use of range or LOS measurements. To overcome the X" predicted LOS direction
limitations of the EKF based automotive target tracking,
the sequential filtering (SF) technique employing _ o B _
unscented Kalman filter (UKF) was proposetD,[L1]. by using thea priori target position estimate
This approach comes from the idea that the UKF shows
somewhat better estimation performance than the EKF for
highly nonlinear systems. To reduce the inherent
nonlinearity of the automotive target tracking problem

caused by the use of range rate information, the SHi,oor recyrsive structure, the proposed automotive targe

r_nethod adopteq the two stage filtering scheme. At thetracking filer can avoid the various practical issues raised
first stage, the linear Kalman filter processes the pseud% the existing nonlinear filters and it is preferable for

yéealtime automotive applications. Through computer
o . o mulations for the typical automotive target engagement
position measurement in CCS. Then, t_he additional UKFocenario in dense glﬂtter, the proposedglinearg rgcursive
sequentially updates the state by using the range ratg ;o qtive radar target tracking filter designed in PLCCS
measurement to complement the first stage flltermgiS demonstrated
results. However, the SF method could not meet our '
expectation because the performance improvement of
UKF is restrictive in many cases. Moreover, due to the, | . . . .
complicated filter structureyof SF, it does not flee from the_2 Linear Automotive Target Tracking Filter
heavy computational burden. in PLCCS

In order to radically solve the above mentioned
problems, this paper proposes a linear recursive2.1 Nonlinear System Model in CCS
automotive target tracking filter based on the
measurement conversion in the predicted line-of-sight Before preceding the automotive target tracking filter
CCS (PLCCS) 12,13]. The PLCCS is introduced to design, the coordinate systems used in this paper are
eliminate the nonlinearity of the problem itself. Thaxis ~ summarized in Tabld. For the brevity, but without loss
of the PLCCS coincides with the predicted target LOSof generality, it is assumed that the automotive FMCW
vector defined by the a priori estimate of the tracking radar is mounted near the vehicle center. All angles are
filter. Provided that the LOS prediction error is negligible defined in clockwise direction. The relations among the
in PLCCS, the range rate measurement can beoordinate systems are depicted in Figiwe
approximated to the« component of the relative target In most typical the automotive target engagement
velocity. Meanwhile, the target position measurement inscenarios, relative accelerations are negligible, heinee t
PLCCS is calculated by using the range and LOS angldarget relative motion could be described by the constant
measurements hence the noise statistics of the targaglocity modelin CCS.
position measurement should be examined thoroughly. c c c
Fortunately, this task can be readily accomplished relying X1 = Fxg + Gwy (1)

on the so-called average mean and variance calculatiohere the relevant vector and matrices are defined as
method [L4]. Therefore, in PLCCS, the automotive target

origin : center of host vehicle

A : right direction on the horizontal plane

A predicted LOS angle calculated

erformance in cluttered environment. In addition, for its

tracking problem can be readily solved within the xC 2 [XC ye x© YC]T,
framework of the linear Kalman filter. Since the proposed 10T 0

automotive target tracking filter uses the range rate A~ |010Ts N T32/2 0 T.0 T
information, it is expected that the proposed method F= 001 0] G= { 0 T2/20 Ts]
drastically improves the tracking and data association 000 1
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o (x€,y€) 1 True target position previous automotive target tracking schemes based on
O (&€,5°) : Predicted target position nonlinear state estimator could not properly handle the
strong nonlinearity of the range rate and therefore we
have much room for improvement. To avoid the
increasing nonlinearity due to the use of range rate
information, the automotive target tracking problem
should be solved in the linear state estimation setting.

)?L

ip

>

ve 2.2 Linear System Model in PLCCS

Host vehicle

(FMCW radar) The proposed linear automotive target tracking filter is

devised based on the linear measurement equation in

P PLCCS. Apart from the existing approaches, the resultant
_ _ _ ) linear measurement equation we will derive here contains
Fig. 1: Relationship between coordinate systems the range rate information needed for the advanced data

association techniques. Let us assume thatathpiori
target state vectox® in CCS is available from the

. . automotive target tracking filter.
In the above, the state vectg? consists of the relative g g

target position (xX,y°) and velocity (3¢,¥°). Ts is < = 2T
sampling time. The process nois¢ is introduced to X = [)_(C X W] )
model the effect of relative target acceleration and is

assumed to be zero-mean white Gaussian with covarianc%smg’)_(c the predicted LOS direction can be calculated,

= tan~1(y*/x%). Note that, at every time update
S, procedure of the automotive target tracking filter, the
PLCCS should also be updated. If the target position is
predicted with considerable accuracy by the tracking filter
within the sampling timelTs, the difference between true
rlré)S angleA and the predicted LOS angleis negligible

While the relative target motion is modeled in CC
an automotive FMCW radar typically provides the range
r, range rater,” and LOS angleA which are the target
information defined in PCS. In consideration of the
measurement noises included in radar measurements, t

measurement equation can be modeled by —A = 0,A =~ 0). Under this standing assumption, one
can approximate the range ratéo the x component of
ngk =4V (2) therelative target velocity in PLCCS.
where Xt (5)
e m c |V It is very interesting that, if, instead of CCS, the PLCCS
m= [Am|, V"=V, is adopted for automotive target tracking, the nonlingarit
fm Vi between the range rate information and the target state
(XC)2+(>,(2)2 could be successfully eliminated as #).(This implies
£ — tan—1(y/XC) that one can readily design the linear automotive target
(XCKE +yCYF) /\/7 tracking filter in PLCCS.
Now, the FMCW radar measurement equation and the

In equation 2), rm, fm and Ay, indicate the measured measurement noise statistics are rederived in PLCCS. To
values of actual relative range, range rate and LOS anglejo this, let us consider the following matrices used for
respectively. The uncorrelated noisgs v,, andyv; are  coordinate transform.
assumed to be zero-mean white Gaussian with variance
T2 Oz T2 02><2
T3 = 3 e) T (6)
2x2 T2

le2 1

o [ cos(d) sin(d)
2= [ sin(A) cos(A )}

2 var (v§) = diag(0?, 02, 0?). (3)

As in (2), the true output vector® is expressed by the
nonlinear function of the target state vectdr in (1).
Especially, the range rate information is highly nonlinear !t should be pointed out tha andT4 are computed using
compared to the target position measureménsAn) in the predicted LOSA or the functlon ofa priori target
PCS. This is one of the main reasons which make thePosition estimate such &an~*(y©/x%). With definingx”
automotive target tracking problem difficult. It is known be the target state vector in PLCCS, the following
that the range rate measurement is very effective for datgduation holds.

association in dense clutter environment. However, the xP =Tyx¢ (7
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For converting the radar measuremeafs (2) to the )\mf)T. Subtracting the biak” in both sides ofg), one
measurements in PLCCS, let us consider the followinggets the resultant linear measurement equation in PLCCS.
relation.

100 Am) R L= b =TaZ b7 (12)
&m 2 | rmsin(Am) 8)
L fm 2.3 Linear Target Tracking Filter in PLCCS
i AL
= 3 = \,é —7C1\C In this subsection, to cope with the clutter environment,
Ya| = Y|+ |Ww| =+ . ope u :
fm P v the conventional PDAF is slightly modified for using the

linear measurement equation derived in PLCCS. It can
In the above/© denotes the true target position and rangeprevent the performance degradation due to the strong
rate in CCSv® means the pseudo-position and range ratenonlinearity of range rate information and cluttered
measurement errors. Based on the approximapritffe =~ measurements. The detailed description for the PLCCS
PLCCS measurement equatior®) (is obtained by based PDAF algorithm is summarized as follows:
applying the coordinate transformation matfiix to the

pseudo measurement equati@ ( Step 1. Time update: predicted estimate
p c P p The time update of the target state and the corresponding
{bm=Ta{m ~ HX" +V (9 error covariance matrix is conducted in CCS.
where XE=F%C |, FE=FPRC FT+QF (12)
1000 rmCoS(Am—A) — rcos(A —A)
H£|0100/, Vv & msiN(Am—A) — rsin(A —A) Step 2. Calculation of coordinate transformation
0010 fm — f matrices

In the above equationc® andvP are the true target state Once the predicted LOS = tan*(y /%) is calculated
vector in PLCCS and the PLCCS measurement errorby Using thea priori estimatex(, the transformation
respectively. matricesTox, Tz, and Tsx are computed by using the
Note that, different from the nonlinear measurementdefinitions of ).
equation P), the automotive target tracking problem in .
P?_CCS isEZeIated to the linear rr?easuremegt%quaﬂhn ( Step 3. CCS to PLCCS coordinate transform
SinceVF is expressed as a function of the FMCW radar Using the transformation matrices, thepriori estimate,
measurements;m, fm, and A, corrupted by the white the error covariance matrix, and the radar measurements
Gaussian noises, it has complicated statistics. Using th@re converted to PLCCS. Since the measuremenbfias
concept of average true bias and covariance, thelifias is generated by this coordinate transform procedure, the
and covarianc&® of measurement erraf” are calculated ~bias compensation technique is applied as show i (

as follows [L4]: XE = TaixX, PP = T4,kFTET4Tk (13)
- 2 2 . . . .
bP 2 rmcos()\m—é)(e”g —e*"'g/z) P ) =Takd S, (i) = b (), i=1,...,M
rmSin(Am—A) (™% —e %/?) whereMy is the number of measurements originated from
RP R, 0 the target and clutters.
2 R0 (10) The residual vector and its covarianceS, are
12722 computed using thea priori estimate and PLCCS
measurement.
Wherez . . (i) = ZEu(i) —HXE, i=1,..., M (14)
Rflzrme* o3 ‘A1 +07e %% - Ay S:(I) _ HF—’EHTJrRE(i)
402 2
RIz=S(A2)c(8A )e 4R [07 + (rh,+ 07) (1 — %)) whereRE (i) is defined in ).

P _ 2,202 2,202
Reo=Tme ASjare ; Aa , , Step 4. Measurement validation
8y=C1AA)(ch(207) —ch(07)+ 1) (sh(203) —sh( a7) For generating data-association hypotheses for PDAF, the
Dy=CcAAN)(2ch(202) —ch(02))+51AA)(2sh(202) —sh(02))  radar measurements within the following validation region
are considered.
Ag=S{A)(ch(207) —ch(03)) +CAAA)(sh(20%) —sh( o))
Ay=RAN)(20h207) —ch(02)) + AN )(2sh(202) —sh(02) ()T (M) e <y (15)

In the above equatiorg and s are used asos and sin. In the abovey s the threshold for measurement validation.
ch and sh meancosh andsinh, respectivelyAA denotes  The residue is Gaussian distributed; hence the left side of
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(15) has the chi-square distribution. Considering its degree 200

of freedom,y = 11.34 is chosen for our application. The target trajectory yyx % X"
volume of validation region is given by g 1500V tal“iet meas. Y,
= X clutter Vv
o X XX X
2 \1/2 = 100 X
Vi =, Y2 ()Y (16) ] A
. , : x50 5
wheren; is the dimension of measurement vector agds X
decided depending am. In our casen, = 3, ¢p, = 471/3. 0 i i i
-15 -10 -5 10 15 20

Step 5. Measurement update and data association (@) Spares dutter uation

probability calculation 200

The measurement update using validated measurements
carried out as follows: = 1501
f(P(I) _ §E+KEQE(')» i=1,..,m (17) é 100
k xE, i=0 &
_ % sol
5. (laxa—KEMH)PY, i=1,...,m %
Rc@) =1 gp - (18) .
k » I = -20 20
osit
where (b) Deﬁs%osllult(:gr[gi?uation
K (i) = ReHT(S{() !
In the above equation, = 0 means that there is no Fig. 2: Target trajectory and radar measurements

validated measurement originated from the targst.is
the total number of validated measurements.

The probability for testing the reliability of each data Kalman filter (OKF) which uses the correct data

association hypothesis is given by association. The OKF is not practically realizable because
ce V2ALOTE M) M -1 . m the correct data association is not available in actual
Bx(i) = { 11/2 1-PePb (19) applications, but it can be regarded as a reference of the
C‘ZHSE('” MNvm > 1= 0 best performance because it runs based on the ideally best

where Py is target detection probability anBs is the data association. In order to compare the tracking

probability with which the target measurement falls in the Performance in various clutter environments, the sparse
validation region. and dense road clutter cases shown in Figuege taken

into account. Referring to the specifications for the
Step 6. Gaussian mixtured estimate and estimation commercial automotive FMCW radar ARS300
error covariance manufactured by Continental, the simulation conditions

The a posteriori target state estimate of the proposed aré setas follows:
PDAF and its error covariance are defined under the sameg, — 0.25m|, g, = 1.5/deg, o; = 0.14m/s), Ts = 0.3

concept of the conventional PDAF. .
The root mean squared errors (RMSEsxkgfosition and

K = SO Be() (20)  velocity estimates obtained from the 500 Monte Carlo
BP — =™ 1BP(i) + (P (1) = DY) = DY T18 (1) (21 trials are shown in Figur8, 4. As expected, it seems that

¥ i=0[Fc (1) (R (1) = %) (1) = R0 TA(M) - (21) the position estimate of EKF based PDAF tends to

. . diverge in cluttered environment. The SF based algorithm
Step 7. PLCCS to CCS coordinate transform: filtered shows acceptable convergence property in the sparse road
e§t|mate _ ~ clutter condition since it can make more effective use of
Finally, the target state estimate and error covariancehe range rate information for data association than EKF

matrix in PLCCS are converted to CCS. based tracking filter. However, its performance
C TP AC T &P enhancement is restrictive in the dense clutter condition.
X = TaXic, B = TawR Tak (22)  The reason is why the SF still adopts the nonlinear filter

structure and suffers from the side-effects caused by the
intrinsic nonlinearity of the range rate information. Or th
3 Simulation Results contrary, regardless of clutter density, the proposediline
automotive target tracking filter shows reliable and
Using a typical automotive target engagement scenariosatisfactory tracking performance similar to the OKF.
the performance of the proposed linear target tracker isThis is because the proposed filter adopts the linear
compared with existing nonlinear filters; EKF and SF recursive structure which can accommodate the range rate
based PDAFs. The simulation results of the optimalmeasurement in natural way.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

could be

practical

1150 NS 2 S. K. Han et al: Linear Recursive Automotive Target Tracking Filter..
‘ ‘ , ‘ PLCCS whosex axis coincides with the predicted LOS
E OKF - vector from the host to the target vehicle. Hence, under
§ 1f|~ = T Proposed ~.== 1 the assumption that the target prediction error is small
B | == PDAF based on EKF -
g |l PDAF based on SF Rt enough, the range rate measurement.
x PyPthe approximated to thex component of relative target
| Pt 1 velocity measurement. Based on this
% ‘\ﬂ:ﬁ*“-w,“ """ observation, it was shown that the automotive target
0 e T tracking problem results in to the linear filtering problem
0 2 " ime se] 8 % in PLCCS. Through the simulation results, the improved
(a) Sparse clutter situation target tracking performance of the proposed filter was
15 demonstrated. For its simple linear recursive structine, t
E suggested algorithm is preferable for various real-time
S Al | automotive target tracking applications often encoutere
H in dense road clutter environments.
|
Bosto e ‘\,«"A
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