
Appl. Math. Inf. Sci.7, No. 4, 1479-1485 (2013) 1479

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070429

Real-time Subsurface Scattering for Particle-based
fluids using Finite Volume Method
Kyung-Kyu Kang and Dongho Kim∗

Department of Digital Media, Soongsil University, Seoul, Korea

Received: 8 Dec. 2012, Revised: 17 Jan. 2013, Accepted: 20 Feb.2013
Published online: 1 Jul. 2013

Abstract: We present a real-time subsurface scattering simulation to perform real-time rendering of translucent particle-based fluids.
After particle-based fluid simulation, we immediately build voxelized fluids, called Voronoi fluids, with particle locations and neighbour
lists using GPUs. And then, we perform a multiple subsurface scattering simulation over the Voronoi fluids with the diffusion equation
(DE). We employ Finite Volume Methods to solve DE efficiently and rapidly with the voxelized fluids. In our implementation, DE is
solved on GPUs with the diffusive source boundary condition and queryfunction for computing the outgoing radiance. We demonstrate
a milk demo that show our method can be performed in real-time with CUDA-based fluid simulation.

Keywords: Subsurface scattering, real-time rendering, particle-based fluids, diffusion equation, finite volume methods

1. Introduction

Subsurface scattering effects are important to improve the
visual appearance in computer graphics. This natural
phenomenon is a mechanism of light transport in a
translucent object. When light photons are scattered by
interacting with particles of material, we can observe this
phenomenon occurred on the surface of translucent
objects. However, scattering effects are complex to
simulate for rendering images.

Real-time subsurface scattering simulation and
rendering are still challenging works for interactive
application such as 3D games. Many researchers have
proposed real-time subsurface scattering rendering
techniques for translucent materials [1,2,3]. These
reserches are focused on rigid translucent objects, such as
wax, candle, marble, jade, or human skin. And they need
pre-processing time (maybe a few minutes) to generate
inner mesh structures for radiance sampling. Some
subsurface scattering rendering techniques for human
skin are already available in famous game engines.

Recently, many video games employ particle-based
fluids effects [4] which make games more realistic. They
only render fluids’ surface using simple methods, e.g.
screen space rendering techniques [5]. The rendering
results are a lack of optical phenomenon such as
subsurface scattering. However, there are no available

subsurface scattering rendering techniques for translucent
fluids in real-time and without any inner mesh data.

We present a real-time subsurface scattering rendering
method for particle-based fluids. Our method directly
uses the particle’s location as a radiant flux sampling
point and performs a scattering simulation using the
diffusion process [6]. The diffusion process describes
isotropic multiple scattering effects in translucent
materials by solving the diffusion equation. After the
scattering simulation, we render the iso-surface of the
fluids using screen space fluid rendering [5] with an
outgoing radiance.

We voxelize particle-based fluids, calledVoronoi
fluids, with particle locations and neighbor lists using
GPUs. This voxelization process is similar to the building
process of the Voronoi diagram, and is parallelized easily
to perform in real-time. For solving the diffusion equation
over Voronoi fluids using Finite Volume Methods, we
only need volumes of cells and areas of cells’ surrounding
faces from the voxelized fluids. So we can speed up the
voxelization process with requiring simple data. In our
implementaion, we use only nVIDIA CUDA [7] which
performs this process in real-time.

This paper consists of the following contents: after the
preview of the related works in chapter 2, we explain
briefly on the diffusion equation in chapter 3, and derive
the discrete diffusion equation and solve the equation. In

∗ Corresponding author e-mail:cg@su.ac.kr

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/070429

1480 K.-K. Kang, D. Kim: Real-time Subsurface Scattering...

chapter 4, our method is implemented with GPUs. Finally
we discuss about the results and conclusion in chapter 6
and 7.

2. Related Work

2.1. Subsurface Scattering

Photorealistic subsurface scattering rendering can be
performed with Monte-Carlo path tracing [8] or Photon
Mapping [9]. They are physically accurate, but these
methods usually require hours for rendering. Stam [10]
introduces the diffusion equation to computer graphics for
multiple scattering simulations for smoke and cloud. The
diffusion equation is an approximation version of the
volumetric radiative transfer equation with diffusion
approximation [11]. Jensen and his colleagues [6]
introduced a dipole method with the diffusion equation.
They show realistic rendering results for homogeneous
translucent materials, like skin and marble, in a few
minutes. They also proposed how to acquire material’s
scattering properties. Arbree and his colleagues [12]
improve the quality of results with the diffusive source
boundary condition and the query function for computing
outgoing radiance for diffusion process.

Recently many papers have presented algorithms for
real-time rendering of translucent objects [1,2,3] with the
diffusion process, but their goals are restricted only to
rigid objects. They employ finite difference methods,
finite element methods and finite volume methods to
solve the diffusion equation within tetrahedral meshes as
structured geometrical data. However, the building cost of
the structure is expensive. So they are difficult to be
applied on real-time applications of fluids. Screen space
approaches [13,14] are also performed in real-time and
show reasonable quality of results.

2.2. Particle-based fluids

Particle-based fluid simulation is a practical method for
the representation of fluids in real-time rendering
applications. M̈uller and his colleagues [4] introduced a
real-time fluid simulation based on Smoothed Particle
Hydrodynamics (SPH) to computer graphics community.
After this research many researches employed the
SPH-based methods for the real-time and off-line fluid
simulations and brought enhancements and extensions.
Recently, nVIDIA’s particle demo in [15] shows that
GPUs can handle massive particles using a GPU-based
sorting library for constructing a partial hash table.
nVIDIA PhysX [16] is a scalable game physics engine
accelerated by multicore CPUs and GPUs for
multi-platform interactive applications. This engine also
provides real-time particle-based fluids. We obtain
particle’s locations from PhysX in our implementation.

Iso-surface rendering methods of particle-based fluids
are also important. M̈uller and his colleagues [3] suggest
an iso-surface extraction method using marching cubes
[17] within a volumetric density field. This method
becomes expensive in higher resolution of a grid and as
increasing number of particles. Alternatively, screen
space approaches use only locations of the camera-facing
particles for speed-up and make 2.5D iso-surface meshes
[18] without explicit meshing [5] which are suitable to
interactive applications. We utilize the screen space fluids
rendering technique [5] for our particle-based scattering
simulation.

3. The Diffusion Theory

Subsurface scattering effects in translucent materials are
complex to simulate accurately. The volumetric radiative
transfer equation (VRTE) perfectly describes the
scattering phenomenon in a randomly scattering medium
[11]. This equation computes eventually the differential
radianceL(x, ω) leaving at positionx in directionω. The
radiance is evaluated with a scattering coefficientσ(x), a
absorption coefficientµ(x) and a phase functionp(ω, ω ′),
the VRTE is following :

(ω ·∇)L(x,ω) =
−µ(x)L(x,ω)+σs(x)

∫

4π L(x,ω ′)p(ω ′,ω)dω ′+Q(x,ω)
(1)

whereQ(x,ω) is a light source function.
The diffusion equation is approximated version of

VRTE by diffusion approximation defined by a simpler
function with a near isotropic angular distribution: the
scalar fluenceφ(x) and the vector irradianceE(x) [11,25].
The diffusion approximation is following,

L(x,ω)≈
1

4π
φ(x)+

3
4π

E(x) ·ω (2)

where φ(x) =
∫

4π L(x,ω)dω and
E(x) =

∫

4π L(x,ω) ·ωdω.
The substitution of equation (2) into equation (1)

yields the diffusion equation:

∇ · (κ (x)∇φ (x))−µ (x)φ (x) = Q(x) (3)

where κ(x)= [3((1-g)σs(x)+µ(x))]−1is a diffusion
coefficient,g is an average cosine of scattering, andQ(x)
is an isotropic source function.

Our subsurface scattering simulation only supports
highly scattering, non-emissive, heterogeneous particle
-based fluids. With equation (3), we can remove the
isotropic source function termQ(x) and the equation
defines the radiant fluxφ(x) within fluids Ω ,

∇ · (κ (x)∇φ (x))−µ (x)φ (x) = 0,x∈ Ω . (4)

On surface∂Ω of fluids we use the diffusive source
boundary condition [12] given by

φ (x)+2Aκ (x)(∇φ (x) ·n(x)) =
4

1−Fdr
q(x) ,x∈ ∂Ω

(5)

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1479-1485 (2013) /www.naturalspublishing.com/Journals.asp 1481

Inner particle

Iso-surface

Cell’s face

Surface particle

i

isSijS

i j

(a)

(b) (c)

Figure 1: Illustration of Voronoi fluids and its cells with
particle’s locations. Particle-centered volumes, called cells, fill
the inside of the fluid (a). Inner cells are made by a similar way
to a Voronoi diagram (b), and Surface cells are located beneath
the iso-surface (c).

where q(x) =
∫

2π Li (x,ωi)(n(x) ·ω i)Ft (ωi)dωi is the
diffused incoming light at surfacex. Fdr is the diffuse
Fresnel reflectance andFt is the Fresnel transmittance [6].
A = (1+Fdr)/(1−Fdr) is a Fresnel boundary term and
n(x) is the surface normal atx.

The outgoing radiance on surface can be computed
with the query function as described by [12] :

Lo (x,ωo)=
Ft (ωo)

4π

[(

1+
1
A

)

φ (x)−
4

1+Fdr
q(x)

]

,x∈ ∂Ω

(6)
whereωo is the outgoing direction from the surfacex.

4. Diffusion Equation Solver for
Particle-based Fluids

We solve the diffusion equation, the boundary condition
and the query function for the outgoing radiance in a
discrete volumetric domain. We use voxelized fluids
called Voronoi fluids with non-uniform volumes,cells,
which are similar with Voronoi diagram [19]. The
cell-based structure as the discrete domain can be built
with particles’ geometrical data. Each cellx has its own
optical properties, the diffusion coefficientκ(x) and the
absorption coefficientµ(x), and store the radiant fluence
φ (x) after solving the diffusion equation.

4.1. Voronoi Fluids

In Figure1(a), we illustrate Voronoi fluids and cells made
with particle’s radius and location from fluids. These
looks similar to Voronoi diagram and Voronoi cells except

that it has the iso-surface of fluids as boundary. Cells
beneath the iso-surface are calledsurface cells, others are
calledinner cells. Cells have theirneighbor facesbetween
neighbor cells as shown in Figure1(b). The surface cells
have onesurface facethat is boundary of the cell on the
iso-surface cells as shown in Figure1(c). We can evaluate
cells’ volumeV and faces’ areaS from this structure.

4.2. Discretized Diffusion Equation

We solve the diffusion equation by discretizing the
divergence operator∇· and the gradient operator∇ in
equation (4) using Finite Volume Methods [3,24]. First
we derive an integration version of Equation (4) over a
cell as scattering domain:

∫

vi

∇ · (κ (x)∇φ (x))dv−
∫

vi

µ (x)φ (x)dv= 0 (7)

whereVi is volume of the cellxi . We integrate the first term
to get the volume average and can apply the divergence
theorem to equation (7), this yields following:

∮

si

κ (s)(∇φ (s) ·n(s))ds−Vi µ (xi)φ (xi) = 0, (8)

wheresi is all faces of the celli andn(s) is a normal vector
on the face. Equation (8) can be reformed by dividing the
cell’s volume,

1
Vi

∮

si

κ (s)(∇φ (s) ·n(s))ds−µ (xi)φ (xi) = 0. (9)

In Equation (9), the gradient of the radiant flux on faces
is approximated with face’s area and difference between
neighbors’ flux,

∇φ (s) ·n(s)≈ Si j (φ (x j)−φ (xi)) (10)

whereSi j is the face’s area, cellj is the neighbor of celli.
By substitution Equation (10) into Equation (9), we

can get the final version of a discretized diffusion
equation as following:

1
Vi

n

∑
j

Si j (κ (x j)φ (x j)−κ (xi)φ (xi))−µ (xi)φ (xi) = 0.

(11)
The discretized diffusion equation is performed in

inner cells for computing its radiance. However, in
surface cells, the diffusion with neighbor cells and the
boundary condition with incoming light on the iso-surface
at a same time [3]. We compute the diffusive source
boundary condition as inserting a termS into Equation (9)

1
Vi

(I +S)−µ (xi)φ (xi) = 0, (12)

whereI =
∮

sin
κ (s)(∇φ (s) ·n(s))ds is a sum of diffused

flux through neighbor faces as equation (9) and it can be

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1482 K.-K. Kang, D. Kim: Real-time Subsurface Scattering...

discretized in Equation (11). S is same asI but through the
surface face:

S=
∮

sis

κ (s)(∇φ (s) ·n(s))ds, (13)

wheresis is the surface face of the surface celli. Incoming
flux on the surface are evaluated with the diffusive source
boundary condition (Equation (5)) as following:

S=
∮

sis

1
2A

(

−φ (x)+
4

1−Fdr
q(x)

)

ds, (14)

and its discretized version :

S=
1

2A

(

−φ (xi)Sis+
4

1−Fdr
q(sis)

)

, (15)

where Sis is the surface face’s area andq(sis) is total
diffused incoming lights on the surface face of celli.

We use the relaxation scheme as in [1,2,10] to solve
Equation (11) and Equation (12) on the Voronoi fluids. We
start by initializing the value of the flux at cells to zero, and
iterate the following equations until reach a user defined
number of iterations.

Inner cells:

φt+1 (xi) =
∑n

j (1/Si j)κ(x j)φt(x j)

wiκ(xi)+µ(xi)
3
√

Vi
,wi =

n

∑
j

1/Si j (16)

Surface cells:

φt+1 (xi) =
∑n

j (1/Si j)κ(x j)φt(x j)+
4

1−Fdr
q(sis)/2A

wiκ(xi)+µ(xi)
3
√

Vi +
Sis
2A

(17)

After the radiant fluxφ(xi) at every cell is determined,
and we can compute the outgoing radiance with Equation
(6).

5. Implementation

We implemented our real-time scattering algorithm with
CUDA [7] and OpenGL Shader Language (GLSL) [20].
Our test system has Intel i7-2600K CPU and two GPUs,
nVIDIA geForce GTX 680, geForce GTX 580. The
geForce GTX 580 is dedicated to a CUDA-based fluids
simulator and the geForce GTX 680 used for CUDA and
GLSL. Our subsurface scattering rendering stars after
fluids simulation. We use nVIDIA’s PhysX [16] as a
particle-based fluids simulator. After fluids simulation,
particle’s locations are transferred to OpenGL’s Vertex
Buffer Objects.

Our real-time scattering system consists of the
following process (see Figure2). After obtaining particle
locations from the fluids simulator, we build the Voronoi
fluids and compute the diffused incoming light (q(si)).
Cells’ volume (Vi), faces’ area (Si j and Sis), and the
incoming light as input, and then, we solve the diffusion

 !oo xL ",

 ! !xqx ,#

 !xq
SV , !otF "

Figure 2: Overview of our subsurface scattering method. Gray
boxes are our proposed process, and white boxes are the fluids
rendering process based on the screen space fluids rendering [5].

equation (Equation 16, 17) with a few iterations. When
the surface rendering time, we get the Fresnel
transmittance (Ft (x)) on surfacex from the rendering
process and compute the outgoing radiance (Lo(x,ωo) in
Equation (6)) with an eye position.

5.1. Building Voronoi Fluids

The Voronoi fluids look similar to the 3D Voronoi
diagrams, and a building process also similar to its.
However, the building high quality 3D Voronoi diagrams
takes a few seconds [21]. Since we need only volumes of
cells and areas of faces in the Voronoi fluids, we use a
simple method to compute those geometrical data for a
real-time performance.

We, first, make a neighbor particle list on a particle to
build the particle-centered cell’s surround planes. We
collect particles located nearer than the threshold distance
from the particle using the CUDA-based hashing
technique [15]. Then, we can get surrounding planes at
cell i defined with a middle point between a neighbor
particle’s location and the particlei‘s location, and a
normal vector pointing toward the neighbor. The
surrounding planes are used for computing cell’s volume
and face’s area.

We use a simple heuristic approach to build Voronoi
fluids which start to make uniform samples within a
bounding sphere of the cell (see Figure3). And then, we
do acut-off processwhich is cutting off samples if they
are located outside of the surrounding planes. When we
make samples for neighbor faces, we use a 2D rectangle
on surrounding plane instead of the bounding sphere. The
number of live simples represents actual volume or area.
After computation of the face’s area, if the area is zero
that face is removed from the list of the neighbor faces of
the cell.

Computation method the surface area on the surface
cells is similar to the cell’s volume and face’s area case. We

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1479-1485 (2013) /www.naturalspublishing.com/Journals.asp 1483

(a) (b)

Figure 3: Illustration of evaluation a volume of a cell (a) and the
cut-off process (b). A cell has six neighbor particles (a), and six
surround planes (black lines in (b)). The number of live samples
(blue solid dots in (b)) represents the approximated volume of the
cell after the cut-off process with surround planes. The red circle
in (b) represents a bounding sphere.

make samples on the surface on a particle-centered sphere,
and do the cutting off process. And, we count live samples
and can get an approximated area.

This approach is simple to implement with CUDA,
but the performance is totally dependent on the number of
initial samples. We use 64 samples for volume and
surface area processes, and 36 samples for the face area
process.

5.2. Diffusion Scattering Process

The diffused incoming lightq(si) is evaluated with a
light-view depth map including particle IDs. We count
how many pixels cover the surface cell from the map, and
translate the number to the incoming light. Using Voronoi
fluids V, S and the diffused incoming lightq(si), the
diffusion equation can be computed with the Equation
(16), (17). The light-view depth map is made by GLSL,
the diffusion equation is computed on CUDA.

After a few iterations, we can get the final radiant
fluenceφ(xi) on every cell. The fluxes are stored in VBO
of cells, and used as input of the outgoing radiance
shader. This shader renders spheres at cell’s positions
with cell’s flux encoded to its color, and computes the
outgoing radiance with surface normal from a smoothed
surface map. Finally, the outgoing radiance is stored as
texture for the final rendering step.

5.3. Rendering

We employ a screen space fluids rendering technique with
a blurred depth map using GPUs [5]. This technique is the
fastest and easy to implement, so it is suitable with

interactive applications like games. We run only essential
steps of this technique for real-time rendering. The
surface is illuminated based on BRDF [22] with just
adding the outgoing radiance.

6. Results

We simulate milk-like fluids for testing our subsurface
scattering method. As seen in Figure4 (a), we can
generate visually feasible results using our rendering
technique in real-time with an outgoing radiance map
(Figure 5 bottom-right in (b)) and a BRDF rendered
image (Figure 5 bottom-left in (b)). The outgoing
radiance map is blurred for removing an artificial sharp
boundary between cells.

Figure 5 shows our subsurface scattering rendering
results of a milk demo and compares results with
subsurface scattering effects (Figure5 (a)) and without
them (Figure5 (b)). The milk demo was performed at
about 24 FPS with 15,625 particles including the fluid
simulation. Table1 also shows the statistics of this demo
scene. The building time of Voronoi fluids,Finding

Number

of

particles

Finding

neighbors

Volume

and

area

Diffusion

process
Rendering

Avg.

FPS

15,625 10ms 32ms 2ms 2ms 24

31,250 11ms 64ms 2ms 2ms 13

46,875 17ms 92ms 2ms 2ms 10

Table.1 Computation time. The average FPS

includes a fluid simulation with 30 diffusion Table 1: Computation time. The average FPS includes a fluid
simulation with 30 diffusion iterations.

Number

of

Particles

Screen

Resolution

VBO

(KB)

FBO

(KB)

CUDA

(KB)

Total

(MB)

15,625

1200x1024 1,464 110,400 24,671 133.3

800x600 1,464 43,125 24,671 67.6

31,250

1200x1024 2,929 110,400 49,085 158.6

800x600 2,929 43,125 49,085 92.9

46,875

1200x1024 4,394 110,400 73,499 183.8

800x600 4,394 43,125 73,499 118.1

Table.2 Memory usage.

 A final image of our rendering method (a),

particle locations as blue points (top-left in (b))

and their spheres (top-right in (b), a shaded

smoothed-depth map (bottom-left in (b)), and an Table 2: Memory usage.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1484 K.-K. Kang, D. Kim: Real-time Subsurface Scattering...

Figure 4: A final image of our rendering method (a), particle
locations as blue points (top-left in (b)) and their spheres (top-
right in (b), a shaded smoothed-depth map (bottom-left in (b)),
and an outgoing radiance map (bottom-right in (b)).

neighborsandVolume and areacolumns in Table1, is a
bottleneck, with about 90% of total computation of our
whole rendering process.

Our method uses various types of main memory,
Vertex Buffer Objects (VBO), Frame Buffer Objects
(FBO), and arrays for CUDA (CUDA column in Table2).
Since they are allocated on the GPU’s memory space,
data of those memory types can be shared by the
CUDA-OpenGL interoperability. Table2 shows the VBO
and CUDA usage depend on the number of particles, and
the FBO usage depends on the screen resolution.

7. Conclusion

We have presented the real-time subsurface scattering
rendering technique for particle-based fluids with
view-dependent diffusion approach. Our whole process is
computed with CUDA and GLSL on the GPU in
real-time. Our method is suitable for real-time application

Figure 5: Milk demo with 15,625 particles at 24 FPS. Sequences
with subsurface scattering effects (a) and same sequences
without them (b).

like video games. Our whole scattering steps are run on
GPUs in real-time, so we can also apply our technique to
any interactive applications containing fluids effects.

Previous diffusion methods have been accelerated by
using various geometrical hierarchy structures. Most of
them are built in pre-processing time, because of the
costly building time. These acceleration methods are not
suitable to real-time fluids system. We hope to find
suitable techniques for our real-time system.

Our future works will include handling anisotropic
scattering phenomenon in real-time, which can make
translucent liquids more realistic. An anisotropic
diffusion scattering rendering method [23] still is a
challenging work in real-time rendering because of the
large computing time. We also want to apply our
algorithm to mesh-based objects. We hope that if any
fluid simulator can fit into the objects with particles
properly, we can use our scattering rendering method with
those objects easily.

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 4, 1479-1485 (2013) /www.naturalspublishing.com/Journals.asp 1485

Acknowledgement

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. 2011-0015620).

References

[1] J. Wang, S. Zhao, X. Tong, S. Lin, Z. Lin, Y. Dong, B. Guo,
H.-Y. Shum, Modeling and Rendering of Heterogeneous
Translucent Materials using the Diffusion Equations, ACM
Trans. Graph.,27(1), 9 (2008).

[2] Y. Wang, J. Wang, N. Holzschuch, K. Subr, J.-H. Yong,
B. Guo, Real-time Rendering of Heterogeneous Translucent
Objects with Arbitrary Shapes, Computer Graphics Forum
29(2), 497-506 (2010).

[3] D. Li, X. Sun, Z. Ren, S. Lin, Y. Tang, B. Guo, and K. Zhou,
TransCut : Interactive Rendering of Translucent Cutouts,
IEEE Transactions on Visualization and Computer Graphics
19(3), 484-494 (2013).

[4] M. M üller, D. Charypar, and M. Gross, Particle-based
Fluid Simulation for Interactive Applications, In Proc. ACM
SIGGRAPH/Eurographics Sypm. Comp. Anim. 2003, 154-
159 (2003).

[5] W. J. van der Laan, S. Green, and M. Sainz, Screen
Space Fluid Rendering with Curvature Flow, In I3D ’09:
Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, 91-98 (2009).

[6] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan,
A Practical Model for Subsurface Light Transport, In Proc.
ACM SIGGRAPH 2001, 511-518 (2001).

[7] NVIDIA, CUDA 4.2, http://developer.nvidia.com/category/
zone/cuda-zone, (2012)

[8] H. Li, F. Pellacini, K. E. Torrance, A Hybrid Monte Carlo
Method for Accurate and Efficient Subsurface Scattering,
In Proc. Rendering Techniques 2005 (Eurographics
Symposium on Rendering), 283-290 (2005).

[9] H. W. Jensen, P. Christensen, Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon
Maps, In Proc. ACM SIGGRAPH 1998, 311-320 (1998).

[10] J. Stam, Multiple Scattering as a Diffusion Process,
Eurographcis Rendering Workshop 1995, 41-50 (1995).

[11] A. Ishimaru, Wave Propagation and Scattering in Random
Media, Academic Press (1978).

[12] A. Arbree, B. Walter, and K. Bala, Heterogeneous
Subsurface Scattering using the Finite Element Method,
IEEE Comp. Graph. Appl.17(7), 956-969 (2011).

[13] K.-K. Kang, D. Kim, Screen Space Rendering of
Translucent Liquids, The Journal of Future Game
Technology2(2), 159-164 (2012).

[14] A. Munoz, J. I. Echevarria, F. J. Seron, and D.
Gutierrez, Convolution-Based Simulation of Homogeneous
Subsurface Scattering, Computer Graphics Forum,30(8),
2279-2287 (2011).

[15] NVIDIA, Particles Demo, GPU Computing SDK 4.2,
http://developer.nvidia.com/cuda/ cuda-toolkit (2012).

[16] NVIDIA, PhysX 3.2, http://developer.nvidia.com/physx
(2012).

[17] E. W. Lorensen, H. E. Cline, Marching cubes: A High
Resolution 3D Surface Construction Algorithm, In Proc.
ACM SIGGRAPH 1987, 163-169 (1987).

[18] M. Müller, S. Schirm, and S. Duthaler, Screen space meshes,
In Proc. ACM SIGGRAPH/Eurographics Sypm. Comp.
Anim 2007, 9-15 (2007).

[19] F. Aurenhammer, Voronoi Diagrams - A Survey of a
Fundamental Geometric Data Structure, ACM Computing
Surveys23(3), 345-405 (1991).

[20] OpenGL Shading Language, http://www.opengl.org/
documentation/glsl/ (2012).

[21] D.-M. Yan, W. Wang, B. Ĺevy, and Y. Liu, Efficient
Computation of 3D Clipped Voronoi Diagram, In GMP’10
Proccedings of the 6th international conference on
Advances in Geometric Modeling and Processing, 269-282
(2010).

[22] R. L. Cook, K. E. Torrance, A Reflectance Model for
Computer Graphics, Comupter Graphics (SIGGRAPH ’81)
15(3), 1307-316 (1981).

[23] W. Jakob, A. Arbree, J. T. Moon, K. Bala, and S. Marschner,
A Radiative Rransfer Framework for Rendering Materials
with Anisotropic Structure, ACM Trans. Graph.29(4), 53
(2010).

[24] R. Eymard, T. R. Gallouet, R. Herbin, The Finite Volume
Method Handbook of Numerical Analysis, Vol. VII, 713-
1020 (2000).

[25] W. Jakob, A. Arbree, J. T., Moon, K. Bala, and
S. Marschner, Expanded Technical Report of
A Radiative Transfer Framework for Rendering
Materials with Anisotropic Structure, Cornell
University, http://www.cs.cornell.edu/projects/diffusion-
sg10/diffusion-sg10-tr.pdf, (2010).

Kyung-Kyu KangSeron, F. J. and Gutierrez, D.:

Convolution-Based Simulation of Homogeneous Subsur-

aphics Forum, 30 (8), (2011)

Kyung-kyu Kang is a Ph.D. can-

didate student at MAGIC Lab., in

the Department of Digital Media

at Soongsil University, Seoul,

Korea. He received his Master

degree in Media Engineering at

Soongsil University in 2006. His

interests include real-time render-

ing algorithms and physically-

based simulation.

is a Ph.D. candidate student
at MAGIC Lab., in the
Department of Digital
Media at Soongsil University,
Seoul, Korea. He received
his Master degree in
Media Engineering at
Soongsil University in 2006.
His interests include real-time

rendering algorithms and physically-based simulation.

Dongho Kim is aResolution 3D Surface Construction Algorithm, In Proc.

[18] Müller, M., Schirm, S., and Duthaler, S.: Screen space

meshes, In Proc. ACM SIGGRAPH/Eurographics Sypm.

Diagrams - A Survey of a

e,” ACM Computing

Dongho Kim is a Professor in the

Department of Digital Media at

Soongsil University, Seoul,

Korea. He obtained B.Sc. degree

from Seoul National University

and Master degree from KAIST,

Korea. He received Ph.D. degree

in Computer Science at the

George Washington University

in 2002. His research in

professor in the Department
of Digital Media at Soongsil
University, Seoul, Korea. He
obtained B.Sc. degree from
Seoul National University and
Master degree from KAIST,
Korea. He received Ph.D.
degree in Computer Science
at the George Washington
University in 2002. His

research interests include real-time rendering, animation,
game engineering, digital contents, and media art.

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related Work
	The Diffusion Theory
	Diffusion Equation Solver for Particle-based Fluids
	Implementation
	Results
	Conclusion

