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Abstract: In this paper,we studied the equation

♦k
B

(

♦B +d2
)k

u(x) =
m

∑
r=0

cr♦
k

B

(

♦B +d2
)k

δ .

We give a sense of Distribution theory considering the properties of the convolution. It was found that the type of above equation

depend on the relationship between the value k and m.
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1 Introduction

In 2004, Hüseyin Yildirim, M.Zeki Sarikaya and Sermin
Öztürk [4,5] first introduced the Bessel diamond operator
♦k

B iterated k times, and defined by

♦k
B =





(

p

∑
i=1

Bxi

)2

−

(

p+q

∑
j=p+1

Bx j

)2




k

, (1)

where Bxi
= ∂ 2

∂x2
i

+ 2υi
xi

∂
∂xi

, 2υi = 2αi + 1,αi > − 1
2
,xi > 0.

The operator ♦k
B can be expressed by

♦k
B =△k

B�
k
B =�

k
B△

k
B, where

△k
B =

(

p

∑
i=1

Bxi

)k

and �
k
B =

(

p

∑
i=1

Bxi
−

p+q

∑
j=p+1

Bx j

)k

.

(2)

Hüseyin Yildirim, M.Zeki Sarikaya and Sermin
Öztürk [4,5] have shown the convolution form
u(x) = (−1)kS2k(x) ∗ R2k(x) is a unique elementary

solution of ♦k
B that is

♦k
B((−1)kS2k(x)∗R2k(x)) = δ , (3)

where S2k(x) and R2k(x) are defined by (9) and (11) with
α = γ = 2k respectively. Next, C. Bunpog and A.
Kananthai[2] have first introduced the operator
(

♦B +m4
)k

named Diamond Klien-Gordon Bessel
operator iterated k times and can be written in the
following form

(

♦B +m4
)k

=
((

△B +m2
)(

�B +m2
)

−m2 (△B +�B)
)k
,

(4)
where �B +m2 is the Bessel Klien-Gordon operator and
△B +m2 is the Bessel Helmholtz operator defined by

�B +m2 =
p

∑
i=1

Bxi
−

p+q

∑
j=p+1

Bx j
+m2

, (5)

and

△B +m2 =
n

∑
i=1

Bxi
+m2

. (6)
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The purpose of this work, firstly, we study the

elementary solution or Green function of the
(

♦B + d2
)k
,

that is
(

♦B + d2
)k

G(x) = δ , (7)

whereG(x) is the Green function, δ is the Dirac delta
distribution, k is a nonnegative integer and
x = (x1,x2, . . . ,xn) ∈ R

n. We also consider the
convolution of Green function.
Finally, we are finding the solution of the equation

♦k
B

(

♦B + d2
)k

u(x) =
m

∑
r=0

cr♦
k
B

(

♦B + d2
)k

δ . (8)

We use the B-convolution for the generalized function. It
was found that the type of the solution (8) that depend on
the relationship between the values of k and m are as the
following cases:

(1) If m < k and m = 0, then the solution of (8) is

u(x) = c0((−1)kS2k(x)∗R2k(x))∗W2k(x),

which is an elementary solution of product of the

operator ♦k
B and the operator

(

♦B + d2
)k

in Theorem
3.1, is the ordinary function for 2k ≥ n+2|υ |, and is a
tempered distribution for 2k < n+ 2|υ |.

(2) If 0 < m < k then the solution of (8) is

u(x) =
m

∑
r=1

cr((−1)k−rS2(k−r)(x)∗R2(k−r)(x))∗W2(k−r)(x),

which is an ordinary function for 2k − 2r ≥ n+ 2|υ |
and is tempered distribution for 2k− 2r < n+ 2|υ |.

(3) If m ≥ k and suppose k ≤ m ≤ M, then (8) has the
solution

u(x) =
M

∑
r=k

cr♦
r−k
B

(

♦B + d2
)r−k

δ

which is only the singular distribution.

Before proceeding that point, the following definitions
and some important concepts are needed.

2 Preliminaries

Definition 2.1

Let x = (x1,x2, . . . ,xn),ν = (ν1,ν2, . . . ,νn) ∈ R
+
n . For any

complex number α , we define the distribution family
Sα(x) by

Sα(x) =
|x|α−n−2|ν|

wn(α)
, (9)

where |x|= x2
1 +x2

2 + . . .+x2
n, |ν|= ν1 +ν2 + . . .+νn and,

wn(α) =
∏n

i=1 2νi−
1
2 Γ (νi +

1
2
)

2n+2|ν|−2αΓ (
n+2|ν|−α

2
)

(10)

Definition 2.2
Let x = (x1,x2, . . . ,xn),ν = (ν1,ν2, . . . ,νn) ∈ R

+
n , and

denote by

V = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2−·· ·− x2

p+q,

the nondegenerated quadratic form. Denote the interior of
the forward cone by

Γ+ = {x ∈ R
+
n : x1 > 0,x2 > 0, . . . ,xn > 0,V > 0}

and Γ + denotes its closure. For any complex number γ the
distribution family Rγ (x) is defined by

Rγ(x) =







V
γ−n−2|ν|

2

Kn(γ)
, , for x ∈ Γ+,

0, for x 6∈ Γ+,
(11)

where

Kn(γ) =
π

n+2|ν|−1
2 Γ

(

2+γ−n−2|ν|
2

)

Γ
(

1−γ
2

)

Γ (γ)

Γ
(

2+γ−p−2|ν|
2

)

Γ
( p−γ

2

)

,

where γ is a complex number.

Definition 2.3
Let x = (x1,x2, . . . ,xn) be a point of R

+
n , we define the

function

Wα(x) = ∑∞
r=0

(−1)rΓ ( η
2 +r)

r!Γ ( η
2 )

(m2)r(−1)
α
2 +rSα+2r(x)∗Rα+2r(x),

(12)
where the function Sα+2r and Rα+2r are defined by
definition 2.2 and definition 2.3 respectively.

Lemma 2.1

Lemma 1.Let α and β be complex numbers and Sα(x) be

the function defined by (9).Then the following properties

are valid

S0(x) = δ (x) (13)

S−2k(x) = (−1)k△k
Bδ (14)

△k
B{Sα(x)} = (−1)kSα−2k(x) (15)

Sα(x)∗ Sβ (x) = Sα+β (x), (16)

where △k
B is the Laplace Bessel operator iterated k times

and defined by (2).

Proof. [3] . �

Lemma 2.2
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Lemma 2.Let α and β be complex numbers and Rγ(x) be

the function defined by (10).Then the following properties

are valid

R0(x) = δ (x) (17)

R−2k(x) =�
k
Bδ (18)

�
k
B{Sγ(x)} = Sγ−2k(x) (19)

Rα(x)∗Rβ (x) = Rα+β (x), (20)

where �
k
B is the Ultra-hyperbolic Bessel operator iterated

k times and defined by (2).

Proof. [3] . �

Lemma 2.3

Lemma 3.The functions Sα(x) and Rα(x) defined by (9)

and (10) respectively are homogeneous distribution of

order α − n− 2|υ | and also tempered distribution.

Proof. Since Rα(x) and Sα(x) satisfy the Euler
equation,that is

(α − n− 2|υ |)Rα(x) =
n

∑
i=1

xi
∂

∂xi

Rα(x)

and

(α − n− 2|υ |)Sα(x) =
n

∑
i=1

xi
∂

∂xi

Sα(x).

We have Rα(x) and Sα(x) as homogeneous distributions of
order α−n−2|υ | and Donoghue [8] has proved that every
homogeneous distribution is a tempered distribution. That
completes the proof.
Lemma 2.4

Lemma 4.(The convolution of tempered distribution).

The convolution Rα(x) ∗ Sα(x) exists and is a tempered

distribution.

Proof. Choosing supp Rα(x) = K ⊂ Γ+ where K is a
compact set, the function Rα(x) is a tempered distribution
with compact support and by Donoghue[8] Rα(x) ∗ Sα(x)
exists and is a tempered distribution .
Lemma 2.5

Lemma 5.Given the equation ♦k
Bu(x) = δ (x) for x ∈ R

+
n ,

where ♦k
B defined by (1). And

u(x) = (−1)kS2k(x)∗R2k(x),

where S2k(x) and R2k(x) are defined by (13) and (15) with

α = 2k,γ = 2k respectively.

We obtain (−1)kS2k(x) ∗R2k(x) is an elementary solution

of the operator ♦k
B.That is

♦k
B

(

(−1)kS2k(x)∗R2k(x)
)

= δ (x) (21)

Proof. [4,5]. �

Lemma 2.6

Lemma 6.Let α and β be complex numbers. The following

formulas are valid

W0(x) = δ (x) (22)

Wα ∗Wβ =Wα+β (23)

Wα ∗W−2k =Wα−2k (24)

Proof. By definition 2.3, we obtain

W0(x) = δ (x).

By definition 2.3 again, we have

Wα(x)∗Wβ (x) = ∑∞
r=0

(− α
2

r

)

(m2)r(−1)
α
2 +rSα+2r(x)∗Rα+2r(x).∗∑∞

s=0

(− β
2

s

)

(m2)s(−1)
β
2 +sSβ+2s(x)∗Rβ+2s(x)

= ∑∞
r=0 ∑∞

s=0

(− α
2

r

)(− β
2

s

)

(m2)r+s(−1)
α+β

2 +r+s (Sα+2r(x)∗Rα+2r(x))∗
(

Sβ+2s(x)∗Rβ+2s(x)
)

= ∑∞
r=0 ∑∞

s=0

(− α
2

r

)(− β
2

s

)

(m2)r+s(−1)
α+β

2 +r+s
(

Sα+β+2(r+s)(x)∗Rα+β+2(r+s)(x)
)

= ∑∞
k=0(m

2)k

[

∑k
r=0

(− α
2

r

)(− β
2

k−r

)

]

(−1)
α+β

2 +k
(

Sα+β+2k(x)∗Rα+β+2k(x)
)

.

(25)
By properties

k

∑
r=0

(

−α
2

r

)(

− β
2

k− r

)

=

(

−α+β
2

k

)

.

The equation (25) becomes

Wα (x)∗Wβ (x) =
∞

∑
r=0

(

− α+β
2

r

)

(m2)r(−1)
α+β

2
+k

Sα+β+2k(x)∗Rα+β+2k(x).

= Wα+β (x)

Thus,
Wα(x)∗Wβ (x) =Wα+β (x). (26)

Putting β =−2k in (26), we obtain

Wα(x)∗W−2k(x) =Wα−2k(x). (27)

That completes the proof. �

3 Main Results

Theorem 3.1

Theorem 1.Given the equation

(

♦B + d2
)k

u(x) = δ (x) (28)

for x ∈ R
+
n and

(

♦B + d2
)k

is the Diamond Klein Gordon

operator iterated k times defined by (4), we obtain

u(x) =W2k(x) (29)

c© 2019 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


62 W. Satsanit: On the solution of linear partial differential equation...

is an elementary solution or Green function of the operator
(

♦B + d2
)k

and W2k(x) is defined by (18) with α = 2k. The

function W2k(x) has the following properties

W0(x) = δ (x) (30)

and
(

♦B + d2
)k
{Wα(x)} =Wα−2k(x) (31)

Proof. In fact,

(

♦B + d2
)− α

2 =
{

♦B

(

1+ d2♦−1
B

)}− α
2 =♦

− α
2

B

(

1+ d2♦−1
B

)− α
2

and

(

1+ d2♦−1
B

)− α
2 δ =

∞

∑
r=0

(

−α
2

r

)

(

d2♦−1
B

)r
δ

=
∞

∑
r=0

(

−α
2

r

)

d2r♦−r
B δ

Thus,

♦
− α

2
B

(

1+ d2♦−1
B

)− α
2 =♦− α

2

∞

∑
r=0

(

−α
2

r

)

(

d2♦−1
B

)r
δ

=
∞

∑
r=0

(

−α
2

r

)

d2r♦
− α

2 −r

B δ .

From the above equation, we get

(

♦B +d2
B

)− α
2 δ =

∞

∑
r=0

(

− α
2

r

)

d2r♦
− α

2
−r

B δ .

=
∞

∑
r=0

(

− α
2

r

)

d2r△
− α

2
−r

B �
− α

2
−r

B δ .

=
∞

∑
r=0

(

− α
2

r

)

d2r(−1)
α
2
+r

S2( α
2
+r)(x)∗R2( α

2
+r)(υ)

=
∞

∑
r=0

(

− α
2

r

)

d2r(−1)
α
2
+r

Sα+2r(x)∗Rα+2r(x)

=Wα (x)

If we put α =−2k, we obtain

(

♦B + d2
)k

δ =W−2k(x) (32)

Putting k = 0 in (32), we obtain

W0(x) = δ (x). (33)

By lemma 2.6, we have

Wα(x)∗Wβ (x) =Wα+β (x).

Putting β =−2k, we obtain

Wα(x)∗W−2k(x) =Wα−2k(x)

Wα(x)∗
(

♦+m4
)k

δ =Wα−2k(x)

(

♦B + d2
)k

Wα(x)∗ δ =Wα−2k(x). (34)

If we put α = 2k in (34), we obtain

(

♦+ d2
)k

δ ∗W2k(x) =W0(x).= δ (x). (35)

It follows that W2k(x) is an elementary solution or Green

function of the operator
(

♦+ d2
)k
. That completes the

proof.
Theorem 3.2

Theorem 2.Let ♦k
B and

(

♦+ d2
)k

be Diamond Bessel

operator and Diamond Bessel Klein Gordon operator

respectively.For 0 < r < k

♦r
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)r

W2k(x)

= ((−1)k−rS2(k−r)(x)∗R2(k−r)(x))∗W2(k−r)(x) (36)

and for k ≤ m

♦r
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)r

W2k(x) =♦m−k
B

(

♦B + d2
)m−k

δ ,

(37)

where
(

♦B + d2
)k

is the Diamond Bessel Klein Gordon

operator iterated k times defined by (4), δ is the dirac

delta distribution and the function W2k(x) defined by (18)

with α = 2k.

Proof. For 0 < r < k, from theorem 3.1, we have

♦r
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)k

W2k(x)) = δ .

We can write the above equation in the following form

♦k−r
B ♦r

B((−1)kS2k(x)∗R2k(x))∗
(

♦B + d2
)k−r (

♦B + d2
)r

W2k(x) = δ .

or

(

♦k−r
B δ ∗♦r

B((−1)kS2k(x)∗R2k(x))
)

∗
(

♦B +d2
)k−r

δ ∗
(

♦B +d2
)r

W2k(x) = δ .

We have used the convolution of both sides by

((−1)k−rS2(k−r)(x)∗R2(k−r))(x))∗W2(k−r)(x), we obtain

((−1)k−rS2(k−r)(x)∗R2(k−r)(x))∗W2(k−r) ∗
(

♦k−r
B δ ∗♦r

B((−1)kS2k(x)∗R2k(x))
)

∗δ ∗
(

♦B +d2
)r

W2k(x) = ((−1)kS2k(x)∗R2k(x))∗W2(k−r)(x)∗δ .

♦k−r
B ((−1)k−rS2(k−r)(x)∗R2(k−r)(x))∗♦

r
B((−1)kS2k(x)∗R2k(x))

(

♦B +d2
)k−r

∗W2(k−r) ∗
(

♦B +d2
)r

W2k(x)= ((−1)(k−r)S2(k−r)(x)∗R2(k−r)(x))∗W2(k−r)(x).

By property of convolution, we get

δ ∗♦r
B((−1)kS2k(x)∗R2k(x))∗ δ ∗

(

♦B + d2
)r

W2k(x)

= ((−1)(k−r)S2(k−r)(x)∗R2(k−r)(x))∗W2(k−r)(x).

♦r
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)r

W2k(x)

= ((−1)(k−r)S2(k−r)(x)∗R2(k−r)(x))∗W2(k−r)(x).
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as required. For k ≤ m

♦m
B ((−1)kS2k(x)∗R2k(x))∗

(

♦B +d2
)m

W2k(x))

=♦m−k
B ♦k

B((−1)kS2k(x)∗R2k(x))∗
(

♦B +d2
)m−k (

♦B +d2
)k

W2k(x))

It follows that

♦m
B ((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)m

W2k(x)) =♦m−k
B δ ∗

(

♦B + d2
)m−k

δ .

That completes the proof.
Theorem 3.3

Theorem 3.Given the linear differential equation

♦k
B

(

♦B + d2
)k

u(x) =
m

∑
r=0

cr♦
k
B

(

♦B + d2
)k

δ , (38)

The the type of solution (38) that depend on the

relationship between the values of k and m are as the

following cases:

(1) If m < k and m = 0, then the solution of (38) is

u(x) = c0((−1)kS2k(x)∗R2k(x))∗W2k(x)),

which is an elementary solution of the
(

♦B + d2
)m

operator in Theorem 3.1.

(2) If 0 < m < k then the solution of (38) is

u(x)=
m

∑
r=1

cr((−1)k−rS2(k−r))(x)∗R2(k−r)(x))∗W2(k−r)(x)

which is an ordinary function for 2k− 2r ≥ n+ 2|υ |
and is tempered distribution for 2k− 2r < n+ 2|υ |

(3) If m ≥ k and suppose k ≤ m ≤ M, then (38) has the

solution

u(x) =
M

∑
r=k

cr♦
r−k
B

(

♦B + d2
)r−k

δ

which is only the singular distribution.

Proof. (1) For m = 0,

we have ♦k
B

(

♦B + d2
)k

u(x) = c0δ , and by Theorem 3.1
we obtain

u(x) = c0((−1)kS2k(x)∗R2k(x))∗W2k(x)

Now, W2k(x) analytic function for 2k ≥ n+ 2|υ | and
also W2k(x) exists and is an analytic function by (29).It
follows that W2k(x) is an ordinary function for 2k ≥ n+
2|υ | and is a tempered distribution with 2k < n+ 2|υ |.

(2) For the case 0 < m < k, we have

♦k
B

(

♦B + d2
)k

u(x) =
m

∑
r=1

cr♦
r
B

(

♦B + d2
)r

δ ,

= c1♦B

(

♦B + d2
)

δ + c2♦
2
B

(

♦B + d2
)2

δ

+ . . .+ cm♦
m
B

(

♦B + d2
)m

δ .

Convolving both sides of the above equation by
((−1)kS2k(x)∗R2k(x))∗W2k(x), we obtain

((−1)kS2k(x)∗R2k(x))∗W2k(x)∗♦
k
B

(

♦B + d2
)k

u(x)

= c1((−1)kS2k(x)∗R2k(x))∗W2k(x)♦B

(

♦B + d2
)

δ

+ c2((−1)kS2k(x)∗R2k(x))∗W2k(x)♦
2
B

(

♦B + d2
)2

δ

...

+ cm((−1)kS2k(x)∗R2k(x))∗W2k(x)♦
m
B

(

♦B + d2
)m

δ

By properties of convolution, we get

♦k
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)k

W2k(x)∗ u(x)

= c1♦B((−1)kS2k(x)∗R2k(x))∗
(

♦B + d2
)

W2k(x)

+ c2♦
2
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)2

W2k(x)

...

+ cm♦
m
B ((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)m

W2k(x)

u(x) = c1♦B((−1)kS2k(x)∗R2k(x))∗
(

♦B + d2
)

W2k(x)

+ c2♦
2
B((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)2

W2k(x)+ . . .

+ cm♦
m
B ((−1)kS2k(x)∗R2k(x))∗

(

♦B + d2
)m

W2k(x)

By Theorem 3.1 and Theorem 3.2, we obtain

u(x) = c1((−1)k−1S2(k−1)(x)∗R2(k−1)(x))∗W2(k−1)(x)

+ c2((−1)k−2S2(k−2)(x)∗R2((k−2)(x))∗W2(k−2)(x)+ . . .

+ cm((−1)k−mS2(k−m)(x)∗R2(k−m)(x))∗W2(k−m)(x)

or

u(x) =
m

∑
r=1

cr((−1)k−rS2(k−r)(x)∗R2(k−r))(x))∗W2(k−r)(x).

(39)
Similarly, as in the case(1), u(x) is an ordinary function
for 2k− 2r ≥ n+ 2|υ | and is a tempered distribution for
2k− 2r < n+ 2|υ |.

(3) For the case m ≥ k and suppose k ≤ m ≤ M, we
have

♦k
B

(

♦B +d2
)k

u(x) = ck♦
k
B

(

♦B +d2
)k

δ + ck+1♦
k+1
B

(

♦B +d2
)k+1

δ

+ . . .+ cM♦M
B

(

♦B +d2
)M

B
δ . (40)
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We convolved both sides of the above equation by

((−1)kS2k(x)∗R2k(x))∗W2k(x), we obtain

u(x) = c1((−1)kS2k(x)∗R2k(x))∗W2k(x)♦
k
B

(

♦B +d2
)k

δ

+c2((−1)kS2k(x)∗R2k(x))∗W2k(x)♦
k+1
B

(

♦B +d2
)k+1

δ

+ . . .+cm((−1)kS2k(x)∗R2k(x))∗W2k(x)♦
M
B

(

♦B +d2
)M

δ

u(x) = ck♦
k
B((−1)kS2k(x)∗R2k(x))∗

(

♦B +d2
)k

W2k(x)

+ ck+1♦B♦
k
B((−1)kS2k(x)∗R2k(x))∗

(

♦B +d2
)(

♦B +d2
)k

W2k(x)

+ . . .+ cM♦M−k
B ♦k

B((−1)kS2k(x)∗R2k(x))∗♦
M−k
B

(

♦B +d2
)k

W2k(x)

By Theorem 3.1 and Theorem 3.2 again, we obtain

u(x)= ckδ +ck+1♦B

(

♦B + d2
)

δ +ck+2♦
2
B

(

♦B + d2
)2

δ

+ . . .+ cM♦M−k
B

(

♦B + d2
)M−k

δ

=
M

∑
r=k

cr♦
r−k
B

(

♦B + d2
)r−k

δ .

Since
(

♦B + d2
)r−k

δ is a singular distribution, hence u(x)
is only the singular distribution. That completes the proofs.
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solution of the n-dimensional Bessel diamond operator and

the Fourier-Bessel transform of their convolution, Proc.

Indian Acad. Sci. (Math. Sci.) Vol. 114, No.4, November

2004, 375–387.
[5] H. Yildirim. Riesz potentials generated by a generalized shift

operator. Ph.D. Thesis, Ankara University (1995).
[6] S.E. Trione. On Marcel Riesz’s ultra-hyperbolic kernel,

Studies in applied Mathematics, Vol. 79, Massachusetts

Institute of Technology, Cambridge, Massachusetts, USA,

pp.185-191 (1988).

[7] Y.Nozaki. On Riemann-Liouville integral of Ultra-hyperbolic

type, Kodai Math. Sem.Rep. 6(2)(1964)69-87.

[8] W.F. Donoghue. Distributions and Fourier Transform,

Academic Press, New York,(1969).

Wanchak Satsanit

received the PhD degree
in Mathematics at Chiangmai
University, Thailand.
His research interests
are in the areas of applied
mathematics,such as
Partial differential equation,
Ordinary differential equation
and Generalised function. He

has published research articles in reputed international
journals of mathematical.

c© 2019 NSP

Natural Sciences Publishing Cor.


	Introduction
	Preliminaries
	Main Results

