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Abstract: This paper proposes an improved automotive target tracking scheme using FMCW radar which is necessary for the advanced
collision warning systems. Since there exist strong nonlinear relationshipsbetween the FMCW radar measurements and the target state,
the target tracking and data association in dense road clutters have been recognized as a quite challenging problem. It is obvious that
the use of accurate range rate measurement might be an excellent choice to improve both target tracking and clutter suppression
performances. This motivates us to develop a novel linear recursiveautomotive target tracking filter based on the measurement
conversion in the predicted line-of-sight (LOS) Cartesian coordinate system (PLCCS). Since thex axis of the PLCCS is set by the
predicted LOS vector from the host to the target, if the LOS prediction erroris imperceptible, the range rate can be approximated to the
x component of the relative target velocity in PLCCS. Employing the PLCCS drastically reduces the complexity of the problem and
allows us to solve it within the framework of linear recursive Kalman filtering. Through the simulations, the superiority of the proposed
method is compared to the existing nonlinear automotive target tracking filters.

Keywords: FMCW Radar, Automotive Target Tracking, Data Association, PredictedLine-of-Sight Cartesian Coordinate System
(PLCCS)

1 Introduction

Recently, the collision warning system (CWS) based on
the automotive FMCW radar plays an important role in
the next generation automobile with enhanced safety
features [1,2,3]. The FMCW radar has a significant merit
of robustness against the changeable weather conditions
compared to other automotive sensors such as laser,
vision, sonar and so on [4]. Moreover, it can provide
relatively accurate target measurements even at long
range. In this reason, the FMCW radar has compelled the
attention of many engineers as an attractive solution for
the CWS with high fidelity. Using the FMCW radar
measurements, the CWS tracks target vehicles, classifies
the treating ones, and makes decision for collision
warning if necessary. Since the overall performance of the
decision making depends on the accuracy of the target
state estimates, the automotive radar target tracking
becomes one of the core technologies for ensuring the
reliability of the CWS [5,6].

The automotive target tracking using FMCW radar is
plagued by two difficulties. First, the automotive target
tracking filter should be able to discriminate the target
measurement from the clutters which can often be faced
in the real-road driving conditions. In such heavy clutter
environment, it is known that the performance of the
conventional probabilistic data association filter (PDAF)
is frequently degraded severely [7]. In order to find an
efficient data association in dense clutter environment, we
concentrated on the fact that most FMCW radars provide
relatively accurate range rate measurements as well as
range and line-of-sight (LOS) angle measurements. The
use of range rate information could be an effective way to
improve the tracking performance even in the dense road
clutter environment [8]. However, at this point, the second
difficulty in automotive target tracking may arise; one
should devise a new filtering scheme which can
effectively deal with the strong nonlinearity between the
range rate information measured in polar coordinated
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system (PCS) and the relative target motion described in
Cartesian coordinate system (CCS).

So far, many researchers have focused on the
usefulness of the range rate information and tried to
develop a performed automotive target tracking scheme
using range rate measurement. To do this, the famous
extended Kalman filter (EKF) has been attempted as a
viable solution [9]. However, it involves a number of
flaws in practice; poor convergence behavior under low
SNR conditions and sensitiveness to the initial guess.
Besides, these problems could be magnified when the
range rate measurements are used for the automotive
target tracking because the use of range rate
measurements causes severe nonlinearity compared to the
use of range or LOS measurements. To overcome the
limitations of the EKF based automotive target tracking,
the sequential filtering (SF) technique employing
unscented Kalman filter (UKF) was proposed [10,11].
This approach comes from the idea that the UKF shows
somewhat better estimation performance than the EKF for
highly nonlinear systems. To reduce the inherent
nonlinearity of the automotive target tracking problem
caused by the use of range rate information, the SF
method adopted the two stage filtering scheme. At the
first stage, the linear Kalman filter processes the pseudo
relative target position measurements obtained by
converting the range and LOS angle measurements to the
position measurement in CCS. Then, the additional UKF
sequentially updates the state by using the range rate
measurement to complement the first stage filtering
results. However, the SF method could not meet our
expectation because the performance improvement of
UKF is restrictive in many cases. Moreover, due to the
complicated filter structure of SF, it does not flee from the
heavy computational burden.

In order to radically solve the above mentioned
problems, this paper proposes a linear recursive
automotive target tracking filter based on the
measurement conversion in the predicted line-of-sight
CCS (PLCCS) [12,13]. The PLCCS is introduced to
eliminate the nonlinearity of the problem itself. Thex axis
of the PLCCS coincides with the predicted target LOS
vector defined by the a priori estimate of the tracking
filter. Provided that the LOS prediction error is negligible,
in PLCCS, the range rate measurement can be
approximated to thex component of the relative target
velocity. Meanwhile, the target position measurement in
PLCCS is calculated by using the range and LOS angle
measurements hence the noise statistics of the target
position measurement should be examined thoroughly.
Fortunately, this task can be readily accomplished relying
on the so-called average mean and variance calculation
method [14]. Therefore, in PLCCS, the automotive target
tracking problem can be readily solved within the
framework of the linear Kalman filter. Since the proposed
automotive target tracking filter uses the range rate
information, it is expected that the proposed method
drastically improves the tracking and data association

Table 1: Definitions of coordinate systems

frame Definition

C

Cartesian coordinate system(CCS)

origin : center of host vehicle
−→
X

C
: FMCW radar boresight direction

−→
Y

C
: right direction on the horizontal plane

L

Line of sight CCS(LCCS)
−→
X

L
: FMCW radar boresight direction

λ : right direction on the horizontal plane

P

Predicted LCCS(PLCCS)
−→
X

P
: predicted LOS direction

λ̄ : predicted LOS angle calculated

by using thea priori target position estimate

performance in cluttered environment. In addition, for its
linear recursive structure, the proposed automotive target
tracking filer can avoid the various practical issues raised
in the existing nonlinear filters and it is preferable for
realtime automotive applications. Through computer
simulations for the typical automotive target engagement
scenario in dense clutter, the proposed linear recursive
automotive radar target tracking filter designed in PLCCS
is demonstrated.

2 Linear Automotive Target Tracking Filter
in PLCCS

2.1 Nonlinear System Model in CCS

Before preceding the automotive target tracking filter
design, the coordinate systems used in this paper are
summarized in Table1. For the brevity, but without loss
of generality, it is assumed that the automotive FMCW
radar is mounted near the vehicle center. All angles are
defined in clockwise direction. The relations among the
coordinate systems are depicted in Figure1.

In most typical the automotive target engagement
scenarios, relative accelerations are negligible, hence the
target relative motion could be described by the constant
velocity model in CCS.

xC
k+1 = FxC

k +GwC
k (1)

where the relevant vector and matrices are defined as

xC ,
[

xC yC ẋC ẏC
]T

,

F ,







1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1






, G ,

[

T 2
s /2 0 Ts 0
0 T 2

s /2 0 Ts

]T

.
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Fig. 1: Relationship between coordinate systems

In the above, the state vectorxC consists of the relative
target position (xC,yC) and velocity (ẋC, ẏC). Ts is
sampling time. The process noisewC is introduced to
model the effect of relative target acceleration and is
assumed to be zero-mean white Gaussian with covariance
QC.

While the relative target motion is modeled in CCS,
an automotive FMCW radar typically provides the range
r, range rate ˙r, and LOS angleλ which are the target
information defined in PCS. In consideration of the
measurement noises included in radar measurements, the
measurement equation can be modeled by

zC
m,k = zC

k +vC
k (2)

where

zC
m =





rm
λm
ṙm



 , vC =





vr
vλ
vṙ



 ,

zC =





√

(xC)2+(yC)2

tan−1(yC/xC)

(xCẋC + yCẏC)/
√

(xC)2+(yC)2



 .

In equation (2), rm, ṙm and λm indicate the measured
values of actual relative range, range rate and LOS angle,
respectively. The uncorrelated noisesvr, vλ , and vṙ are
assumed to be zero-mean white Gaussian with variance

RC
k , var(vC

k ) = diag(σ2
r ,σ2

λ ,σ
2
ṙ ). (3)

As in (2), the true output vectorzC is expressed by the
nonlinear function of the target state vectorxC in (1).
Especially, the range rate information is highly nonlinear
compared to the target position measurements(rm,λm) in
PCS. This is one of the main reasons which make the
automotive target tracking problem difficult. It is known
that the range rate measurement is very effective for data
association in dense clutter environment. However, the

previous automotive target tracking schemes based on
nonlinear state estimator could not properly handle the
strong nonlinearity of the range rate and therefore we
have much room for improvement. To avoid the
increasing nonlinearity due to the use of range rate
information, the automotive target tracking problem
should be solved in the linear state estimation setting.

2.2 Linear System Model in PLCCS

The proposed linear automotive target tracking filter is
devised based on the linear measurement equation in
PLCCS. Apart from the existing approaches, the resultant
linear measurement equation we will derive here contains
the range rate information needed for the advanced data
association techniques. Let us assume that thea priori
target state vector̄xC in CCS is available from the
automotive target tracking filter.

x̄C =
[

x̄C ȳC ¯̇xC ¯̇yC
]T

(4)

Using, x̄C the predicted LOS direction can be calculated,
λ̄ = tan−1(ȳC/x̄C). Note that, at every time update
procedure of the automotive target tracking filter, the
PLCCS should also be updated. If the target position is
predicted with considerable accuracy by the tracking filter
within the sampling timeTs, the difference between true
LOS angleλ and the predicted LOS anglēλ is negligible
(λ − λ̄ ≈ 0, λ̇ ≈ 0). Under this standing assumption, one
can approximate the range rate ˙r to the x component of
the relative target velocity in PLCCS.

ẋP ≈ ṙ (5)

It is very interesting that, if, instead of CCS, the PLCCS
is adopted for automotive target tracking, the nonlinearity
between the range rate information and the target state
could be successfully eliminated as in (5). This implies
that one can readily design the linear automotive target
tracking filter in PLCCS.

Now, the FMCW radar measurement equation and the
measurement noise statistics are rederived in PLCCS. To
do this, let us consider the following matrices used for
coordinate transform.

T3 ,

[

T2 O2×1
O1×2 1

]

, T4 ,

[

T2 O2×2
O2×2 T2

]

, (6)

T2 ,

[

cos(λ̄ ) sin(λ̄ )
−sin(λ̄ ) cos(λ̄ )

]

It should be pointed out thatT3 andT4 are computed using
the predicted LOS̄λ or the function ofa priori target
position estimate such astan−1(yC/xC). With definingxP

be the target state vector in PLCCS, the following
equation holds.

xP = T4xC (7)
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For converting the radar measurementszC
m (2) to the

measurements in PLCCS, let us consider the following
relation.

ζC
m ,





rmcos(λm)
rmsin(λm)

ṙm



 (8)

=





xC
m

yC
m

ṙm



=





xC

yC

ṙ



+





vC
x

vC
y

vṙ



= ζC +vC

In the aboveζC denotes the true target position and range
rate in CCS.vC means the pseudo-position and range rate
measurement errors. Based on the approximation (5), the
PLCCS measurement equation (9) is obtained by
applying the coordinate transformation matrixT3 to the
pseudo measurement equation (8).

ζ P
b,m = T3ζC

m ≈ HxP +vP (9)

where

H ,





1 0 0 0
0 1 0 0
0 0 1 0



 , vP ,





rmcos(λm − λ̄ ) − rcos(λ − λ̄ )
rmsin(λm − λ̄ ) − rsin(λ − λ̄ )

ṙm − ṙ





In the above equation,xP andvP are the true target state
vector in PLCCS and the PLCCS measurement error,
respectively.

Note that, different from the nonlinear measurement
equation (2), the automotive target tracking problem in
PLCCS is related to the linear measurement equation (9).
SincevP is expressed as a function of the FMCW radar
measurements,rm, ṙm, and λm corrupted by the white
Gaussian noises, it has complicated statistics. Using the
concept of average true bias and covariance, the biasbP

and covarianceRP of measurement errorvP are calculated
as follows [14]:

bP ,

[

rmcos(λm − λ̄ )(e−σ2
λ − e−σ2

λ /2)

rmsin(λm − λ̄ )(e−σ2
λ − e−σ2

λ /2)

]

,

RP ,





RP
11 RP

12 0
RP

12 RP
22 0

0 0 0



 (10)

where

RP
11=r2

me−2σ2
λ ·∆1+σ2

r e−2σ2
λ ·∆2

RP
12=s(∆λ )c(∆λ )e−4σ2

λ [σ2
r +(r2

m +σ2
r )(1− eσ2

λ )]

RP
22=r2

me−2σ2
λ ·∆3+σ2

r e−2σ2
λ ·∆4

∆1=c2(∆λ)(ch(2σ2
λ)−ch(σ2

λ))+s2(∆λ)(sh(2σ2
λ)−sh(σ2

λ))

∆2=c2(∆λ)(2ch(2σ2
λ)−ch(σ2

λ))+s2(∆λ)(2sh(2σ2
λ)−sh(σ2

λ))

∆3=s2(∆λ)(ch(2σ2
λ)−ch(σ2

λ))+c2(∆λ)(sh(2σ2
λ)−sh(σ2

λ))

∆4=s2(∆λ)(2ch(2σ2
λ)−ch(σ2

λ))+c2(∆λ)(2sh(2σ2
λ)−sh(σ2

λ))

In the above equation,c and s are used ascos and sin.
ch and sh meancosh and sinh, respectively.∆λ denotes

λm − λ̄ . Subtracting the biasbP in both sides of (9), one
gets the resultant linear measurement equation in PLCCS.

ζ P
m , ζ P

b,m −bP = T3ζC
m −bP (11)

2.3 Linear Target Tracking Filter in PLCCS

In this subsection, to cope with the clutter environment,
the conventional PDAF is slightly modified for using the
linear measurement equation derived in PLCCS. It can
prevent the performance degradation due to the strong
nonlinearity of range rate information and cluttered
measurements. The detailed description for the PLCCS
based PDAF algorithm is summarized as follows:

Step 1. Time update: predicted estimate
The time update of the target state and the corresponding
error covariance matrix is conducted in CCS.

x̄C
k = F x̂C

k−1, P̄C
k = FP̂C

k−1FT +QC
k (12)

Step 2. Calculation of coordinate transformation
matrices
Once the predicted LOS̄λk = tan−1(ȳC

k /x̄C
k ) is calculated

by using thea priori estimate x̄C
k , the transformation

matricesT2,k, T3,k, and T4,k are computed by using the
definitions of (6).

Step 3. CCS to PLCCS coordinate transform
Using the transformation matrices, thea priori estimate,
the error covariance matrix, and the radar measurements
are converted to PLCCS. Since the measurement biasbP

k (i)
is generated by this coordinate transform procedure, the
bias compensation technique is applied as shown in (11).

x̄P
k = T4,kx̄C

k , P̄P
k = T4,kP̄C

k T T
4,k (13)

ζ P
m,k(i) = T3,kζC

m,k(i)−bP
k (i), i = 1, ...,Mk

whereMk is the number of measurements originated from
the target and clutters.

The residual vectoreP
k and its covarianceSP

k are
computed using thea priori estimate and PLCCS
measurement.

eP
k (i) = ζ P

m,k(i)−Hx̄P
k , i = 1, ...,Mk (14)

SP
k (i) = HP̄P

k HT +RP
k (i)

whereRP
k (i) is defined in (11).

Step 4. Measurement validation
For generating data-association hypotheses for PDAF, the
radar measurements within the following validation region
are considered.

(eP
k (i))

T (SP
k (i))

−1eP
k (i)≤ γ (15)

In the above,γ is the threshold for measurement validation.
The residue is Gaussian distributed; hence the left side of
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(15) has the chi-square distribution. Considering its degree
of freedom,γ = 11.34 is chosen for our application. The
volume of validation region is given by

Vk = cnzγ
nz/2|SP

k (i)|
1/2 (16)

wherenz is the dimension of measurement vector andcnz is
decided depending onnz. In our case,nz = 3, cnz = 4π/3.

Step 5. Measurement update and data association
probability calculation
The measurement update using validated measurements is
carried out as follows:

x̂P
k (i) =

{

x̄P
k +KP

k eP
k (i), i = 1, ...,mk

x̄P
k , i = 0

(17)

P̂P
k (i) =

{

(I4×4−KP
k (i)H)P̄P

k , i = 1, ...,mk

P̄P
k , i = 0

(18)

where
KP

k (i) = P̄P
k HT (SP

k (i))
−1

In the above equation,i = 0 means that there is no
validated measurement originated from the target.mk is
the total number of validated measurements.
The probability for testing the reliability of each data
association hypothesis is given by

βk(i) =

{

ce−1/2(eP
k (i))

T (SP
k (i))

−1eP
k (i), i = 1, ...,mk

c|2πSP
k (i)|

1/2mk
1−PGPD

VkPD
, i = 0

(19)

where PD is target detection probability andPG is the
probability with which the target measurement falls in the
validation region.

Step 6. Gaussian mixtured estimate and estimation
error covariance
The a posteriori target state estimate of the proposed
PDAF and its error covariance are defined under the same
concept of the conventional PDAF.

x̂P
k = Σ mk

i=0x̂P
k (i)βk(i) (20)

P̂P
k = Σ mk

i=0[P̂
P
k (i)+(x̂P

k (i)− x̂P
k )(x̂

P
k (i)− x̂P

k )
T ]βk(i) (21)

Step 7. PLCCS to CCS coordinate transform: filtered
estimate
Finally, the target state estimate and error covariance
matrix in PLCCS are converted to CCS.

x̂C
k = T T

4,kx̂
P
k , P̂C

k = T T
4,kP̂P

k T4,k (22)

3 Simulation Results

Using a typical automotive target engagement scenario,
the performance of the proposed linear target tracker is
compared with existing nonlinear filters; EKF and SF
based PDAFs. The simulation results of the optimal
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Fig. 2: Target trajectory and radar measurements

Kalman filter (OKF) which uses the correct data
association. The OKF is not practically realizable because
the correct data association is not available in actual
applications, but it can be regarded as a reference of the
best performance because it runs based on the ideally best
data association. In order to compare the tracking
performance in various clutter environments, the sparse
and dense road clutter cases shown in Figure2 are taken
into account. Referring to the specifications for the
commercial automotive FMCW radar ARS300
manufactured by Continental, the simulation conditions
are set as follows:

σr = 0.25[m],σλ = 1.5[deg],σṙ = 0.14[m/s],Ts = 0.3[s]

The root mean squared errors (RMSEs) ofx position and
velocity estimates obtained from the 500 Monte Carlo
trials are shown in Figure3, 4. As expected, it seems that
the position estimate of EKF based PDAF tends to
diverge in cluttered environment. The SF based algorithm
shows acceptable convergence property in the sparse road
clutter condition since it can make more effective use of
the range rate information for data association than EKF
based tracking filter. However, its performance
enhancement is restrictive in the dense clutter condition.
The reason is why the SF still adopts the nonlinear filter
structure and suffers from the side-effects caused by the
intrinsic nonlinearity of the range rate information. On the
contrary, regardless of clutter density, the proposed linear
automotive target tracking filter shows reliable and
satisfactory tracking performance similar to the OKF.
This is because the proposed filter adopts the linear
recursive structure which can accommodate the range rate
measurement in natural way.
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Fig. 3: RMSEs ofx position estimates
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Fig. 4: RMSEs ofx velocity estimates

4 Conclusion

In this paper, a novel linear target tracking filter for
automotive FMCW radar based CWS was proposed. To
effectively cope with the problem caused by the high
nonlinearity in range rate measurement and to improve
the performance of tracking in clutter environment, the
linear measurement equation has been newly derived in

PLCCS whosex axis coincides with the predicted LOS
vector from the host to the target vehicle. Hence, under
the assumption that the target prediction error is small
enough, the range rate measurement could be
approximated to thex component of relative target
velocity measurement. Based on this practical
observation, it was shown that the automotive target
tracking problem results in to the linear filtering problem
in PLCCS. Through the simulation results, the improved
target tracking performance of the proposed filter was
demonstrated. For its simple linear recursive structure, the
suggested algorithm is preferable for various real-time
automotive target tracking applications often encountered
in dense road clutter environments.
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