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Abstract: In this paper,we studied the equation

ok (OB +d2>ku(x) = i}croz (<>B +d2>k6.

We give a sense of Distribution theory considering the properties of the convolution. It was found that the type of above equation

depend on the relationship between the value k and m.
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1 Introduction

In 2004, Hiseyin Yildirim, M.Zeki Sarikaya and Sermin
Oztiirk [4,5] first introduced the Bessel diamond operator
<>’§ iterated k times, and defined by

k

P 2 ptq 2
Op = <ZBX,.> < Y Bx_,.> ;M
i=1 Jj=p+1

w9
Xi Bx,-

2
whereBx,.:%—i- ,21)1'2206,'—}-1,065>—%,x,'>0.

The operator <% can  be
<>f‘9 = A’gD’g = D’gﬁﬁ, where

expressed by

P k p pta k
Ap={YB,| and Op=(YB,— Y By | .
i=1 i=1 j=p+1

2
_ Hiseyin Yildirim, M.Zeki Sarikaya and Sermin
Oztiirk [4,5] have shown the convolution form
u(x) = (—1)%Sp(x) * Ry(x) is a unique elementary

solution of <>f‘9 that is

OB((—=1) Sk (x) # Ry (x)) = 8, 3)

where Sy (x) and Ry (x) are defined by (9) and (11) with
a = vy = 2k respectively. Next, C. Bunpog and A.
Kananthai[2] have first introduced the operator

(<>B+m4)k named Diamond Klien-Gordon Bessel
operator iterated k times and can be written in the
following form

k k
(Op+m*) = ((Lp+m?) (Op+m*) —m*(Ap+0p))",
“)
where (Jp +m? is the Bessel Klien-Gordon operator and
g+ m? is the Bessel Helmholtz operator defined by

P p+q
Op+m* =Y By~ ), By+m’, )
i=1 j=p+1
and
n
Ap+m* =Y By +m’. (6)
i=1
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The purpose of this work, firstly, we study the
elementary solution or Green function of the (<> B+ dz)k ,
that is .

(05 +d%) G(x) =6, @)

whereG(x) is the Green function, § is the Dirac delta
distribution, k& is a nonnegative integer and
x = (x1,%2,...,x,) € R". We also consider the
convolution of Green function.

Finally, we are finding the solution of the equation

o (O +d) ulx) = Y e,0k (On - 2)5. ®)
r=0

We use the B-convolution for the generalized function. It
was found that the type of the solution (8) that depend on
the relationship between the values of k and m are as the
following cases:

(1) If m < k and m = 0, then the solution of (8) is
u(x) =co((-1 )kSQk(.x) * Rog(x)) % Wa(x),

which is an elementary solution of product of the

operator % and the operator (5 +d2)k in Theorem
3.1, is the ordinary function for 2k > n+2|v|, and is a
tempered distribution for 2k < n+ 2|v|.

(2) If 0 < m < k then the solution of (8) is

agE

u(x) = Y er((=1)* " Sogup) () # Rogrpy (%)) 5 Wagg_p (%),

r=1

which is an ordinary function for 2k — 2r > n+2|v|
and is tempered distribution for 2k —2r < n+2|v|.

(3) If m > k and suppose k < m < M, then (8) has the
solution

M r—k
u(x) =Y 05  (Op+d*) "5
r=k

which is only the singular distribution.

Before proceeding that point, the following definitions
and some important concepts are needed.

2 Preliminaries

Definition 2.1

Letx = (x1,%2,.-,%),V = (V1,V2,...,V,) € R, For any
complex number «, we define the distribution family
Sa(x) by

|a7n72\v\
wp (o)

where [x| =x2 +x3+...+x2,|V| = Vi + V2 +...+V, and,

_k

Sa(x) ; ©)

1 1
(e = T2
2n+2\v\72ar(”+2\%’\*0‘)

(10)

Definition 2.2
Let x = (x1,%2,...,X%),V = (V1,Va,..., V) € BRI, and
denote by
2, 2 2 2 2 2
V:x1+x2+"'+xp7xp+17xp+27 T Xt

the nondegenerated quadratic form. Denote the interior of
the forward cone by

I[={xeR :x;>0,x>0,...,x, >0,V >0}

and I, denotes its closure. For any complex number ¥ the
distribution family Ry(x) is defined by

y—n—=2|v|
vz
Ry(x)={ Farp o+ forx€le )
0, forxeg Iy,
where
n7"+2|2"|*'1—‘ (2+77;72\V\)1" 1;7) r(y)
Kn(,)/) = )

2
r () (e

where ¥ is a complex number.

Definition 2.3
Let x = (x1,x2,...,%,) be a point of R}, we define the
function

(3 +r a

L) 2y (1) 478420 Ras (),

12)

where the function Syio- and Ry, are defined by
definition 2.2 and definition 2.3 respectively.

Lemma 2.1

We(x) = Yo

Lemma 1.Let & and B be complex numbers and Sy (x) be
the function defined by (9).Then the following properties
are valid

So(x) = &(x) (13)
S_ar(x) = (1) 248 (14)
Ap{Sa(0)} = (—1) Sa2i(x) (15)
S) # Sp(x) =S4 (¥), (16)

where A’é is the Laplace Bessel operator iterated k times
and defined by (2).

Proof. [3]. ]
Lemma 2.2
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Lemma 2.Let o and B be complex numbers and Ry(x) be
the function defined by (10).Then the following properties
are valid

Ro(x) = 8(x) (17)
R_y(x) =00k6 (18)

O {Sy(x)} = Sy-ae(x) (19)
Ro (x) # Rp (x) = Royp(x), (20)

where D’; is the Ultra-hyperbolic Bessel operator iterated
k times and defined by (2).

Proof. [3]. O
Lemma 2.3

Lemma 3.The functions Sq(x) and Ry(x) defined by (9)
and (10) respectively are homogeneous distribution of
order o —n —2|v| and also tempered distribution.

Proof. Since Rq(x)
equation,that is

and Sq(x) satisfy the Euler

(aa—n—2|v|)Ra(x) = i‘{xi%Ra(x)

1

and

n
(a—n—=2|v|)Su(x) = inaiSa(x).
=1 9

We have Ry (x) and Sy (x) as homogeneous distributions of
order & —n —2|v| and Donoghue [8] has proved that every
homogeneous distribution is a tempered distribution. That
completes the proof.

Lemma 2.4

Lemma 4.(The convolution of tempered distribution).
The convolution Ry (x) * S (x) exists and is a tempered
distribution.

Proof. Choosing supp Ry(x) = K C It where K is a
compact set, the function Ry (x) is a tempered distribution
with compact support and by Donoghue[8] Ry (x) * S¢ (x)
exists and is a tempered distribution .

Lemma 2.5

Lemma 5.Given the equation {Xu(x) = 8(x) for x € R},
where % defined by (1). And

u(x)= (-1 )kSQk(.x) * Roy(x),

where Sy (x) and Ry (x) are defined by (13) and (15) with
o = 2k,y = 2k respectively.

We obtain (—1)KSy(x) * Rox (x) is an elementary solution
of the operator {YX.That is

ok ((71)k52k(x) *RZk(x)) = 5(x) @1

Proof. [4,5]. [l
Lemma 2.6

Lemma 6.Let & and 3 be complex numbers. The following
formulas are valid

Wo(x) = 6(x) (22)
W(x * WB - WOhLﬁ (23)
W W_op = Wo -2 (24)
Proof. By definition 2.3, we obtain
Wo(x) = 6(x)
By definition 2.3 again, we have
Wa) = Wp () = K7 () 02 (= 1) 578102 (0) # Raar () K50 () 02" (=) 830 4 Ry ()

atp
2

=TI () (}g) ()" (1) 27 (S () * Rar (%)) * (Sp2,(4) % Rp2,(x))

a+p

=YXoXio (7,%) (iﬁ) (mz)rﬂ(— 1)zt (Slz+[3+2(r+s)(x) * Ra+ﬁ+2(r+x)(x))

= Zf:o(mz)k {):];:0 (7,%) (k_,%)} (—l)a+ +k (Sa+ﬁ+2k(x) *Ra+ﬁ+2k(x)) .

(25)
By properties
ko /_a\ /B _otB
Z 2 2 ) 7).
5(E) -0
The equation (25) becomes
o s otf o
Welo) W) = (72 )0 ) a0 R
= Woip (%)
Thus,
We,(x) * Wp (x) = Wy p(x). (26)
Putting B = —2k in (26), we obtain
Wa (x) * szk (X) = Wa,Zk (x) (27)
That completes the proof. (|
3 Main Results
Theorem 3.1
Theorem 1.Given the equation
k
(On+d*) ulx) = 8(x) (28)

forx e R} and (<>B + dz)k is the Diamond Klein Gordon
operator iterated k times defined by (4), we obtain

u(x) = War(x) (29)

© 2019 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

62 = 0)

W. Satsanit: On the solution of linear partial differential equation...

is an elementary solution or Green function of the operator

(Op+d2)" and Wi (x) is defined by (18) with o = 2k. The
Sunction Wa(x) has the following properties

Wo(x) = 8(x) (30)
and ;
(Op+d?)" {Walx)} = Wo-n(x) 31

Proof. In fact,

a
2

(On+d%) "% = {0 (14+d%05")} 7 =0

a2 a
2 2

(1+d%05")

and

(1+d205") % 6

I
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~_
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If we put o = —2k, we obtain
(On+d%)" 8 =W n(x) (32)
Putting k = 0 in (32), we obtain
Wo(x) = 8(x). (33)
By lemma 2.6, we have
Wo (x)  Wp (x) = We (%)
Putting § = —2k, we obtain

We (x) %« W_ni(x) = Wy _or(x)

Wee (x) # (& +m*) 8 = Wey i (x)

(O +d2) We(x) % 8 = Wi (x). (34)

If we put o = 2k in (34), we obtain

(O +d2)" 55 Wy(x) = Wo(x). = 8(x).  (35)

It follows that Wy (x) is an elementary solution or Green

function of the operator (<>+d2)k. That completes the
proof.
Theorem 3.2

Theorem 2.Let <>1l§ and (<>+d2)k be Diamond Bessel
operator and Diamond Bessel Klein Gordon operator
respectively.For 0 < r <k

Op((— 1) 8ok (x) * Rog(x)) * (O +d*) Wag(x)
= (= 1) Sy (%) # Ry (x)) % Wae_py (x)  (36)

and fork <m

Oh((— 1) Sax(x) % Rax(x)) (O +d2) War(x) = OB % (Op +d2)7”7k5.,

(37
where (<>B+d2)k is the Diamond Bessel Klein Gordon
operator iterated k times defined by (4), & is the dirac
delta distribution and the function Wy (x) defined by (18)
with o = 2k.

Proof. For O < r <k, from theorem 3.1, we have

O((— 1)Ko (x) # Rog(x)) # (O +d®) Wi (x)) = 6.
We can write the above equation in the following form
O OB ((— 1)5Sak(x) # Rox(0)) # (O +d?)* " (O +d?) W) = 6.
or
(057785 Op (= 1)k 8o (x) # Rog (1)) % (O +d2) " 85 (O +d2) Wi (x) = 5.
We have used the convolution of both sides by

(=17 Sy (k=) (¥) * Ry (%)) % Wai—p) (%), We obtain

(=157 Saey () 5 Roy (x)) 5 Waggpy (O 78 3 O (= 1) Sk (x) % R (x)) )
# 85 (O +d*) Wa(x) = ((—1)*S2(x) * Rag(x)) % Wae_p) (x) % 8.

O (=17 Sappry (%) * Ragrr (1)) % O (= 1) S (x) # R (x))

(On erz)‘H Wy # (O +d%) War(x) = (1) 855 () % Rogg ) (4)) 5 Wagey) ().
By property of convolution, we get

85 O((—1)*Sax(x) * Rog(x)) # 8 % (O +d*) War(x)
=((— 1)(k7r)52(k7r) (X) % Ry (—py (X)) % Wag_p (x).

Op((— 1) Sai(x) # Rog(x)) # (O +d?) War(x)
=((— 1)(k7r)52(k7r) (x) % Ry (r—p) (X)) % Wag_p (x).
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as required. For k < m

OB ((—1)5S2 (%) % Rog()) * (O + )" Wae (x))
= OOk (= 1) S (x) * Rot () * (O +d2)" " (O + ) Wk (x))

It follows that

m—k

OB((— 1) Sok(x) % Rog(x)) # (O +d2)" Wk (x)) = O 8% (G +d*)" 5.

That completes the proof.
Theorem 3.3

Theorem 3.Given the linear differential equation

<>B (<>B+d2 Zcr<>3 <>B+d2) g, (38)

The the type of solution (38) that depend on the
relationship between the values of k and m are as the
following cases:

(1) If m < k and m = 0, then the solution of (38) is
u(x) = co((—1) 2k (x) * Rox(x)) * War (x)),

which is an elementary solution of the (<>B+d2)m
operator in Theorem 3.1.

(2) If 0 < m < k then the solution of (38) is

~Fel-

which is an ordinary function for 2k —2r > n+2|v|
and is tempered distribution for 2k — 2r < n+2|v|

(3) If m > k and suppose k < m < M, then (38) has the
solution

k rS ))(X)*Rz(k,

<>B+d2) ‘s

Z e 0p

which is only the singular distribution.

Proof. (1) Form =0,

we have <>f‘9 (<>B + dz)ku
we obtain

w(x) = co((—1)*Sox(x) * Rog (x)) Wy (x)

Now, Wa(x) analytic function for 2k > n + 2|v| and
also Wy (x) exists and is an analytic function by (29).It
follows that Wy, (x) is an ordinary function for 2k > n+
2|v| and is a tempered distribution with 2k < n+ 2|v)|.

(2) For the case 0 < m < k, we have

(x) = ¢od, and by Theorem 3.1

<>B(<>B+d2 Zcr<>3 (Op+d?)' s

=105 (Op+d?) 6+ 203 (On +d2) )
+...+ Cm<>791 (<>B + dz)m 0.

r) (x)) * WZ(kfr) (x)

Convolving both sides of the above equation by
((—1)kSa(x) * Ryx (x)) * Way (x), we obtain

((—1) Sk (x) R () % W (x) % O (O + dz)k u(x)
= c1((— 1) Sk (x) * Rox(x)) + Wi (x) O (O + d*) 8
+ Cz((*l)kSZk(x) *Rzk(x)) * WZk(x)<>129 (<>B + d2)2 o)

+ em((—1)¥Sou(x) * Rog(x)) * Ware (x) O (O +d*)"

By properties of convolution, we get

OB((—1) o (x) * Rog (%)) * (O + dz)kWZk(x) * u(x)
= C[OB((*l)kSZk(X) * Rog(x)) * (<>B + dz) War(x)
+ OB ((— 1)k S () # Rog(x)) # (O + ) Wiy (x)

+ OB (= 1) So(x) * Rog (%)) # (O +d?)" War(x)

u(x) = c1Op((—
+Cz<>%;((*
+emp (=

1S (x) % Ro(x)) * (O +d*) Wag(x)
Vi (x) * R (x)) * (O + %) W (x) +
1)$Sax(x) # Ro(x)) # (O +d?) " Wak (x)

By Theorem 3.1 and Theorem 3.2, we obtain

u(x) = 1 (= 1) 1) () % Rog1) () # Wae_py (%)
+ 2 (= 1) 2812y (x) * Ra((r—2) (x)) % Wagg—ay (x) + . ..
+em((—1 )k7n152(k7m) (%) * Ra(k—m) (X)) * Wa ) (%)

or

Zcr 1S (6) % Ragr—ry) () * Wage—p) (x)-
(39

Similarly, as in the case(1), u(x) is an ordinary function
for 2k — 2r > n+2|v| and is a tempered distribution for
2%k —2r < n+2|v.

(3) For the case m > k and suppose k < m < M, we
have

k1
8

<>]f; (<>B +dz)ku(x) = Ck<>3 (<>B +d2) S+ crp <>k+] (<>B +d2)

Foh oy O (Op+d?)N 8. (40)
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We convolved both sides of the above equation by
(= 1)Ko (x) * Ryg (x) )  Way (x), we obtain

u(x) = o1 ((— 1) Spe(x) % Rox (x))  Waye (x) O (<>B +d2)k6

+ea((—1) Sk () # Rog (x)) W (x) O (QB +d2)k+] 0

o en((~1) ) R () W ()0 (0 +2) " 6

u(x) = kO ((— 1)k 82 (x) # Rog(x)) % (O + @) W (x)
+ k1 OB ((— 1) 8o (x) # Rae(x)) # (Op +d?) (08 +d2)k Wai (x)
o e ON TEOE (—1)kSa(x) * Rog(x)) * gik(<>3+dz)szk(x)

By Theorem 3.1 and Theorem 3.2 again, we obtain

u(x) = xS+ 108 (On+d>) 84203 (Op+d2)° 8
ot e (Op+d?)" S

M r—k
=Y 05 (0s+d?) s,
r=k

Since (g +d?) "Ksisa singular distribution, hence u(x)
is only the singular distribution. That completes the proofs.
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