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Abstract: In this paper, a numerical method is introduced to solveesgstof integral equations. The method consists of redubiag t
system of integral equations to a system of algebraic onephgidering the solution as a series, in terms of Legendvebats with
unknown coe?cients on the intery@l1] x [0, 1] . The operational matrices of integration and product aacethor bound are calculated
for two dimensional Legendre wavelets and at the end sonraea are presented to illustrate the efficiency and thelsiitypof the
method. It is expected the lesser computational costs cadga the other common methods. The results reveal thatrtéiod is
very effective and can be applied for other problems in dfi¢ fields of sciences.
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1 Introduction 2 Two Dimensional L egendre Wavelets

Wavelets constitute a family of functions constructed

from dilation and translation of a single function called

Orthogonal functions and polynomials have been used b)( o
: : . . he mother waveletl], 2, 3]. When the dilation parameter,
many authors for solving various functional equat|ons.a and the translatig{n pa]rametbrvary continu%usly the

The main idea of using an orthogonal basis is that the llowing familv of conti lats wil
problem under study reduces to a system of linear OIIO owing family of confinuous wavelets will appear,
nonlinear algebraic equations. This can be done by 1
truncated series of orthogonal basis functions for the  Yab(X) =a]"2 Y(
solution of a problem and using the operational matrices.

Here we use two dimensional Legendre wavelets basis oif we choose the dilation parameter as®, and the
interval [0,1] x [0,1] for solving systems of integral translation parameter aba X, wherea> 1,b > 0,n, and
equations. These systems arise in mathematical modeling are positive integer numbers, then we will have the
of many phenomena and some methods have beefollowing family of discrete wavelets,

proposed in the literature for solving these systems on the .

interval[0,1] x [0,1] such as the Adomian decomposition Yin(X) = |a)2 P(@x—nb). 2
method P, 10] and Homotopy perturbation method 7, . _

12]. It should be noted that global intervas b] x [c,d] ~ These functions generate a wavelet basisLf&iR) and

can be converted to the intervdd,1] x [0,1] by an  for special case =2 andb = 1, the functionsiics(X)
appropriate change of variable. generate an orthonormal basis. The family of continuous

This paper is organized as follows: Section 1 is two-dimensional wavelets is constructed from product of

devoted to introduction; in Section 2, the two dimensions™© one-dimensional wavelets as follows,

Legendre wavelets are introduced and their operational Wik (XY) = Wien(X) Wie w (Y), 3)
matrices of integration and product are computed;

Numerical examples are presented in Section 3wherek,n k', and ' are positive integers. The family
Conclusions are given in the final Section, 4. {Ynww(xy)} is a wavelet basis forl?(R?). Two

X“by ' abeRr ato. (1)
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dimensional Legendre wavelets are defined4(R?) on
the interval[0, 1] x [0,1] as follows [7,8],

[ Tyl o L) kel 3 K / n-1 n

Uy Y) = \(m+ 5)(M+35)2 2 Pm(2%-2n+ )Ry (2y—2n' +1), xI <x< KT
: 0, otherwise,

@)

Where,

n=1,2,..,2<1
m=0,1,...M—1,

n=1.2..2<"%
m=01,.,M -1

k, k', M, andM’ are any positive integersyandn are the
degrees of Legendre polynomiafs,(x) andP,y (x) are the
famous Legendre polynomials of ordensand ', which
are orthogonal with respect to the weight functiafx) =

1, on the interval—1,1]. These polynomials satisfy the
following differential equation, which named the Legendre

differential equation,
(1= X%)P(X) — 2XP(X) +n(n+1)Pn(x) =0,  (5)
and can be obtained by recursive formula as follows,

{ Pre1(X) = (B2 )XPn(X) — (727 Pn-1(X), m=1,2,...
P(x) =1, P (x)=x
(6)

2.1 Function approximation

The continuous functiorf (x,y), defined on the interval
[0,1] x [0,1], can be expanded as,

[oe] [ee] [ee] [oe]

f s ~ / / N . 7
(X,y) nzln;OnZOn;:ocmmm m Wnmp,m xy). (1)

The series representation dfx,y) in (7) is called a
wavelet series and the wavelet coefficieats,y v are
given by,

Cn,mn,my :/f‘ill /il f(Xay)q—’n7m,n’7n‘((xa)’)d)(d)’~ (8)

n
K1 7 ok1

The convergence of the series (7) A([0,1] x [0,1])
means that,

liMsy 5p.80.800 || F(X.Y) = S0 T80 Trv0 Eovo St art W vy (X Y) | = 0.

9)

whereC and¥(x,y) are ¥ 12¥~IMM’ x 1 matrices and
given by,

C=1[€1,01,0,C1,0,1,1, -5 C1,0,1,M'-1,€1,02,0,C1,02,1, -+,

Cl,O,Z,M/fl7 ceey C17072k’7l’07 ceey Cl,O,Zklfl,M/—r

T
Cok-1p— 1,201 1]
-
- [C17 C2,Cs,..., Czk—lzk/—lMM/]
(11)

and

Y(xY) = [P1010 1011 P101m -1, ¥1020 1021, -+,

w1$072,M/—17 ) 4/1_,072%71‘,0, eeey wl’o’zk’—l,M/_y

wzkfl,Mfl.Zklfl.M’fl]T
= W’l(x> y)v LIJZ(Xv y)v LIJ3(X7 y)7 R wzk—lzk/—lMM/ (Xv y)]T
(12)

The integration of the product of two Legendre wavelets
vector functions leads to the following matrix,

1,1
| [woy vy axay=1. @)
0 Jo

wherel is an identity matrix.

2.2 The operational matrix of integration for x

In [6] the operational matrix of integration for one
dimensional Legendre wavelets has been computed and in
[7] the operational matrices of integration for two
dimensional Legendre wavelets have been computed that
are wrong. Now, we want to achieve the operational
matrix of integration for two dimensional Legendre
wavelets correctly. The integration of the vectB(x,y)

with respect to variablex, defined by 12), can be
achieved as,

/Oxwod,y) dX =~ B W(x,y), (14)

where B is the X 12K-IMMm x 2k-1K-1mm/
operational matrix for the variabbe Frist, for example,
we find matrixP, for k =k =M = M’ = 2. There are
sixteen basis functions as follows,

P1010= 2\/_

Yro11=2v3(4y—1) 1
o<xy< <,

Yr110= 2v/3(4x— 1) y<3

Y1111=6(4x—3)(4y—1)

Therefore, one can consider the following truncated series

for series (7),

X IM—12¢ TM'—1

- , ’ _ T
f(xy) ~ nzl rrgo nZO rrZ:O Chm . Ynm,m (X,y) =C W()((;-yo))v

Y1020= 2

Yho21= 2v/3(4y — 3)
Yr120=2V/3(4x— 1)
l,U1121= 6(4X — 1) (4y — 3)

11
0 s Z<y<],
<X<2,2 y<
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Wo020= 2
Wao21= 2V/3(4y — 3) 1, <1 whereO is the X ~IMM’ x 2K~-IMM’ null matrix, L and
War20=2v/3(4x— 3) o SXY<S F are the following £~ MM’ x 2¥~IMM’ matrices,
2121 = 6(4x — 3)(4y - 3) -
I Lo o
_§| o M3 o
Yro010=2 L 3V5 )
Woo11=2v/3(4y—1) }<x<10<y<} L=| O H O o ,
Wo110= 2/3(4x—3) 2" T 2 : : : VM3 |
Yo111=6(4x—3)(4y—1) ' ' : (2M—3)V2M—1
O/ O/ 2M—1 | O/
_ _ , L (2M—-1)\/2M—3 i
By integrating the above equations from 0 xowe (20)
have,
X
~ 200 ... 0O
A le(X,aY) dX/ — PX15><16 le(XaY)a (15) O/ O/ O/ L O,
/ / / ..
where F=|00O0 of (22)
Wie(X,Y) = [P1010 Y1011 Y1020 Y1021, Y1110 Y1111, oo0o...0o
Y1120 Y1121, Yoo10 Yo011, Y2020 Yo021. . iy el s , .
T | is the ¥ ~IM’ x 2K~IM’ identity matrix, and0’ is the
Y110, Y111, Yor20 Yo121) oK —1pp 5 2X~1\7 ull matrix.
and
(Lo o itsl it ol iil]  23Theoperational Matrix of integration for y
fé B o 0 0 000 o o 0 o 00 0o The integration of the vectot’(x,y) with respect to
o 0 % 0 0 000 0 0 0 0 00 00 variabley, is computed as follows,
Pascs =4 | o o o o oo oo 1 o o sf oo
0 0 0 ] 0 0 0 0 0 1 0 0 013@ 0 ] y
0 0 0 0 0 0 0 0 0 0 1 0 0 0 \/3§ ;@ /O W(X’y) dy ~ Py W(X7y)’ (22)
5 o o o o 00 o B o o o 0o o b
R R R T where B, is the Z12K-IMM/ x 2x-1K-Imm/

- -9 operational matrix for the variable Similar to part (2.2),
the matrixR, for k =k’ =M = M’ = 2 will be found. This

The matrixPy, ., can be rewritten as follows, matrix is obtained as follows,

1L Y 3
Passs= 3 [0 L0 | (16) SRS S
8><8 8><8 0 0 1 \/35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 7%3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 E] 2 0 0 0 0 0 0 0 0 0
Where, 0 0 0 0 7335 E 0 0 0 0 0 0 0 0 0 0
\/é 0 0 0 0 0 0 1 K] 0 0 0 0 0 0 0 0
Lgxg = [ \|}47><4 TI4><4 (17) R _ 1| 0o o o o o o - E o 0o 0o 0o 0o 0 0 o
- 3 , 9 Yi6x16 — 4 o 0o o o o o o o 1Y 2 0o o o o ol
_TI4><4 O4><4 o o o 0 o0 0 0 o0 7§ (3) 0o 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 ~\/3§ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 7? 0 0 0 0 0
2'4 4 O/ 0 0 0 0 0 0 0 0 0 0 0 0 1 V] 2 0
I:8><8 - |:O/ % O/4><4 ) (18) 0 0 0 0 0 0 0 0 0 0 0 0 7V3§ f 0 o
4><4 4><4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ? 0
L o 0 0 0 0 0 0 0 0 0 0 0 0 0 — 3 0
| is the identity matrix,O and O’ are the null matrices. (23)
Therefore, the matri®, can be presented, in general, as Therefore, in general, the matr, can be presented as
follows, follows,
LFF.--F POO...O
1 OLF - ---F 1 oOpPO..-O
OOL---F OO0 P...0O
Bc= o ) (19) R = H ; (24)
O0O0---L oOo0o..-P
(© 2017 NSP
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V\{(hereo' Iis the XM’ x 2M’ null matrix andP is  In (31), §;, i = 1,2,...,2% t,j = 1,2,..,M, are the
/71 /71 . .
257 IM" ¥ M” matrix and given by, 2X-IM’ x 2¥~1M’ diagonal matrices which given by,
LFF..-F .
OLF..F sV o ... o
it
SRR A (32)
00O L o o ...éz'kfll
HereL, F, andO areM’ x M’ matrices as follows, =122 tj=12..M,
1 @ 0 0 o , , : it
V3 Ne where O is the M’ x M’ null matrix, and § ",
-3 0 3% 0 r=12..2¢1 =122 tj=12..M, are
L_| O 5_\/\% 0 0 M’ x M’ symmetric matrices with the following entries
S : VoN—3 .
o : (2M—3)v2M 1 (§' Nsw= ((W ‘IJTC)n,‘IJm),
o 0 ... —vam1 0 (33)
- (M—1)/2M=3 " 26) r=12..2¢"1 i=12 2<%
t,j=1,2,...M, sw=12 . M,
(20 0 --- 07
88 8 8 wheren= (i — 1)2" MM’ + (t— 1)2¢~IM" + (r — )M’ +
F= R 27)  sandm= (i—1)2¥ "IMM' + (j— 1)2¢IM' + (r — )M’ +
s 0 w. For example, the operational matrix of product kot
|00--- 0 0] K =M = M’ = 2 can be presented as follows,
00 0 --- 0] . e
000---0 Cl6><16:|:0162:|a (34)
o_ 0000 (28)
Ce where,
o0 .0
L00--- 0 O] [2c12c0 0 O Z52c6 O O]
2c2c0 0 0 Zg2cs O O
. . 0 0 232c4, 0 0O 27 2cg
2.4 The operational Matrix of product N 0 0 24203 0 0 2g 207
C1=1l2c5266 0 0 ;2,0 0 (39
The property of the product of two Legendre wavelets S <6 1482
vector functions will be as follows, 2662cs 0 0 Zp2¢; 0 O
t ~ 0 0 272cg 0 0 2x32¢4
Y(xy) ¥ (xy) ~C¥(xy), (29) | 0 0 Zg2c; 0 O 24 2c3 |
where C is the vector defined in1l) and € is a and
KK =AM x 261K -IMM’ matrix. This matrix is
called the operational matrix of product, which in solving [2c9 2c10 O 0 2x332c14 O 0 ]
the integral equations is applied, and defined as follows, 2c1p02cg 0 O 2x342c13 0 O
~ 0 0 2372c2 O 0 245 2C6
%g 8 8 é o 0 0 Z122c117 O 0 216215 (36)
) 2 1= |2c132c14 0 0 29 2c0 O O |°
E=]00GC . O | (30) 2c42c13 0 0 X026 O O
0 0 Z52c16 O 0 211 2C10
000G | 0 0 ZX362ci5 0 0 Zgp2cq |

where O is the X~IMM’ x 2¥~IMM’ null matrix and

C,i = 1,2,..,2¢1 are the ¥ MM x 2¥-'Mm’ 3 Error analysis

symmetric matrices as,
o ! In this section, the error bound of the approximate solution
Si1 S - S via Legendre wavelets series is illustrated via the foltayvi

¢ 3.21 %z S‘?M Ciz12..2¢t @31 theorem.
Pt Theorem 3.1. Suppose that (x,y) € CM[0,1] x CM[0,1]
Siv Swv - Sum and CT W(x,y) is the approximate solution via two
(@© 2017 NSP
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dimensional Legendre wavelets method. Then, the errotWhereaK = min{kj,kz}, the following result is obtained,

bound can be presented as follows,

T —

p12P(K-2)’

|i—o1..p}.

1T (xy) =

whereP =M+ M/,

(37)

apf(’)xi Nyi)
oxP-1gyl

D= max{ ma&xi,nyie[o,l]x[o,l]

andK = min{ky, ko }.
Proof. By taking norm, we have,

1,1
170y =CT Wyl = [ ["(F0cy)~CT Wixy)? deay.

(38)
can be divided into '9K—2
tr | X [;k——ﬁzk“—] that the

be approximated on

The interval [0,1] x [0,1

subintervals ag,y = g—rl

function f(x,y) can these

D

||f(X,Y)—SP(XaY)||<W- (43)

And finally, by substituting43) into (39) the reliable result
will be acquired as follows,

Yyl

2k’ 12k 1 k,' D 2
2 1 dx dy
1n 1/ x 11 <P' 2Pk 2))

-1

:/o/o (P! 2P<K—2>> axdy
2
). O

If(xy)-C

B D
~ \ P! 2P(K-2)

subintervals by Legendre wavelets method, as alhe above theorem implies whehincreases the error

polynomial at most ofM — 1)th degree with respect to
and at most ofM’th degree with respect tg with the
least-square property. So, one has,

1,1
|| (0 €T wixy))? axay
0 JO

2k'712k71 n —knT
k/71 —
-3 > |2 / (f(xy) ~CT W(xy))? dxdy
—1n=1Y 01 I
2k/ 12k 1 n
s [E #- f(xy) — Sp(x,y))? dxdy,
1n 1 K1
(39)
1T (xy) = Sp(xy)]|
p |X 2n— l|P ||y 2n l| 0Pf(fx.-7€yi)
s % _I Ll (Exi’EYi)Elnn/ dXP_iﬁyi ‘
. (40)
On the subintervalk,y one has,
x_ 2n2;1‘P igz%
-1, 1
|y7 2k’ ‘ g 2k’—1
P F(&,&y) Ftnen) ||\,
(&g dy el || OXF1aY ‘g(nn»nyi)ﬁll]x{o»l] oxP-1oy ‘7M"
i=0,1,..,P

Using the above inequalities fo4@) we would have,

In other words, wheh — « one has
WX Y)[[ — .

decreases
[[f(xy)—

4 Numerical Examples

In this section, some examples are considered for systems
of integral equations on the intervi@, 1] x [0, 1] and will

be solved by using the two dimensional Legendre
wavelets method. The method consists of expanding the
solution as a series in terms of two dimensional Legendre
wavelets with unknown coefficients and reducing the
system of integral equations to a system of algebraic
equations. These examples are solvedkfer k' = 1 and

M = M’ = 4. Example 4.1. Consider the following

system of Volterra integral equations,

{U(x,y) =3 y+xCy— [Julty) +v(t,y)) dt,
V(X,Y) =Xy— 35X y+ 23 y+ [F(v(t,y) —u(t,y)) dt,
o<xy<1l
(44)

The exact solutions are(x,y) = x* y andv(x,y) = X y.
According to the wavelets method, let's consider the
following approximations,

u(x,y) =Cl W(xy), v(xy)=~C ¥(x),

3 1 1 1
||f(xﬂy) - SD(X,y)H EXZ y+ §X3y2 F]-_r (,U(X7y) Xy_ EXZ y+ éxgyz FZT (’U(X7y)
P M; (41) .
< -Z;(P—i)' i1 2P )(k1)i(K—1) whereCy, Cy, F1, F, and W(x,y) are 16x 1 matrices.
1= o Substituting the above approximations into the system
By consideringV = max{M1,Ms, ...,Mp}, one has, (44) leads to the following system,
M/ 1 10)? Cl —FJ +(CT +CI)R ~0,
110 - S0l < gy (gt ) - (42 (- prdrgRzy
(@© 2017 NSP
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By solving the systemd®), the unknown coefficients can
be determined as follows,

01122 0122—\/§ €13=0,C4=0, Ci5=—%
9 67 9 18’ 5 ? 9 ? y 12’
016=i €1,7=0,c18=0 0192—\/E 01102—15
’ 127 ™ T e 60" 180’

€111=0, €112=0, ¢113=0, C114=0, ¢ 15=0,
€116 =0,

1 V3 V3
Co1=7, C22= 75, C23= 0, C24=0, Co5= 1

1 V15
C26 =75 C27= 0, c28=0,C9=0, Cr10= 180

€211=0, C212=0, C213=0, C214=0, C215=0,
C216=0.

Therefore, the solutions will be achieved as follows,

16

ch,i Wi(xy) =Xy,

16

zica Yi(Xy) =Xy,

U(X7 y) =

V(Xa y) =

which are the exact solutions.

Example 4.2. Consider the following linear system of
\olterra-Fredholm integral equations, with the exact
solutionsu(x,y) = 2 + xy andv(x,y) = x* y — y? &

u(xy) =X +xy—y+3y3(e—1) — 5y
+ /Y [3(3u(t,s) + v(t,9)) dt ds,
V(x,Y) =Xy —y? €+ 3y + 5y3(1—€) + 1oy
— ¥ fout, 9 +2v(t,9) dtds, 0<xy<1.
46
By using the proposed method for systed6)( (th()a
following algebraic system will be obtained,

C! —F/ —(3C] +C])K R, ~0, 47
Cl —F +(C] +2c)K B ~0,
Where matrixK can be computed as follows,
1
/ Wit,y) dt =~ K ¥(x.y). (48)
0

The following values for the entries of the vect@sand
C, are resulted by solving the systeri’), which consists

Fig. 1: The absolute error function efx,y) in Example 4.2

of 32 equations for the same number of unknowns,

7
C11= 175 C12=75, C13= 0,C14=0,Ci5= T
016=i C17=0,¢8=0, CLo= 5= 0110=£>
’ 120 ™ T T 300 180’

€1,11=0, C112=0, ¢113=0, ¢114=0, c115=0,
€116 =0,

e 1 V3 5
Co1= 3 + > Co2 = —E(‘?’e—‘l), C23 = —%(e— 1),
V3 e 17
C24=0, Co5= ﬁ(4e— 11), co6 = 5712
V5 V5
— V(1400 381), cpg — — _¥°(140e—381
C2,7 60( 0e—381), c28 =0, C29 60( Oe—381),
V15 7 19
C210= —ﬁ(ﬂ%— 571), co11= gt 5 Ce12= 0,
7 1
Co1a= \/?—(He— 199, Cp1a= Y~ (71e- 193,
V35

30 (716— 193), C216 = 0.

C215=

So, the following approximate solutions will be obtained,

16

uxy) = ch,i i(X,y) = X2 +xy,
i=
16
V(X y) = ZLCZi Pi(x,y) = y(x* + 1456/ — 16806y
i=
— 270208 y+ 41100/ x* — 536y e— 15120 y e
+ 618y e+ 99403y e),

The absolute error function efx,y) is plotted in Fig. 1.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Sohag J. Math4, No. 3, 87-94 (2017) www.naturalspublishing.com/Journals.asp NS = 93

Example 4.3. Consider the following nonlinear system of
Fredholm integral equations,

u(x,y) = x2cogy) — ysin(x) — ycogy)sin(1)
+2ycos(y) coq1) + v(x,y)
— Ju(t,y) 252 dt,
V(X,y) = ysin(x) + 3x2 cogy) — 2ycogy)sin(1)
+2ycogy)cog1) —3u(x,y)
+f01v(t,y)w d, 0<xy<1l

(49)

With the exact solutions(x,y) = X2 cogy) an,dV(Xa Y) = Fig. 2 The absolute error function oix,y) (left), The absolute
ysin(x) on the intervall0,1] x [0, 1]. First, let's consider  error function ofv(x,y) (right) in Example 4.3
the following approximations,

M ~ CI q‘l(xay)a U(va) =~ CI PX L,U(X,y), i [ i
) ?x | The absolute error functions of approximate solutions are
VXY

Ty v(x.y) ~CI B W(xy), plotted in Figs. 2 and 3.
ox =Gz Wlxy), vixy) =G RA(Y) Example 4.4. Consider the following nonlinear system of
u(x.y) ov(xy) Wixy), \olterra-Fredholm integral equations with the exact
ox solutionsu(x,y) = —3sin(y) andv(x,y) = ytan(x) [9,11],
du(x.y) . .
oy YY) = S B W(x,y), u(x,y) = — (%2 +y?)(ycogy) + sin(y)) — 2xsin(y)

+0C+y2) JY Jot su(t,s) dt ds,

X% cogy) — ysin(x) — ycogy) sin(1) V(xy) — 014726505 %) + ytan)

T
+2ycogy)cog1) ~ Fy W(xy), +(x—y) Y fgtvt,9dtds, 0<xy<L1
ysin(x) + 3x*cogy) — 2ycos(y) sin(1) _ . _ (51)
By applying the two dimensional Legendre wavelets
+2ycogy)cog1) =~ F, ¥(xy) approach to this system, the following results would be
Substituting into the system49) results the following Obtained,
system, u(x,y) = (6.399548864< 10~ ' —0.00001226982637
{ (CIT— cl _?_Px —F Ry Al K=~0, (50) +0.00003752203787 — 0.00002798867788 )2
(8C; +C)R—F; —Y; K~0. +(0.0001263034- 0.502375922§+ 0.009545931¢°
Where matrixK can be obtained by4@). Therefore, one +0.0721233334¢% )x + 1.41768x 10”7

gets the following approximate solutions,

—0.00000348549+0.000013007189
u(x,y) = (3.055050463« 103 — 6.110100928< 10~ %)x3 9 %

+(0.0788004000¢° — 0.549210464¢° ~ 00000109964,
+0.9994691925- 0.010743690)x° v(x,y) = (0.00108854964% +0.00003559050798
+(7.016x 10 %y~ 7.52x 10 %y~ 8.104x 10~° +.105596407$— 0.000723333333%)x3
—4x 10 1y*)x—0.000374064141% +(0.0010853 — 0.0000534712- 0.0016334244 7%
+0.000575166388F — 0.0002360041636 —0.694218701§) + (0.00000214275
+0.00002049300335 ~ 0.00004524975958 +0.00006519464048
+0.118715224§)x+0.00007457242027
v(x,y) = (5x 1011 — 0.144243400DC + (1.7 x 10~ 11y3 —0.00007823847367 — 0.010529085¢
—45107x 10 8y? — 7.1873x 10° — 0.0190966499)x —0.00000205100
+0.9994691925- 0.010743690%)x? The absolute error functions of approximate solutions are

+(45103% 10-8y? 1 5.8875x 102 + 1.00475369¢ plotted in Figs. 4 and 5.

—2.4% 10 11y?)x— 0.0005792916244

+0.000874114765% — 0.0006246130433 5 Conclusion

+0.0000277346412 In this paper, the operational matrices of integration and

product for two dimensional Legendre wavelets were
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[10] A. M. Wazwaz, The existence of noise terms for systems of
inhomogeneous differential and integral equations, Aggpli
Mathematics and Computatidd6, 81-92 (2003).

[11] J. Biazar, B. Ghanbary, M. Gholami Porshokuhi and M.
Gholami Porshokuhi, He's homotopy perturbation method: A
strongly promising method for solving non-linear systerhis o
the mixed Volterra - Fredholm integral equations, Comuter
and Mathematics with Applicatior&l, 1016-1023 (2011).

[12] E. Babolian , N. Dastani, He's homotopy perturbation
method: An effective tool for solving nonlinear system

Fig. 3: The absolute error function ofx,y) (left), The absolute of two-dimensional Volterra-Fredholm integral equations
error function ofv(x,y) (right) in Example 4.4 Mathematical and Computer Modellirip (3-4), 1233-1244
(2012).

obtained and the two dimensional Legendre wavelets
method was applied to find approximate solutions for four
systems of integral equations successfully. It can be
concluded that the method is a powerful tool for solving
two dimensional problems. The obtained solutions and
plots of the absolute error functions via examples confirm
this claim. One of the advantages of Legendre wavelet
method compared to other common methods, such as
Adomian decomposition, homotopy perturbation, and
variational iteration methods, is that does not need an
initial approximate for exact solutions. Finding more
applications of this method and other orthogonal basi
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