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Abstract: In this work we analyze an optimal control problem for a system of two hydroelectric power stations in cascade with
reversible turbines. The objective is to optimize the profitof power production while respecting the system’s restrictions. Some of these
restrictions translate into state constraints and the costfunction is nonconvex. This increases the complexity of theoptimal control
problem. The problem is solved numerically and two different approaches are adopted. These approaches focus on global optimization
techniques (Chen-Burer algorithm) and on a projection estimation refinement method (PER method). PER method is used as atechnique
to reduce the dimension of the problem. Results and execution time of the two procedures are compared.
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1 Introduction

Water has becoming a scarce and valuable resource and
the concern for an efficient use of it is nowadays more
evident. Examples of that are hydro-electric systems
equipped with reversible turbines where the same water
can be used for different purposes including energy
production in different times. Optimal management of
multireservoir systems along a river has attracted the
interest of many researchers in different contexts (see [9]
and references therein). In this work we consider a
simplified model for a cascade of two hydro-electric
power stations where one of the stations has reversible
turbines. Each station is linked to a reservoir and turbines
water downstream leading to electric energy production.
The presence of reversible turbines enables water to be
pumped from a downstream reservoir to be used later on a
more convenient time. With this model we address the
problem of optimal management of the system, i.e., find
the water flows to turbine/pump and the corresponding
volumes in the reservoirs that maximize the selling profit
of the energy produced in the system.

The problem is formulated as an optimal control
problem. The fluxes of water to turbine or pump on each
power station are defined by the control variables and the

water volumes in reservoirs are the state variables. The
profit of energy sale is the objective function. It is a
challenging problem since besides constraints in the
control it also involves pure state constraints.
Furthermore, the cost function is nonconvex.

The objective in this work is to get a numerical global
solution to the problem. After performing a discretization
of the optimal control problem, we obtain a maximization
problem with an indefinite quadratic cost function subject
to linear constraints. The cost function is nonconvex and
existence of several local minimum may occur. Thus,
application of global optimization methods is convenient.
We use the algorithm introduced by Jieqiu Chen and
Samuel Burer for minimizing general quadratic forms
subject to linear constraints inRn (for more details, see [4,
10,11,12]).

Two different approaches are discussed and
compared. In the first approach, we directly apply the
Chen-Burer algorithm. In the second, taking advantage of
the specific structure of the cost function, we construct a
projection of the set of feasible solutions onto a subspace
of the cost function arguments. Such construction makes
use of an algorithm based on the Projection Estimation
Refinement method, known as PER method (see [1] for
details). The dimension of the problem is notably
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reduced. The Chen-Burer algorithm is then applied to the
projected low-dimension problem. The numerical
solution obtained is used to derive an approximate
solution of the original full dimension discrete problem.
To that end, we solve a simple convex programming
problem. Finally, with the approximate solution as an
initial guess, it is used a local optimization method to
achieve a numerical solution for the original problem.

A main contribution of this paper resides on the
procedure undertaken to improve computation time. Such
procedure takes advantage of a specific form of the cost
function and involves the combination of several known
techniques and algorithms, as described above.

The conference version of the paper has been
submitted at ICNAAM 2013 ([5]).

2 Problem statement

The problem under consideration is associated to a
system with two hydro-electric power stations in a
cascade structure. Figure 1 is a representative scheme for
such cascade. Each power station is coupled with a
reservoir, with reservoirs 1 and 2 identified in the figure
by V1 and V2 respectively. The arrows represent the
capability of power station 1 to pump water from a
downstream reservoir. Naturally, this will be done when
the price and demand are low.

Fig. 1: Cascade with hydro-power stations

For this cascade we assume that the dynamics of
water volumesVk(t), k = 1,2, are described by the
following control system,

V̇1(t) = A−u1(t)

V̇2(t) = u1(t)−u2(t), (1)

where the controlsu1(t) andu2(t) represent water flows
at time t that are turbined (ui(t) ≥ 0) or pumped
(ui(t) < 0) in reservoirs 1 and 2 respectively. The
parameterA denotes the incoming flow which, for
simplicity, we take constant. Variableu2(·) takes only
nonnegative values. Equations (1) are called water
balance equations and are present in many references
(see, e.g. [13]).

The control and state variables satisfy the following
technical constraints:

Vk(0) =Vk(T), for k= 1,2 (2)

Vk(t) ∈ [Vm
k ,VM

k ], for k= 1,2

uk(t) ∈ [um
k ,u

M
k ], for k= 1,2.

Here Vm
k and VM

k , k = 1,2, stand for the imposed
minimum and maximum water volumes, respectively;um

k
and uM

k , k = 1,2, are the imposed minimum and
maximum for water flows.

The objective is to find optimal controls ˆuk(·),
k = 1,2, and volumeŝVk(·), k = 1,2, that maximize the
cost function,

J(u(·),V(·)) =

T∫

0

c(t)

[

u1(t)

(
V1(t)

S1
+H1−

V2(t)
S2

−H2

)

+u2(t)

(
V2(t)

S2
+H2

)]

dt −→ max, (3)

wherec(·) is the price of the energy,Hk, k = 1,2, are the
liquid surface elevations andSk, k = 1,2, are the areas of
the reservoirs. In the integral, the factor multiplied byc(t)
represents potential energy. For simplicity, it is assumed
that the reservoirs have cylindric form and that the gravity
constant is equal to one. It is also assumed that all the
potential energy is converted into electric energy.

We assume thatc(·) takes constant valuesc1 andc2,
respectively on the intervals[0, T

2 [ and[T
2 ,T].

Sinceu1(t) = A− V̇1(t) andu2(t) = u1(t)− V̇2(t), the
costJ(u(·),V(·)) can be written as

∫ T

0
c(t)

[

(A− V̇1(t))

(
V1(t)

S1
+H1

)

− V̇2(t)

(
V2(t)

S2
+H2

)]

dt. (4)

Without changing the notation, we replaceJ(u(·),V(·))
by its symmetric. The maximization problem is then
transformed into a minimization one. After some
calculus, using (2) and neglecting a constant term, we get

J(u(·),V(·)) =−
Ac1

S1

∫ T/2

0
V1(t)dt−

Ac2

S1

∫ T

T/2
V1(t)dt

+H1(c2− c1)V1(0)+
c2− c1

2S1
V2

1 (0)

−H1(c2− c1)V1

(
T
2

)

−
c2− c1

2S1
V2

1

(
T
2

)

+H2(c2− c1)V2(0)+
c2− c1

2S2
V2

2 (0)

−H2(c2− c1)V2

(
T
2

)

−
c2− c1

2S2
V2

2

(
T
2

)

.

(5)
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Discretized problem

A discretization of the problem is generated in the
following way. LetN be an even natural number. Define
variablesx andy as

x=

[

V1(0),V1

(
N
2

)

,V2(0),V2

(
N
2

)]

, and

y=

[

V1(1), · · · ,V1

(
N
2
−1

)

,V1

(
N
2
+1

)

, · · · ,V1 (N−1) ,

V2(1), · · · ,V2

(
N
2
−1

)

,V2

(
N
2
+1

)

, · · · ,V2 (N−1)

]

.

The cost function takes the form

I(x,y) = 〈a,x〉+ 〈b,y〉+ 〈x,Qx〉→ min, (6)

wherea andb are vectors gathering the linear part of the
cost relative tox and y respectively andQ is a matrix
defining the quadratic part of the cost function. More
precisely,

Q=













c2− c1

2S1
0 0 0

0 −
c2− c1

2S1
0 0

0 0
c2− c1

2S2
0

0 0 0 −
c2− c1

2S2













(7)

a=
[

H1(c2− c1)−
Ac1

S1
,−H1(c2− c1)−

Ac2

S1
,

H2(c2− c1),−H2(c2− c1)
]

(8)

b=










N
2

-1 components

︷ ︸︸ ︷

−
Ac1

S1
, · · · ,−

Ac1

S1
,

N
2

-1 components

︷ ︸︸ ︷

−
Ac2

S1
, · · · ,−

Ac2

S1
,

N
2

-1 components

︷ ︸︸ ︷

0, · · · ,0,

N
2

-1 components

︷ ︸︸ ︷

0, · · · ,0







. (9)

The constraints of the problem are translated into
conditions below. Conditions (11), (12), (13) and (14)
account for control constraints. In the discretization
process we use(1) and replaceu1(t), u2(t) by A− V̇1(t)
andA− V̇1(t)− V̇2(t), respectively. The derivativėVi(t) is
replaced byVi(k+1)−Vi(k), i = 1,2.

The amountsVi(T) =Vi(N), i = 1,2, are not included
as variables, sinceVi(N) = Vi(0), i = 1,2. However, we
need to ensure the admissibility of control action to go
from Vi(N − 1) to Vi(N) = Vi(0). This is guaranteed by
equations (11) and (12).

Fork= 0, · · · ,N−1 andi = 1,2,

Vi(k) ∈ [Vm
i ,VM

i ], (10)

Also,

V1(N−1)+A−V1(0) ∈ [um
1 ,u

M
1 ], (11)

V2(N−1)+V1(N−1)+A−V1(0)−V2(0) ∈ [um
2 ,u

M
2 ],

(12)

and fork= 0, · · · ,N−2

V1(k)+A−V1(k+1) ∈ [um
1 ,u

M
1 ], (13)

V2(k)+V1(k)+A−V1(k+1)−V2(k+1) ∈ [um
2 ,u

M
2 ].

(14)

The discretized problem is then defined by (6), (10) -
(14).

3 Numerical methods

The aim of this work is to get a numerical global solution
to the minimization of (5) subject to (1) and (2). To this
end, we compare in this section two different approaches
to solve the associated discretized problem (6), (10) - (14).
The following data are considered:

Vm
1 = 86.7, um

1 =−0.3456, c1 = 2,

VM
1 = 147, uM

1 = 0.4392, c2 = 20,

Vm
2 = 48.3, um

2 = 0, H1 = 3,

VM
2 = 66, uM

2 = 0.8316, H2 = 1,

s1 = 81.7, s2 = 44.5, A= 0.1589.

We takeN = 24.

3.11st Approach - Chen-Burer Algorithm
applied directly

The Chen-Burer algorithm (see [4]) is directly applied to
the discretized problem defined by (6), (10) - (14). This
algorithm is oriented to global optimization of nonconvex
quadratic programming (QP) problems (optimization of a
general quadratic function over linear and bounded
constraints). It combines a finite branch-and-bound
(B&B) scheme, in which branching is based on the
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first-order Karush-Kuhn-Tucker (KKT) conditions, with a
polyhedral-semidefinite relaxation that is applied at each
node of the B&B tree. Such relaxation is derived from
completely positive and doubly nonnegative programs.
One of the advantages of this method is that the B&B tree
is finite. Other, is that we can develop stronger relaxations
for the problem (for more details see [4,10,11,12]).

The global optimization solver uses the same syntax
as the local optimization routineQuadProgof the Matlab
and requires an external linear programming solver. The
problem must be formulated as:

minimize
1
2

xTHx+ f Tx

s.t. Ax≤ b

Aeqx= beq

LB≤ x≤UB

wherex∈ R
n is the variable andH ∈ R

n×n, f ∈ R
n, A∈

R
m×n, b ∈ R

m, Aeq ∈ R
meq×n, beq ∈ R

meq, LB ∈ R
n and

UB∈R
n are parameters.

The Chen-Burer algorithm is available at
http://dollar.biz.uiowa.edu/∼sburer under the keyword
QuadprogBB.

3.1.1 Results - Chen-Burer algorithm

Since we takeN = 24, the problem involves 48 variables,
48 boxing constraints and 96 inequality constraints.

The resulting global numerical solution,(x̂, ŷ), is such
that

x̂=

[

V̂1(0),V̂1

(
N
2

)

,V̂2(0),V̂2

(
N
2

)]

= [143.64, 147, 49.76, 48.3].

The associated cost is 308.918e and the execution
time is 24 hours. This computational time revealed too
long.

From the numerical solution and using relationships
between (x,y) and Vi(k), i = 1,2, k = 0, · · · ,24, we
construct continuous versions for volume graphics and
also for flow graphics. These graphics are shown in figure
2 below.

Observe that in the second half of time interval the
behavior ofV2(t) andu2(t) is quite irregular. This can be
explained by the existence of many solutions on[T/2,T].
We will come back to this subject in the end of the
section.

Next, it is presented another approach, not so time
consuming, to get the global solution for the discretized
problem.

Fig. 2: Volumes and controls associated to the global
solution

3.22nd Approach - Projection Estimation
Refinement method

In this section, other approach to solve the discretized
problem defined by (6), (10)-(14) is considered. This is
motivated by the long computational time taken in the
first approach.

We use a specific structure of the cost function that
allows us to reduce the dimension of the problem. The set
of feasible solutions is projected onto a subspace of the
cost function arguments. The Chen-Burer algorithm is
applied to theprojected low-dimensional problem. A
solution to the high dimension problem is after obtained
by solving a simple convex programming problem.

The projected set is a convex limited set and therefore
can be approximated by polytopes with any desired
accuracy.

The Projection Estimation Refinement method (PER),
described in ([1]), approximates the orthogonal projection
P of a polytopeX onto a subspace by a sequence of
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polytopesP0,P1, ...,Pk, ... that tend toP, andPk ⊂ P for
all k. The number of vertices of polytopes increases by
one at each iteration. On each iteration a new polytope is
constructed on the basis of the previous one using
procedures of computing support functions and
Fourier-Motzkin convolution method ([2]). In [3] a robust
algorithm for solving this problem is proposed.

For approximating polytopes, two descriptions are
constructed simultaneously, one as a set of their vertices
and the other as a system of linear inequalities,

Pk = {x∈ R
q : 〈c j ,x〉 ≤ d j , j = 1,2, · · · ,N}

wherec j ∈ R
q andd j ∈R

1.
Figures3 and 4 illustrate two iterations of the PER

method applied to a generic convex setP. The�-dots are
the candidates to include on next step. These are the most
distant points ofP, from the faces ofPk. They are found
by maximizing in directions orthogonal to the faces ofPk.
In figure 4 the most distant new point⋆-dot is included
into Pk.

Fig. 3: 1st iteration - the initial set

Fig. 4: 2nd iteration - the most distant new point⋆ is
included into the convex hull

Knowing inequalities of internal approximating sets
and the values of the corresponding support functions, it
is easy to find external approximating setsP̄0, P̄1, ..., P̄k,
which contains the setP, i.e., Pk ⊂ P ⊂ P̄k for all k. This
is illustrated in figure5 below.

Fig. 5: Internal estimation (convex hull of vertices) and
external estimation (described by support-planes)

Computational details and a discussion of these
techniques for polyhedral approximations can be found in
[6,8].

Returning to our discretized problem, recall the cost
function

I(x,y) = 〈a,x〉+ 〈b,y〉+ 〈x,Qx〉→ min,

with x=
[
V1(0),V1

(
N
2

)
,V2(0),V2

(
N
2

)]
, and

y=

[

V1(1), · · · ,V1

(
N
2
−1

)

,V1

(
N
2
+1

)

, · · · ,V1 (N−1) ,

V2(1), · · · ,V2

(
N
2
−1

)

,V2

(
N
2
+1

)

, · · · ,V2 (N−1)

]

.

Define a new variable

z= 〈b,y〉.

From this equality, taking into account the definition ofb
given in (9), it comes

V1(1) =−

[
s1

Ac1
z+V1(2)+ . . .+V1

(
N
2
−1

)

+

c2

c1

(

V1

(
N
2
+1

)

+ . . .+V1(N−1)

)]

.

The cost function may also be expressed as

〈ā, x̄〉+ 〈x̄,Q̄x̄〉 → min, (15)

wherex̄= (x,z), ā= (a,1), andQ̄=

(
Q 0
0 0

)

, with Q and

a defined as in (7) and (8).
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The projection of the set of feasible solutions onto the
subspace of variables

(V1(0),V1(N/2),V2(0),V2(N/2),z)

is constructed using PER method algorithm. With the
projected set and cost function (15) we obtain an
optimization problem inR5.

Applying the Chen-Burer algorithm to this lower
dimension problem, we get a numerical solution( ˆ̄x, ˆ̄z).
With ˆ̄x and a simple convex programming problem we
deduce an approximate solution(x̂, ŷ) to the original
discrete problem. Finally, this approximate solution is
used as an initial guess in a local optimization software,
from which we get a global solution for the original
problem.

3.2.1 Results with PER method

Using PER method algorithm we get a feasible set for the
projected problem (exterior approximation with 18
inequalities and 5 boxing constraints). The Chen-Burer
algorithm is applied to this lower dimension problem and
the resulting numerical solution is given by

ˆ̄x= (x̂, ẑ) = [140.66, 147, 48.30, 49.16, −68.18].

The following convex quadratic programming problem,
that we solve using the functionQuadProg from the
Matlab, allows us to get an approximate solution to the
original high dimension discretized problem.

minimize ‖Π(w)− x̂‖2

s.t. Aw≤ b

LB≤ w≤UB,

where

w= (V1(0),V1(1), · · · ,V1(N−1),V2(0),

V2(1), · · · ,V2(N−1)),

Π(w) = (V1(0), V1(N/2), V2(0), V2(N/2)),

x̂= (V̂1(0), V̂1(N/2), V̂2(0), V̂2(N/2)).

and the constraints (10)-(14) are also here considered.
From the resulting numerical solution of this problem

we define continuous functionsVi(·),ui(·), i = 1,2. The
graphics of these functions are shown in figure6.

Finally, this global numerical solution can still be used
to define controls that jointly with ˆx constitute an initial
guess for application of a local optimal control package
from [7].

The final result is presented in figure7.

Fig. 6: Approximate solution

Table 1 summarizes the steps involved in the two
approaches and shows costs and execution times.

Table 1: Comparison of methods
1st approach 2nd approach

• PER
• Chen - Burer • Chen - Burer

Algorithm Algorithm
(directly) • QuadProg

• Local optimization
Cost -308.9 -308.6
Total
time 24 hours 1.48 min
execution

c© 2016 NSP
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Fig. 7: Final results with second approach

The timings were obtained in the same computer,
using Matlab R 2011b, under a 64-bit windows 7 Home
Premium. However, as we can see in the table, execution
times are quite different. The costs associated with the
two approaches are almost the same.

Comparing figures2 and7, we realize that when we
apply directly the Chen-Burer algorithm or the procedure
described in section 3.2.1 with PER method, the
trajectories are similar, althoughV2(t) is quite different in
the second half part of the interval. Let us see that such
irregular behavior can be justified by the existence of an
infinity of solutions to the original problem defined by
(1), (2) and (5).

The fact thatu1(t) = uM
1 , t ∈ [T/2,T] andV1(T/2) =

VM
1 , V2(T/2) =Vm

2 , allows us to write,

V1(T) =V1(T/2)+
∫ T

T/2
(A−uM

1 )dt,

=VM
1 +(A−uM

1 )
T
2

V2(T) =V2(T/2)+
∫ T

T/2
(uM

1 −u2(t))dt,

=Vm
2 +uM

1
T
2
−

∫ T

T/2
u2(t)dt.

Observe thatV2(0) = V2(T), so the cost function (5)
depends only onV2(T/2) andV2(T), in what respects the
variableV2.
Maintaining the values ofV2(T/2) andV2(T) let us check
the existence of more than one admissible control
functionu2(·) on [T/2,T], keepingV2(t) also admissible.
Take u2(t) = const= ū2, t ∈ [T/2,T], for some ¯u2. To
preserve the value ofV2(T), we must have

ū2 =
2
T

(

−V2(T)+Vm
2 +

T
2

uM
1

)

.

For our particular data the above value for ¯u2 is in the
interval [um

2 ,u
M
2 ] and the resultingV2(t) is admissible.

This leads to other optimal solution for the problem,
different from that presented in figures. The solution for
the problem is not unique.

Furthermore, we can show that there is an infinity of
solutions. For the above ¯u2, takingu2(t) = ū2 we have

∫ T

T/2
u2(t)dt = ū2

T
2
.

Define now a piecewise constant functionu2(t) in the
following way

u2(t) =

{

w1, t ∈ [T/2,θ [
w2, t ∈ [θ ,T]

with θ , w1, w2 constants. Then

∫ T

T/2
u2(t)dt =

∫ θ

T/2
w1dt+

∫ T

θ
w2dt

=w1(θ −T/2)+w2(T −θ ).

If

θ =
T(ū2+w1−2w2)

2(w1−w2)
(16)

we still have
∫ T

T/2
u2(t)dt = ū2

T
2

. There are an infinity of

solutions(θ ,w1,w2) with θ ∈]T/2,T[, w1, w2 ∈ [um
2 ,u

M
2 ],

satisfying (16) and keepingV2(t) admissible.
The cost function has the same value for functionsu2(t)
defined as above. This explains the possible different
behaviors for controls and trajectories, on[T/2,T], in
figures2 and7.
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