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Abstract: In this paper, a numerical method is introduced to solve systems of integral equations. The method consists of reducing the
system of integral equations to a system of algebraic one, byconsidering the solution as a series, in terms of Legendre wavelets with
unknown coe?cients on the interval[0,1]× [0,1] . The operational matrices of integration and product and the error bound are calculated
for two dimensional Legendre wavelets and at the end some examples are presented to illustrate the efficiency and the simplicity of the
method. It is expected the lesser computational costs compared to the other common methods. The results reveal that thismethod is
very effective and can be applied for other problems in different fields of sciences.
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1 Introduction

Orthogonal functions and polynomials have been used by
many authors for solving various functional equations.
The main idea of using an orthogonal basis is that the
problem under study reduces to a system of linear or
nonlinear algebraic equations. This can be done by
truncated series of orthogonal basis functions for the
solution of a problem and using the operational matrices.
Here we use two dimensional Legendre wavelets basis on
interval [0,1] × [0,1] for solving systems of integral
equations. These systems arise in mathematical modeling
of many phenomena and some methods have been
proposed in the literature for solving these systems on the
interval [0,1]× [0,1] such as the Adomian decomposition
method [9,10] and Homotopy perturbation method [11,
12]. It should be noted that global intervals[a,b]× [c,d]
can be converted to the interval[0,1] × [0,1] by an
appropriate change of variable.

This paper is organized as follows: Section 1 is
devoted to introduction; in Section 2, the two dimensions
Legendre wavelets are introduced and their operational
matrices of integration and product are computed;
Numerical examples are presented in Section 3;
Conclusions are given in the final Section, 4.

2 Two Dimensional Legendre Wavelets

Wavelets constitute a family of functions constructed
from dilation and translation of a single function called
the mother wavelet [1,2,3]. When the dilation parameter,
a, and the translation parameter,b, vary continuously, the
following family of continuous wavelets will appear,

ψa,b(x) = |a|− 1
2 ψ(

x− b
a

), a,b ∈ R, a 6= 0. (1)

If we choose the dilation parameter asa−k, and the
translation parameter asnba−k, wherea > 1,b > 0,n, and
k are positive integer numbers, then we will have the
following family of discrete wavelets,

ψk,n(x) = |a| k
2 ψ(akx− nb). (2)

These functions generate a wavelet basis forL2(R) and
for special casea = 2 andb = 1, the functionsψk,n(x)
generate an orthonormal basis. The family of continuous
two-dimensional wavelets is constructed from product of
two one-dimensional wavelets as follows,

ψk,n,k′ ,n′(x,y) = ψk,n(x) ψk′,n′(y), (3)

where k,n,k′, and n′ are positive integers. The family
{ψk,n,k′,n′(x,y)} is a wavelet basis forL2(R2). Two
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dimensional Legendre wavelets are defined inL2(R2) on
the interval[0,1]× [0,1] as follows [7,8],

ψn,m,n′,m′ (x,y) =







√

(m+ 1
2 )(m′ + 1

2 )2
k+k′

2 Pm (2kx−2n+1)Pm′ (2k′ y−2n′+1), n−1
2k−1 6 x < n

2k−1 ,

0, otherwise,
(4)

Where,

n = 1,2, ...,2k−1
, n′ = 1,2, ...,2k−1

,

m = 0,1, ...,M−1, m′ = 0,1, ...,M′−1.

k, k′, M, andM′ are any positive integers,m andm′ are the
degrees of Legendre polynomials.Pm(x) andPm′(x) are the
famous Legendre polynomials of ordersm andm′, which
are orthogonal with respect to the weight functionw(x) =
1, on the interval[−1,1]. These polynomials satisfy the
following differential equation, which named the Legendre
differential equation,

(1− x2)P′′
m(x)−2xP′

m(x)+ n(n+1)Pm(x) = 0, (5)

and can be obtained by recursive formula as follows,

{

Pm+1(x) = (2m+1
m+1 )xPm(x)− ( m

m+1)Pm−1(x), m = 1,2, ...
P0(x) = 1, P1(x) = x.

(6)

2.1 Function approximation

The continuous functionf (x,y), defined on the interval
[0,1]× [0,1], can be expanded as,

f (x,y)≃
∞

∑
n=1

∞

∑
m=0

∞

∑
n′=0

∞

∑
m′=0

cn,m,n′,m′ψn,m,n′,m′(x,y). (7)

The series representation off (x,y) in (7) is called a
wavelet series and the wavelet coefficientscn,m,n′,m′ are
given by,

cn,m,n′,m′ =

∫ n′
2k′−1

n′−1
2k′−1

∫ n
2k−1

n−1
2k−1

f (x,y)ψn,m,n′ ,m′(x,y)dxdy. (8)

The convergence of the series (7) inL2([0,1]× [0,1])
means that,

lims1,s2,s3,s4→∞ || f (x,y)−∑s1
n=1 ∑s2

m=0 ∑s3
n′=0 ∑s4

m′=0 cn,m,n′,m′ψn,m,n′,m′(x,y)||= 0.

(9)
Therefore, one can consider the following truncated series
for series (7),

f (x,y)≃
2k−1

∑
n=1

M−1

∑
m=0

2k′−1

∑
n′=0

M′−1

∑
m′=0

cn,m,n′,m′ψn,m,n′,m′(x,y) =CT Ψ (x,y),

(10)

whereC andΨ(x,y) are 2k−12k′−1MM′ × 1 matrices and
given by,

C = [c1,0,1,0,c1,0,1,1, ...,c1,0,1,M′−1,c1,0,2,0,c1,0,2,1, ...,

c1,0,2,M′−1, ...,c1,0,2k′−1,0, ...,c1,0,2k′−1,M′−1, ...

c2k−1,M−1,2k′−1,M′−1]
T

= [c1,c2,c3, ...,c2k−12k′−1MM′ ]
T

(11)
and

Ψ(x,y) = [ψ1,0,1,0,ψ1,0,1,1, ...,ψ1,0,1,M′−1,ψ1,0,2,0,ψ1,0,2,1, ...,

ψ1,0,2,M′−1, ...,ψ1,0,2k′−1,0, ...,ψ1,0,2k′−1,M′−1, ...

ψ2k−1,M−1,2k′−1,M′−1]
T

= [ψ1(x,y),ψ2(x,y),ψ3(x,y), ...,ψ2k−12k′−1MM′(x,y)]
T

(12)
The integration of the product of two Legendre wavelets
vector functions leads to the following matrix,

∫ 1

0

∫ 1

0
Ψ (x,y)ΨT (x,y) dx dy = I, (13)

whereI is an identity matrix.

2.2 The operational matrix of integration for x

In [6] the operational matrix of integration for one
dimensional Legendre wavelets has been computed and in
[7] the operational matrices of integration for two
dimensional Legendre wavelets have been computed that
are wrong. Now, we want to achieve the operational
matrix of integration for two dimensional Legendre
wavelets correctly. The integration of the vectorΨ(x,y)
with respect to variablex, defined by (12), can be
achieved as,

∫ x

0
Ψ(x′,y) dx′ ≃ Px Ψ(x,y), (14)

where Px is the 2k−12k′−1MM′ × 2k−12k′−1MM′

operational matrix for the variablex. Frist, for example,
we find matrixPx for k = k′ = M = M′ = 2. There are
sixteen basis functions as follows,















ψ1010= 2
ψ1011= 2

√
3(4y−1)

ψ1110= 2
√

3(4x−1)
ψ1111= 6(4x−3)(4y−1)

06 x,y <
1
2
,















ψ1020= 2
ψ1021= 2

√
3(4y−3)

ψ1120= 2
√

3(4x−1)
ψ1121= 6(4x−1)(4y−3)

0< x <
1
2
,

1
2
6 y < 1,
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













ψ2020= 2
ψ2021= 2

√
3(4y−3)

ψ2120= 2
√

3(4x−3)
ψ2121= 6(4x−3)(4y−3)

1
2
6 x,y < 1,















ψ2010= 2
ψ2011= 2

√
3(4y−1)

ψ2110= 2
√

3(4x−3)
ψ2111= 6(4x−3)(4y−1)

1
2
6 x < 1,06 y <

1
2
.

By integrating the above equations from 0 tox we
have,

∫ x

0
Ψ16(x

′
,y) dx′ ≃ Px16×16 Ψ16(x,y), (15)

where

Ψ16(x,y) = [ψ1010,ψ1011,ψ1020,ψ1021,ψ1110,ψ1111,

ψ1120,ψ1121,ψ2010,ψ2011,ψ2020,ψ2021,

ψ2110,ψ2111,ψ2120,ψ2121]
T
,

and

Px16×16 =
1
4









































1 0 0 0
√

3
3 0 0 0 2 0 0 0 0 0 0 0

0 1 0 0 0
√

3
3 0 0 0 2 0 0 0 0 0 0

0 0 1 0 0 0
√

3
3 0 0 0 2 0 0 0 0 0

0 0 0 1 0 0 0
√

3
3 0 0 0 2 0 0 0 0

−
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
√

3
3 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0
√

3
3 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0
√

3
3 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
√

3
3

0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0









































.

The matrixPx16×16 can be rewritten as follows,

Px16×16 =
1
4

[

L8×8 F8×8
O8×8 L8×8

]

, (16)

where,

L8×8 =

[

I4×4

√
3

3 I4×4

−
√

3
3 I4×4 O′

4×4

]

, (17)

F8×8 =

[

2I4×4 O′
4×4

O′
4×4 O′

4×4

]

, (18)

I is the identity matrix,O and O′ are the null matrices.
Therefore, the matrixPx can be presented, in general, as
follows,

Px =
1
2k













L F F · · · F
O L F · · · F
O O L · · · F
...

...
...

. . .
...

O O O · · · L













, (19)

whereO is the 2k
′−1MM′ × 2k′−1MM′ null matrix, L and

F are the following 2k
′−1MM′×2k′−1MM′ matrices,

L =





















I
√

3
3 I O′ · · · O′

−
√

3
3 I O′

√
3

3
√

5
I · · · O′

O′
√

5
5
√

3
I O′ · · · O′

...
...

...
. . .

√
2M−3

(2M−3)
√

2M−1
I

O′ O′ · · ·
√

2M−1
(2M−1)

√
2M−3

I O′





















,

(20)

F =













2I O′ O′ · · · O′

O′ O′ O′ · · · O′

O′ O′ O′ · · · O′

...
...

...
. . .

...
O′ O′ O′ · · · O′













. (21)

I is the 2k
′−1M′ × 2k′−1M′ identity matrix, andO′ is the

2k′−1M′×2k′−1M′ null matrix.

2.3 The operational Matrix of integration for y

The integration of the vectorΨ (x,y) with respect to
variabley, is computed as follows,

∫ y

0
Ψ (x,y′) dy′ ≃ Py Ψ(x,y), (22)

where Py is the 2k−12k′−1MM′ × 2k−12k′−1MM′

operational matrix for the variabley. Similar to part (2.2),
the matrixPy for k = k′ = M = M′ = 2 will be found. This
matrix is obtained as follows,

Py16×16 =
1
4









































1
√

3
3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

−
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −
√

3
3 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
√

3
3 2 0 0 0 0 0 0 0 0 0

0 0 0 0 −
√

3
3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
√

3
3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

3
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
√

3
3 2 0 0 0 0 0

0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
√

3
3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −
√

3
3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
√

3
3 2 0

0 0 0 0 0 0 0 0 0 0 0 0 −
√

3
3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

3
3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −
√

3
3 0









































.

(23)
Therefore, in general, the matrixPy can be presented as
follows,

Py =
1

2k′













P O′ O′ · · · O′

O′ P O′ · · · O′

O′ O′ P · · · O′

...
...

...
. . .

...
O′ O′ O′ · · · P













, (24)
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whereO′ is the 2k
′−1M′ × 2k′−1M′ null matrix andP is

2k′−1M′×k′−1 M′ matrix and given by,

P =













L F F · · · F
O L F · · · F
O′ O′ L · · · F
...

...
...

. . .
...

O′ O′ O′ · · · L













, (25)

HereL, F , andO areM′×M′ matrices as follows,

L =





















1
√

3
3 0 · · · 0

−
√

3
3 0

√
3

3
√

5
· · · 0

0
√

5
5
√

3
0 · · · 0

...
...

...
. . .

√
2M−3

(2M−3)
√

2M−1

0 0 · · ·
√

2M−1
(2M−1)

√
2M−3

0





















,

(26)

F =













2 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 · · · 0 0













, (27)

O =













0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 · · · 0 0













. (28)

2.4 The operational Matrix of product

The property of the product of two Legendre wavelets
vector functions will be as follows,

Ψ (x,y)Ψ t(x,y) ≃ C̃ Ψ(x,y), (29)

where C is the vector defined in (11) and C̃ is a
2k−12k′−1MM′ × 2k−12k′−1MM′ matrix. This matrix is
called the operational matrix of product, which in solving
the integral equations is applied, and defined as follows,

C̃ =















C̃1 O O · · · O
O C̃2 O · · · O
O O C̃3 · · · O
...

...
...

. ..
...

O O · · · O C̃2k−1















, (30)

where O is the 2k
′−1MM′ × 2k′−1MM′ null matrix and

C̃i, i = 1,2, ...,2k′−1 are the 2k
′−1MM′ × 2k′−1MM′

symmetric matrices as,

C̃i =











Si
11 Si

12 · · · Si
1M

Si
21 Si

22 · · · Si
2M

...
...

. . .
...

Si
1M Si

2M · · · Si
MM











, i = 1,2, ...,2k−1
. (31)

In (31), Si
t j , i = 1,2, ...,2k−1, t, j = 1,2, ...,M, are the

2k′−1M′×2k′−1M′ diagonal matrices which given by,

Si
t j =













S̃ i t j
1 O′ · · · O′

O′ S̃ i t j
2 · · · O′

...
...

. . .
...

O′ O′ · · · S̃ i t j

2k′−1













,

i = 1,2, ...,2k−1
, t, j = 1,2, ...,M,

(32)

where O′ is the M′ × M′ null matrix, and S̃ i t j
r ,

r = 1,2, ...,2k′−1, i = 1,2, ...,2k−1, t, j = 1,2, ...,M, are
M′×M′ symmetric matrices with the following entries

(S̃ i t j
r )s,w =

(

(Ψ Ψ TC)n,Ψm

)

,

r = 1,2, ...,2k′−1
, i = 1,2, ...,2k−1

,

t, j = 1,2, ...,M, s,w = 1,2, ...,M′
,

(33)

wheren= (i−1)2k′−1MM′+(t−1)2k′−1M′+(r−1)M′+
s andm= (i−1)2k′−1MM′+( j−1)2k′−1M′+(r−1)M′+
w. For example, the operational matrix of product fork =
k′ = M = M′ = 2 can be presented as follows,

C̃16×16 =

[

C̃1 O
O C̃2

]

, (34)

where,

C̃1 =























2c1 2c2 0 0 2c5 2c6 0 0
2c2 2c1 0 0 2c6 2c5 0 0
0 0 2c3 2c4 0 0 2c7 2c8
0 0 2c4 2c3 0 0 2c8 2c7

2c5 2c6 0 0 2c1 2c2 0 0
2c6 2c5 0 0 2c2 2c1 0 0
0 0 2c7 2c8 0 0 2c3 2c4
0 0 2c8 2c7 0 0 2c4 2c3























, (35)

and

C̃1 =























2c9 2c10 0 0 2c13 2c14 0 0
2c10 2c9 0 0 2c14 2c13 0 0

0 0 2c11 2c12 0 0 2c15 2c16
0 0 2c12 2c11 0 0 2c16 2c15

2c13 2c14 0 0 2c9 2c10 0 0
2c14 2c13 0 0 2c10 2c9 0 0

0 0 2c15 2c16 0 0 2c11 2c12
0 0 2c16 2c15 0 0 2c12 2c11























. (36)

3 Error analysis

In this section, the error bound of the approximate solution
via Legendre wavelets series is illustrated via the following
theorem.

Theorem 3.1. Suppose thatf (x,y) ∈ CM[0,1]×CM[0,1]
and CT Ψ(x,y) is the approximate solution via two

c© 2017 NSP
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dimensional Legendre wavelets method. Then, the error
bound can be presented as follows,

|| f (x,y)−CT Ψ(x,y)||6 D

P!2P(K−2)
, (37)

whereP = M+M′,

D = max

{

maxηxi ,ηyi∈[0,1]×[0,1]

∣

∣

∣

∣

∣

∣

∣

∣

∂ P f (ηxi ,ηyi )

∂xP−i∂yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i = 0,1, ...,P

}

,

andK = min{k1,k2}.
Proof. By taking norm, we have,

|| f (x,y)−CT Ψ (x,y)||2 =
∫ 1

0

∫ 1

0
( f (x,y)−CT Ψ (x,y))2 dx dy.

(38)
The interval [0,1]× [0,1] can be divided into 2k+k′−2

subintervals asInn′ =

[

n−1
2k−1 ,

n
2k−1

]

×
[

n′−1
2k′−1 ,

n′

2k′−1

]

that the

function f (x,y) can be approximated on these
subintervals by Legendre wavelets method, as a
polynomial at most of(M −1)th degree with respect tox
and at most ofM′th degree with respect toy with the
least-square property. So, one has,
∫ 1

0

∫ 1

0
( f (x,y)−CT Ψ(x,y))2 dx dy

=
2k′−1

∑
n′=1

2k−1

∑
n=1

∫ n′
2k′−1

n′−1
2k′−1

∫ n
2k−1

n−1
2k−1

( f (x,y)−CT Ψ(x,y))2 dx dy

6

2k′−1

∑
n′=1

2k−1

∑
n=1

∫ n′
2k′−1

n′−1
2k′−1

∫ n
2k−1

n−1
2k−1

( f (x,y)− SP(x,y))
2 dx dy,

(39)

|| f (x,y)− SP(x,y)||

6

P

∑
i=0

|x− 2n−1
2k |P−i|y− 2n′−1

2k′ |i

(P− i)! i!
max

(ξxi ,ξyi )∈Inn′

∣

∣

∣

∣

∣

∣

∣

∣

∂ P f (ξxi ,ξyi)

∂xP−i∂yi

∣

∣

∣

∣

∣

∣

∣

∣

.

(40)
On the subintervalsInn′ one has,

|x− 2n−1
2k

|P−i
6

1
2k−1 ,

|y− 2n′−1

2k′ |i 6 1

2k′−1
,

max
(ξxi ,ξyi )∈Inn′

∣

∣

∣

∣

∣

∣

∣

∣

∂ P f (ξxi ,ξyi )

∂ xP−i∂ yi

∣

∣

∣

∣

∣

∣

∣

∣

6 max
(ηxi ,ηyi )∈[0,1]×[0,1]

∣

∣

∣

∣

∣

∣

∣

∣

∂ P f (ηxi ,ηyi )

∂ xP−i∂ yi

∣

∣

∣

∣

∣

∣

∣

∣

= Mi,

i = 0,1, ...,P.

Using the above inequalities for (40) we would have,

|| f (x,y)− SP(x,y)||

6

P

∑
i=0

Mi

(P− i)! i! 2(P−i)(k−1)2i(k′−1)
.

(41)

By consideringM = max{M1,M2, ...,MP}, one has,

|| f (x,y)− SP(x,y)||6
M
P!

(

1
2k−1 +

1

2k′−1

)2

. (42)

WhereasK =min{k1,k2}, the following result is obtained,

|| f (x,y)− SP(x,y)||6
D

P! 2P(K−2)
. (43)

And finally, by substituting (43) into (39) the reliable result
will be acquired as follows,

|| f (x,y)−CT Ψ(x,y)||

6

2k′−1

∑
n′=1

2k−1

∑
n=1

∫ n′
2k′−1

n′−1
2k′−1

∫ n
2k−1

n−1
2k−1

(

D

P! 2P(K−2)

)2

dx dy

=

∫ 1

0

∫ 1

0

(

D

P! 2P(K−2)

)2

dx dy

=

(

D

P! 2P(K−2)

)2

. �

The above theorem implies whenP increases the error
decreases. In other words, whenP → ∞ one has
|| f (x,y)−CT Ψ(x,y)|| → ∞.

4 Numerical Examples

In this section, some examples are considered for systems
of integral equations on the interval[0,1]× [0,1] and will
be solved by using the two dimensional Legendre
wavelets method. The method consists of expanding the
solution as a series in terms of two dimensional Legendre
wavelets with unknown coefficients and reducing the
system of integral equations to a system of algebraic
equations. These examples are solved fork = k′ = 1 and
M = M′ = 4. Example 4.1. Consider the following

system of Volterra integral equations,

{

u(x,y) = 3
2x2 y+ 1

3x3 y− ∫ x
0 (u(t,y)+ v(t,y)) dt,

v(x,y) = x y− 1
2x2 y+ 1

3x3 y+
∫ x
0 (v(t,y)− u(t,y)) dt,

06 x,y 6 1.
(44)

The exact solutions areu(x,y) = x2 y and v(x,y) = x y.
According to the wavelets method, let’s consider the
following approximations,

u(x,y)≃CT
1 Ψ (x,y), v(x,y) ≃CT

2 Ψ(x,y),

3
2

x2 y+
1
3

x3 y ≃ FT
1 Ψ(x,y), x y− 1

2
x2 y+

1
3

x3 y ≃ FT
2 Ψ(x,y),

whereC1, C2, F1, F2, andΨ(x,y) are 16× 1 matrices.
Substituting the above approximations into the system
(44) leads to the following system,

{

CT
1 −FT

1 +(CT
1 +CT

2 )Px ≈ 0,
CT

2 −FT
2 − (CT

2 −CT
1 )Px ≈ 0.

(45)

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


92 H. Ebrahimi: Two dimensional Legendre Wavelets

By solving the system (45), the unknown coefficients can
be determined as follows,

c1,1 =
1
6
, c1,2 =

√
3

18
, c1,3 = 0, c1,4 = 0, c1,5 =

√
3

12
,

c1,6 =
1
12

, c1,7 = 0, c1,8 = 0, c1,9 =

√
5

60
, c1,10 =

√
15

180
,

c1,11= 0, c1,12= 0, c1,13= 0, c1,14= 0, c1,15= 0,

c1,16= 0,

c2,1 =
1
4
, c2,2 =

√
3

12
, c2,3 = 0, c2,4 = 0, c2,5 =

√
3

12
,

c2,6 =
1
12

, c2,7 = 0, c2,8 = 0, c2,9 = 0, c2,10 =

√
15

180
,

c2,11= 0, c2,12= 0, c2,13= 0, c2,14= 0, c2,15= 0,

c2,16= 0.

Therefore, the solutions will be achieved as follows,

u(x,y) =
16

∑
i=1

c1,i ψi(x,y) = x2 y,

v(x,y) =
16

∑
i=1

c2,i ψi(x,y) = x y,

which are the exact solutions.

Example 4.2. Consider the following linear system of
Volterra-Fredholm integral equations, with the exact
solutionsu(x,y) = x2+ x y andv(x,y) = x2 y− y2 ex















u(x,y) = x2+ x y− y+ 1
3y3(e−1)− 11

12y2

+
∫ y
0

∫ 1
0 (3u(t,s)+ v(t,s)) dt ds,

v(x,y) = x2 y− y2 ex + 1
3y+ 2

3y3(1− e)+ 7
12y2

−∫ y
0

∫ 1
0 (u(t,s)+2v(t,s)) dt ds, 06 x,y 6 1.

(46)
By using the proposed method for system (46), the
following algebraic system will be obtained,

{

CT
1 −FT

1 − (3CT
1 +CT

2 )K Py ≈ 0,
CT

2 −FT
2 +(CT

2 +2CT
1 )K Py ≈ 0,

(47)

Where matrixK can be computed as follows,

∫ 1

0
Ψ (t,y) dt ≃ K Ψ(x,y). (48)

The following values for the entries of the vectorsC1 and
C2 are resulted by solving the system (47), which consists

Fig. 1: The absolute error function ofv(x,y) in Example 4.2

of 32 equations for the same number of unknowns,

c1,1 =
7
12

, c1,2 =

√
3

12
, c1,3 = 0, c1,4 = 0, c1,5 =

√
3

4
,

c1,6 =
1
12

, c1,7 = 0, c1,8 = 0, c1,9 =

√
5

30
, c1,10 =

√
15

180
,

c1,11= 0, c1,12= 0, c1,13= 0, c1,14= 0, c1,15= 0,

c1,16= 0,

c2,1 =− e
3
+

1
2
, c2,2 =−

√
3

18
(3e−4), c2,3 =−

√
5

30
(e−1),

c2,4 = 0, c2,5 =

√
3

12
(4e−11), c2,6 =

e
2
− 17

12
,

c2,7 =

√
5

60
(140e−381), c2,8 = 0, c2,9 =−

√
5

60
(140e−381),

c2,10=−
√

15
180

(210e−571), c2,11=
7
6

e+
19
6
, c2,12 = 0,

c2,13=

√
7

3
(71e−193), c2,14 =

√
21
6

(71e−193),

c2,15=

√
35

30
(71e−193), c2,16= 0.

So, the following approximate solutions will be obtained,

u(x,y) =
16

∑
i=1

c1,i ψi(x,y) = x2+ x y,

v(x,y) =
16

∑
i=1

c2,i ψi(x,y) = y(x2+1456y−16800x y

−27020x3 y+41100y x2−536y e−15120x2 y e

+6180x y e+9940x3 y e),

The absolute error function ofv(x,y) is plotted in Fig. 1.
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Example 4.3. Consider the following nonlinear system of
Fredholm integral equations,






























u(x,y) = x2 cos(y)− ysin(x)− ycos(y)sin(1)
+2ycos(y)cos(1)+ v(x,y)

−∫ 1
0 u(t,y) ∂v(t,y)

∂ t dt,
v(x,y) = ysin(x)+3x2cos(y)−2ycos(y)sin(1)

+2ycos(y)cos(1)−3u(x,y)

+
∫ 1

0 v(t,y) ∂u(t,y)
∂ t dt, 06 x,y 6 1.

(49)

With the exact solutionsu(x,y) = x2cos(y) andv(x,y) =
ysin(x) on the interval[0,1]× [0,1]. First, let’s consider
the following approximations,

∂u(x,y)
∂x

≃CT
1 Ψ(x,y), u(x,y)≃CT

1 Px Ψ(x,y),

∂v(x,y)
∂x

≃CT
2 Ψ (x,y), v(x,y)≃CT

2 Px Ψ (x,y),

u(x,y)
∂v(x,y)

∂x
≃ Y T

1 Ψ(x,y),

∂u(x,y)
∂x

v(x,y)≃ Y T
2 Px Ψ(x,y),

x2 cos(y)− ysin(x)− ycos(y)sin(1)

+2ycos(y)cos(1)≃ FT
1 Ψ(x,y),

ysin(x)+3x2cos(y)−2ycos(y)sin(1)

+2ycos(y)cos(1)≃ FT
2 Ψ (x,y)

Substituting into the system (49) results the following
system,

{

(CT
1 −CT

2 )Px −FT
1 +Y T

1 K ≈ 0,
(3CT

1 +CT
2 )Px −FT

2 −YT
2 K ≈ 0.

(50)

Where matrixK can be obtained by (48). Therefore, one
gets the following approximate solutions,

u(x,y) = (3.055050463×10−39 −6.110100928×10−39y)x3

+(0.07880040004y3 −0.5492104648y2

+0.9994691925+0.0107436901y)x2

+(7.016×10−8y−7.52×10−8y−8.104×10−9

−4×10−11y3)x−0.0003740641413y3

+0.0005751663880y2 −0.0002360041636y

+0.00002049300335

v(x,y) = (5×10−11−0.1442434000)x3 +(1.7×10−11y3

−4.5107×10−8y2−7.1873×109 −0.0190966498y)x2

+0.9994691925+0.0107436901y)x2

+(4.5103×10−8y2+5.8875×10−9 +1.004753694y

−2.4×10−11y3)x−0.0005792916244y3

+0.0008741147659y2 −0.0006246130433y

+0.0000277346412.

Fig. 2: The absolute error function ofu(x,y) (left), The absolute
error function ofv(x,y) (right) in Example 4.3

The absolute error functions of approximate solutions are
plotted in Figs. 2 and 3.
Example 4.4. Consider the following nonlinear system of
Volterra-Fredholm integral equations with the exact
solutionsu(x,y) =− x

2 sin(y) andv(x,y) = y tan(x) [9,11],














u(x,y) =− 1
6(x

2+ y2)(ycos(y)+ sin(y))− 1
2xsin(y)

+(x2+ y2)
∫ y

0

∫ 1
0 t su(t,s) dt ds,

v(x,y) = 0.14726y3(y− x)+ y tan(x)
+(x− y)

∫ y
0

∫ 1
0 t v(t,s) dt ds, 06 x,y 6 1.

(51)
By applying the two dimensional Legendre wavelets
approach to this system, the following results would be
obtained,

u(x,y) = (6.399548864×10−7 −0.00001226982627y

+0.00003752203787y2 −0.00002798867783y3)x2

+(0.0001263034−0.5023759227y+0.0095459319y2

+0.07212333341y3)x+1.41768×10−7

−0.00000348540y+0.00001300718946y2

−0.00001099643y3
,

v(x,y) = (0.001088549648y2 +0.00003559050798+

+ .1055964073y−0.0007233333332y3)x3

+(0.001085y3 −0.0000534712−0.001633424472y2

−0.6942187016y)x2 +(0.00000214275

−0.00004524975958y3 +0.00006519464040y2

+0.1187152247y)x+0.00007457242022y3

−0.00007823847367y2 −0.0105290851y

−0.00000205100.

The absolute error functions of approximate solutions are
plotted in Figs. 4 and 5.

5 Conclusion

In this paper, the operational matrices of integration and
product for two dimensional Legendre wavelets were
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Fig. 3: The absolute error function ofu(x,y) (left), The absolute
error function ofv(x,y) (right) in Example 4.4

obtained and the two dimensional Legendre wavelets
method was applied to find approximate solutions for four
systems of integral equations successfully. It can be
concluded that the method is a powerful tool for solving
two dimensional problems. The obtained solutions and
plots of the absolute error functions via examples confirm
this claim. One of the advantages of Legendre wavelet
method compared to other common methods, such as
Adomian decomposition, homotopy perturbation, and
variational iteration methods, is that does not need an
initial approximate for exact solutions. Finding more
applications of this method and other orthogonal basis
functions is one of the research fields in our research
group. The computations associated with these examples
are performed using the package Maple16.
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