## Sohag Journal of Mathematics An International Journal

http://dx.doi.org/10.18576/sjm/060303

# On the Solution of Linear Partial Differential Equation Related to Diamond and Diamond Bessel Klein Gordon Operator

Wanchak Satsanit

Department of Mathematics, Faculty of Science, Maejo University ChiangMai, 50290, Thailand

Received: 13 May 2018, Revised: 22 Aug. 2019, Accepted: 25 Aug. 2019

Published online: 1 Sep. 2019

Abstract: In this paper, we studied the equation

$$\diamondsuit_B^k \left( \diamondsuit_B + d^2 \right)^k u(x) = \sum_{r=0}^m c_r \diamondsuit_B^k \left( \diamondsuit_B + d^2 \right)^k \delta.$$

We give a sense of Distribution theory considering the properties of the convolution. It was found that the type of above equation depend on the relationship between the value k and m.

Keywords: Dalgaard-Strulik model, energy, economic growth, time delay, limit cycle

#### 1 Introduction

In 2004, Hüseyin Yildirim, M.Zeki Sarikaya and Sermin Öztürk [4,5] first introduced the Bessel diamond operator  $\diamondsuit_B^k$  iterated k times, and defined by

$$\diamondsuit_{B}^{k} = \left( \left( \sum_{i=1}^{p} B_{x_{i}} \right)^{2} - \left( \sum_{j=p+1}^{p+q} B_{x_{j}} \right)^{2} \right)^{k}, \tag{1}$$

where  $B_{x_i} = \frac{\partial^2}{\partial x_i^2} + \frac{2v_i}{x_i} \frac{\partial}{\partial x_i}$ ,  $2v_i = 2\alpha_i + 1$ ,  $\alpha_i > -\frac{1}{2}$ ,  $x_i > 0$ . The operator  $\diamondsuit_B^k$  can be expressed by  $\diamondsuit_B^k = \triangle_B^k \triangle_B^k = \square_B^k \triangle_B^k$ , where

$$\triangle_B^k = \left(\sum_{i=1}^p B_{x_i}\right)^k \text{ and } \square_B^k = \left(\sum_{i=1}^p B_{x_i} - \sum_{j=p+1}^{p+q} B_{x_j}\right)^k.$$
(2)

Hüseyin Yildirim, M.Zeki Sarikaya and Sermin Öztürk [4,5] have shown the convolution form  $u(x) = (-1)^k S_{2k}(x) * R_{2k}(x)$  is a unique elementary

solution of  $\Diamond_B^k$  that is

$$\diamondsuit_{R}^{k}((-1)^{k}S_{2k}(x)*R_{2k}(x)) = \delta,$$
 (3)

where  $S_{2k}(x)$  and  $R_{2k}(x)$  are defined by (9) and (11) with  $\alpha = \gamma = 2k$  respectively. Next, C. Bunpog and A. Kananthai[2] have first introduced the operator  $\left(\diamondsuit_B + m^4\right)^k$  named Diamond Klien-Gordon Bessel operator iterated k times and can be written in the following form

$$\left(\diamondsuit_B + m^4\right)^k = \left(\left(\triangle_B + m^2\right)\left(\Box_B + m^2\right) - m^2\left(\triangle_B + \Box_B\right)\right)^k,\tag{4}$$

where  $\Box_B + m^2$  is the Bessel Klien-Gordon operator and  $\triangle_B + m^2$  is the Bessel Helmholtz operator defined by

$$\Box_B + m^2 = \sum_{i=1}^p B_{x_i} - \sum_{i=p+1}^{p+q} B_{x_j} + m^2,$$
 (5)

and

$$\triangle_B + m^2 = \sum_{i=1}^n B_{x_i} + m^2.$$
 (6)

<sup>\*</sup> Corresponding author e-mail: wanchack@gmail.com



The purpose of this work, firstly, we study the elementary solution or Green function of the  $(\diamondsuit_B + d^2)^k$ , that is

$$\left(\diamondsuit_B + d^2\right)^k G(x) = \delta,\tag{7}$$

where G(x) is the Green function,  $\delta$  is the Dirac delta distribution, k is a nonnegative integer and  $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ . We also consider the convolution of Green function.

Finally, we are finding the solution of the equation

$$\diamondsuit_B^k \left( \diamondsuit_B + d^2 \right)^k u(x) = \sum_{r=0}^m c_r \diamondsuit_B^k \left( \diamondsuit_B + d^2 \right)^k \delta. \tag{8}$$

We use the B-convolution for the generalized function. It was found that the type of the solution (8) that depend on the relationship between the values of k and m are as the following cases:

(1) If m < k and m = 0, then the solution of (8) is

$$u(x) = c_0((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x),$$

which is an elementary solution of product of the operator  $\diamondsuit_B^k$  and the operator  $(\diamondsuit_B + d^2)^k$  in Theorem 3.1, is the ordinary function for  $2k \ge n + 2|v|$ , and is a tempered distribution for 2k < n + 2|v|.

(2) If 0 < m < k then the solution of (8) is

$$u(x) = \sum_{r=1}^{m} c_r((-1)^{k-r} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x),$$

which is an ordinary function for  $2k - 2r \ge n + 2|v|$  and is tempered distribution for 2k - 2r < n + 2|v|.

(3) If  $m \ge k$  and suppose  $k \le m \le M$ , then (8) has the solution

$$u(x) = \sum_{r=-k}^{M} c_r \diamondsuit_B^{r-k} \left( \diamondsuit_B + d^2 \right)^{r-k} \delta$$

which is only the singular distribution.

Before proceeding that point, the following definitions and some important concepts are needed.

#### 2 Preliminaries

#### **Definition 2.1**

Let  $x = (x_1, x_2, ..., x_n), v = (v_1, v_2, ..., v_n) \in \mathbb{R}_n^+$ . For any complex number  $\alpha$ , we define the distribution family  $S_{\alpha}(x)$  by

$$S_{\alpha}(x) = \frac{|x|^{\alpha - n - 2|v|}}{w_n(\alpha)},\tag{9}$$

where  $|x| = x_1^2 + x_2^2 + ... + x_n^2, |v| = v_1 + v_2 + ... + v_n$  and,

$$w_n(\alpha) = \frac{\prod_{i=1}^n 2^{\nu_i - \frac{1}{2}} \Gamma(\nu_i + \frac{1}{2})}{2^{n+2|\nu| - 2\alpha} \Gamma(\frac{n+2|\nu| - \alpha}{2})}$$
(10)

#### **Definition 2.2**

Let  $x = (x_1, x_2, ..., x_n), v = (v_1, v_2, ..., v_n) \in \mathbb{R}_n^+$ , and denote by

$$V = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - x_{p+2}^2 - \dots - x_{p+q}^2$$

the nondegenerated quadratic form. Denote the interior of the forward cone by

$$\Gamma_{+} = \{x \in \mathbb{R}_{n}^{+} : x_{1} > 0, x_{2} > 0, \dots, x_{n} > 0, V > 0\}$$

and  $\overline{\Gamma}_+$  denotes its closure. For any complex number  $\gamma$  the distribution family  $R_{\gamma}(x)$  is defined by

$$R_{\gamma}(x) = \begin{cases} \frac{V^{\frac{\gamma - n - 2|\nu|}{2}}}{K_n(\gamma)}, & \text{for } x \in \Gamma_+, \\ 0, & \text{for } x \notin \Gamma_+, \end{cases}$$
 (11)

where

$$K_n(\gamma) = \frac{\pi^{\frac{n+2|\nu|-1}{2}}\Gamma\left(\frac{2+\gamma-n-2|\nu|}{2}\right)\Gamma\left(\frac{1-\gamma}{2}\right)\Gamma(\gamma)}{\Gamma\left(\frac{2+\gamma-p-2|\nu|}{2}\right)\Gamma\left(\frac{p-\gamma}{2}\right)},$$

where  $\gamma$  is a complex number.

#### **Definition 2.3**

Let  $x = (x_1, x_2, \dots, x_n)$  be a point of  $\mathbb{R}_n^+$ , we define the function

$$W_{\alpha}(x) = \sum_{r=0}^{\infty} \frac{(-1)^{r} \Gamma(\frac{\eta}{2} + r)}{r! \Gamma(\frac{\eta}{2})} (m^{2})^{r} (-1)^{\frac{\alpha}{2} + r} S_{\alpha + 2r}(x) * R_{\alpha + 2r}(x), \tag{12}$$

where the function  $S_{\alpha+2r}$  and  $R_{\alpha+2r}$  are defined by definition 2.2 and definition 2.3 respectively.

#### Lemma 2.1

**Lemma 1.**Let  $\alpha$  and  $\beta$  be complex numbers and  $S_{\alpha}(x)$  be the function defined by (9). Then the following properties are valid

$$S_0(x) = \delta(x) \tag{13}$$

$$S_{-2k}(x) = (-1)^k \triangle_R^k \delta \tag{14}$$

$$\triangle_{B}^{k}\{S_{\alpha}(x)\} = (-1)^{k}S_{\alpha-2k}(x) \tag{15}$$

$$S_{\alpha}(x) * S_{\beta}(x) = S_{\alpha+\beta}(x), \tag{16}$$

where  $\triangle_B^k$  is the Laplace Bessel operator iterated k times and defined by (2).



**Lemma 2.**Let  $\alpha$  and  $\beta$  be complex numbers and  $R_{\gamma}(x)$  be the function defined by (10). Then the following properties are valid

$$R_0(x) = \delta(x) \tag{17}$$

$$R_{-2k}(x) = \Box_R^k \delta \tag{18}$$

$$\square_R^k \{ S_{\gamma}(x) \} = S_{\gamma - 2k}(x) \tag{19}$$

$$R_{\alpha}(x) * R_{\beta}(x) = R_{\alpha+\beta}(x), \tag{20}$$

where  $\Box_B^k$  is the Ultra-hyperbolic Bessel operator iterated k times and defined by (2).

**Proof.** 
$$[3]$$
.  $\Box$  Lemma 2.3

**Lemma 3.**The functions  $S_{\alpha}(x)$  and  $R_{\alpha}(x)$  defined by (9) and (10) respectively are homogeneous distribution of order  $\alpha - n - 2|v|$  and also tempered distribution.

**Proof.** Since  $R_{\alpha}(x)$  and  $S_{\alpha}(x)$  satisfy the Euler equation, that is

$$(\alpha - n - 2|v|)R_{\alpha}(x) = \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} R_{\alpha}(x)$$

and

$$(\alpha - n - 2|\upsilon|)S_{\alpha}(x) = \sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} S_{\alpha}(x).$$

We have  $R_{\alpha}(x)$  and  $S_{\alpha}(x)$  as homogeneous distributions of order  $\alpha - n - 2|v|$  and Donoghue [8] has proved that every homogeneous distribution is a tempered distribution. That completes the proof.

#### Lemma 2.4

**Lemma 4.**(The convolution of tempered distribution). The convolution  $R_{\alpha}(x) * S_{\alpha}(x)$  exists and is a tempered distribution.

**Proof.** Choosing supp  $R_{\alpha}(x) = K \subset \Gamma_+$  where K is a compact set, the function  $R_{\alpha}(x)$  is a tempered distribution with compact support and by Donoghue[8]  $R_{\alpha}(x) * S_{\alpha}(x)$  exists and is a tempered distribution .

#### Lemma 2.5

**Lemma 5.** Given the equation  $\diamondsuit_B^k u(x) = \delta(x)$  for  $x \in \mathbb{R}_n^+$ , where  $\diamondsuit_B^k$  defined by (1). And

$$u(x) = (-1)^k S_{2k}(x) * R_{2k}(x),$$

where  $S_{2k}(x)$  and  $R_{2k}(x)$  are defined by (13) and (15) with  $\alpha = 2k, \gamma = 2k$  respectively.

We obtain  $(-1)^k S_{2k}(x) * R_{2k}(x)$  is an elementary solution of the operator  $\diamondsuit_B^k$ . That is

$$\diamondsuit_B^k \left( (-1)^k S_{2k}(x) * R_{2k}(x) \right) = \delta(x) \tag{21}$$

**Lemma 6.**Let  $\alpha$  and  $\beta$  be complex numbers. The following formulas are valid

$$W_0(x) = \delta(x) \tag{22}$$

$$W_{\alpha} * W_{\beta} = W_{\alpha + \beta} \tag{23}$$

$$W_{\alpha} * W_{-2k} = W_{\alpha - 2k} \tag{24}$$

**Proof.** By definition 2.3, we obtain

$$W_0(x) = \delta(x)$$
.

By definition 2.3 again, we have

$$\begin{split} &W_{\alpha}(x)*W_{\beta}(x) = \sum_{r=0}^{\infty} {-\frac{\alpha}{r^2}(m^2)^r(-1)^{\frac{\alpha}{2}+r}S_{\alpha+2r}(x)} *R_{\alpha+2r}(x).*\sum_{s=0}^{\infty} {-\frac{\beta}{s^2}(m^2)^s(-1)^{\frac{\beta}{2}+s}S_{\beta+2s}(x)} *R_{\beta+2s}(x) \\ &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} {-\frac{\alpha}{r^2}(-\frac{\beta}{s^2})(m^2)^{r+s}(-1)^{\frac{\alpha+\beta}{2}+r+s}(S_{\alpha+2r}(x)*R_{\alpha+2r}(x))} *(S_{\beta+2s}(x)*R_{\beta+2s}(x)) \\ &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} {-\frac{\alpha}{r^2}(-\frac{\beta}{s^2})(m^2)^{r+s}(-1)^{\frac{\alpha+\beta}{2}+r+s}(S_{\alpha+\beta+2(r+s)}(x)*R_{\alpha+\beta+2(r+s)}(x))} \end{split}$$

$$= \sum_{k=0}^{\infty} (m^2)^k \left[ \sum_{r=0}^k {-\frac{\alpha}{r} \choose r} {-\frac{\beta}{r} \choose k-r} \right] (-1)^{\frac{\alpha+\beta}{2}+k} \left( S_{\alpha+\beta+2k}(x) * R_{\alpha+\beta+2k}(x) \right). \tag{25}$$

By properties

$$\sum_{r=0}^k \binom{-\frac{\alpha}{2}}{r} \binom{-\frac{\beta}{2}}{k-r} = \binom{-\frac{\alpha+\beta}{2}}{k}.$$

The equation (25) becomes

$$W_{\alpha}(x) * W_{\beta}(x) = \sum_{r=0}^{\infty} {-\frac{\alpha+\beta}{2} \choose r} (m^2)^r (-1)^{\frac{\alpha+\beta}{2}+k} S_{\alpha+\beta+2k}(x) * R_{\alpha+\beta+2k}(x).$$
  
=  $W_{\alpha+\beta}(x)$ 

Thus,

$$W_{\alpha}(x) * W_{\beta}(x) = W_{\alpha+\beta}(x). \tag{26}$$

Putting  $\beta = -2k$  in (26), we obtain

$$W_{\alpha}(x) * W_{-2k}(x) = W_{\alpha - 2k}(x). \tag{27}$$

That completes the proof.

#### 3 Main Results

#### Theorem 3.1

**Theorem 1.** Given the equation

$$\left(\diamondsuit_B + d^2\right)^k u(x) = \delta(x) \tag{28}$$

for  $x \in \mathbb{R}_n^+$  and  $(\diamondsuit_B + d^2)^k$  is the Diamond Klein Gordon operator iterated k times defined by (4), we obtain

$$u(x) = W_{2k}(x) \tag{29}$$



is an elementary solution or Green function of the operator  $(\diamondsuit_B + d^2)^k$  and  $W_{2k}(x)$  is defined by (18) with  $\alpha = 2k$ . The function  $W_{2k}(x)$  has the following properties

$$W_0(x) = \delta(x) \tag{30}$$

and

$$\left(\diamondsuit_B + d^2\right)^k \left\{ W_{\alpha}(x) \right\} = W_{\alpha - 2k}(x) \tag{31}$$

Proof. In fact.

$$\left(\diamondsuit_B+d^2\right)^{-\frac{\alpha}{2}}=\left\{\diamondsuit_B\left(1+d^2\diamondsuit_B^{-1}\right)\right\}^{-\frac{\alpha}{2}}=\diamondsuit_B^{-\frac{\alpha}{2}}\left(1+d^2\diamondsuit_B^{-1}\right)^{-\frac{\alpha}{2}}$$

and

$$(1+d^2\diamondsuit_B^{-1})^{-\frac{\alpha}{2}}\delta = \sum_{r=0}^{\infty} {\binom{-\frac{\alpha}{2}}{r}} (d^2\diamondsuit_B^{-1})^r \delta$$
$$= \sum_{r=0}^{\infty} {\binom{-\frac{\alpha}{2}}{r}} d^{2r}\diamondsuit_B^{-r}\delta$$

Thus,

$$\diamondsuit_B^{-\frac{\alpha}{2}} \left( 1 + d^2 \diamondsuit_B^{-1} \right)^{-\frac{\alpha}{2}} = \diamondsuit^{-\frac{\alpha}{2}} \sum_{r=0}^{\infty} {\binom{-\frac{\alpha}{2}}{r}} \left( d^2 \diamondsuit_B^{-1} \right)^r \delta$$

$$= \sum_{r=0}^{\infty} {\binom{-\frac{\alpha}{2}}{r}} d^{2r} \diamondsuit_B^{-\frac{\alpha}{2}-r} \delta.$$

From the above equation, we get

$$\begin{split} \left(\diamondsuit_B + d_B^2\right)^{-\frac{\alpha}{2}} \delta &= \sum_{r=0}^{\infty} \binom{-\frac{\alpha}{2}}{r} d^{2r} \diamondsuit_B^{-\frac{\alpha}{2} - r} \delta. \\ &= \sum_{r=0}^{\infty} \binom{-\frac{\alpha}{2}}{r} d^{2r} \triangle_B^{-\frac{\alpha}{2} - r} \square_B^{-\frac{\alpha}{2} - r} \delta. \\ &= \sum_{r=0}^{\infty} \binom{-\frac{\alpha}{2}}{r} d^{2r} (-1)^{\frac{\alpha}{2} + r} S_{2(\frac{\alpha}{2} + r)}(x) * R_{2(\frac{\alpha}{2} + r)}(v) \\ &= \sum_{r=0}^{\infty} \binom{-\frac{\alpha}{2}}{r} d^{2r} (-1)^{\frac{\alpha}{2} + r} S_{\alpha + 2r}(x) * R_{\alpha + 2r}(x) \\ &= W_{\alpha}(x) \end{split}$$

If we put  $\alpha = -2k$ , we obtain

$$\left(\diamondsuit_B + d^2\right)^k \delta = W_{-2k}(x) \tag{32}$$

Putting k = 0 in (32), we obtain

$$W_0(x) = \delta(x). \tag{33}$$

By lemma 2.6, we have

$$W_{\alpha}(x) * W_{\beta}(x) = W_{\alpha+\beta}(x).$$

Putting  $\beta = -2k$ , we obtain

$$W_{\alpha}(x) * W_{-2k}(x) = W_{\alpha-2k}(x)$$

$$W_{\alpha}(x) * (\diamondsuit + m^4)^k \delta = W_{\alpha - 2k}(x)$$

$$\left(\diamondsuit_B + d^2\right)^k W_{\alpha}(x) * \delta = W_{\alpha - 2k}(x). \tag{34}$$

If we put  $\alpha = 2k$  in (34), we obtain

$$(\diamondsuit + d^2)^k \delta * W_{2k}(x) = W_0(x). = \delta(x).$$
 (35)

It follows that  $W_{2k}(x)$  is an elementary solution or Green function of the operator  $(\diamondsuit + d^2)^k$ . That completes the proof.

### Theorem 3.2

**Theorem 2.**Let  $\diamondsuit_B^k$  and  $(\diamondsuit + d^2)^k$  be Diamond Bessel operator and Diamond Bessel Klein Gordon operator respectively. For 0 < r < k

$$\diamondsuit_B^r((-1)^k S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_B + d^2)^r W_{2k}(x) 
= ((-1)^{k-r} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x)$$
(36)

and for  $k \leq m$ 

$$\diamondsuit_{B}^{r}((-1)^{k}S_{2k}(x)*R_{2k}(x))*\left(\diamondsuit_{B}+d^{2}\right)^{r}W_{2k}(x)=\diamondsuit_{B}^{m-k}\left(\diamondsuit_{B}+d^{2}\right)^{m-k}\delta,\tag{37}$$

where  $(\diamondsuit_B + d^2)^k$  is the Diamond Bessel Klein Gordon operator iterated k times defined by (4),  $\delta$  is the dirac delta distribution and the function  $W_{2k}(x)$  defined by (18) with  $\alpha = 2k$ .

**Proof.** For 0 < r < k, from theorem 3.1, we have

$$\Diamond_B^r((-1)^k S_{2k}(x) * R_{2k}(x)) * (\Diamond_B + d^2)^k W_{2k}(x)) = \delta.$$

We can write the above equation in the following form

$$\diamondsuit_B^{k-r}\diamondsuit_B^r((-1)^kS_{2k}(x)*R_{2k}(x))*\left(\diamondsuit_B+d^2\right)^{k-r}\left(\diamondsuit_B+d^2\right)^rW_{2k}(x)=\delta.$$

or

$$\left(\diamondsuit_B^{k-r}\delta * \diamondsuit_B^r((-1)^k S_{2k}(x) * R_{2k}(x))\right) * \left(\diamondsuit_B + d^2\right)^{k-r}\delta * \left(\diamondsuit_B + d^2\right)^r W_{2k}(x) = \delta.$$

We have used the convolution of both sides by  $((-1)^{k-r}S_{2(k-r)}(x)*R_{2(k-r)}(x))*W_{2(k-r)}(x)$ , we obtain

$$((-1)^{k-r}S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)} * (\diamondsuit_B^{k-r} \delta * \diamondsuit_B^r ((-1)^k S_{2k}(x) * R_{2k}(x))))$$

$$* \delta * (\diamondsuit_B + d^2)^r W_{2k}(x) = ((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2(k-r)}(x) * \delta.$$

$$\diamondsuit_B^{k-r}((-1)^{k-r}S_{2(k-r)}(x)*R_{2(k-r)}(x))*\diamondsuit_B^r((-1)^kS_{2k}(x)*R_{2k}(x))$$

$$(\diamondsuit_B + d^2)^{k-r}*W_{2(k-r)}*(\diamondsuit_B + d^2)^rW_{2k}(x) = ((-1)^{(k-r)}S_{2(k-r)}(x)*R_{2(k-r)}(x))*W_{2(k-r)}(x).$$

By property of convolution, we get

$$\delta * \diamondsuit_B^r((-1)^k S_{2k}(x) * R_{2k}(x)) * \delta * (\diamondsuit_B + d^2)^r W_{2k}(x)$$
  
=  $((-1)^{(k-r)} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x).$ 

$$\diamondsuit_B^r((-1)^k S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_B + d^2)^r W_{2k}(x) 
= ((-1)^{(k-r)} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x).$$



as required. For  $k \le m$ 

$$\begin{split} \diamondsuit_B^m((-1)^k S_{2k}(x) * R_{2k}(x)) * \left(\diamondsuit_B + d^2\right)^m W_{2k}(x)) \\ &= \diamondsuit_B^{m-k} \diamondsuit_B^k((-1)^k S_{2k}(x) * R_{2k}(x)) * \left(\diamondsuit_B + d^2\right)^{m-k} \left(\diamondsuit_B + d^2\right)^k W_{2k}(x)) \end{split}$$

It follows that

$$\diamondsuit_B^m((-1)^kS_{2k}(x)*R_{2k}(x))*\left(\diamondsuit_B+d^2\right)^mW_{2k}(x))=\diamondsuit_B^{m-k}\delta*\left(\diamondsuit_B+d^2\right)^{m-k}\delta.$$

That completes the proof.

#### Theorem 3.3

**Theorem 3.** Given the linear differential equation

$$\diamondsuit_B^k \left(\diamondsuit_B + d^2\right)^k u(x) = \sum_{r=0}^m c_r \diamondsuit_B^k \left(\diamondsuit_B + d^2\right)^k \delta, \quad (38)$$

The the type of solution (38) that depend on the relationship between the values of k and m are as the following cases:

(1) If m < k and m = 0, then the solution of (38) is

$$u(x) = c_0((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x),$$

which is an elementary solution of the  $(\diamondsuit_B + d^2)^m$  operator in Theorem 3.1.

(2) If 0 < m < k then the solution of (38) is

$$u(x) = \sum_{r=1}^{m} c_r((-1)^{k-r} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x)$$

which is an ordinary function for  $2k - 2r \ge n + 2|v|$  and is tempered distribution for 2k - 2r < n + 2|v|

(3) If  $m \ge k$  and suppose  $k \le m \le M$ , then (38) has the solution

$$u(x) = \sum_{r=k}^{M} c_r \diamondsuit_B^{r-k} \left( \diamondsuit_B + d^2 \right)^{r-k} \delta$$

which is only the singular distribution.

**Proof.** (1) For m = 0,

we have  $\diamondsuit_B^k \left(\diamondsuit_B + d^2\right)^k u(x) = c_0 \delta$ , and by Theorem 3.1 we obtain

$$u(x) = c_0((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x)$$

Now,  $W_{2k}(x)$  analytic function for  $2k \ge n + 2|v|$  and also  $W_{2k}(x)$  exists and is an analytic function by (29).It follows that  $W_{2k}(x)$  is an ordinary function for  $2k \ge n + 2|v|$  and is a tempered distribution with 2k < n + 2|v|.

(2) For the case 0 < m < k, we have

$$\diamondsuit_{B}^{k} \left( \diamondsuit_{B} + d^{2} \right)^{k} u(x) = \sum_{r=1}^{m} c_{r} \diamondsuit_{B}^{r} \left( \diamondsuit_{B} + d^{2} \right)^{r} \delta,$$

$$= c_{1} \diamondsuit_{B} \left( \diamondsuit_{B} + d^{2} \right) \delta + c_{2} \diamondsuit_{B}^{2} \left( \diamondsuit_{B} + d^{2} \right)^{2} \delta$$

$$+ \dots + c_{m} \diamondsuit_{B}^{m} \left( \diamondsuit_{B} + d^{2} \right)^{m} \delta.$$

Convolving both sides of the above equation by  $((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x)$ , we obtain

$$((-1)^{k}S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) * \diamondsuit_{B}^{k} (\diamondsuit_{B} + d^{2})^{k} u(x)$$

$$= c_{1}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_{B} (\diamondsuit_{B} + d^{2}) \delta$$

$$+ c_{2}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_{B}^{2} (\diamondsuit_{B} + d^{2})^{2} \delta$$

$$\vdots$$

$$+ c_{m}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_{B}^{m} (\diamondsuit_{B} + d^{2})^{m} \delta$$

By properties of convolution, we get

$$\diamondsuit_{B}^{k}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_{B} + d^{2})^{k}W_{2k}(x) * u(x) 
= c_{1}\diamondsuit_{B}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_{B} + d^{2})W_{2k}(x) 
+ c_{2}\diamondsuit_{B}^{2}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_{B} + d^{2})^{2}W_{2k}(x) 
\vdots 
+ c_{m}\diamondsuit_{B}^{m}((-1)^{k}S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_{B} + d^{2})^{m}W_{2k}(x)$$

$$u(x) = c_1 \diamondsuit_B((-1)^k S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_B + d^2) W_{2k}(x)$$
  
+  $c_2 \diamondsuit_B^2((-1)^k S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_B + d^2)^2 W_{2k}(x) + \dots$   
+  $c_m \diamondsuit_B^m((-1)^k S_{2k}(x) * R_{2k}(x)) * (\diamondsuit_B + d^2)^m W_{2k}(x)$ 

By Theorem 3.1 and Theorem 3.2, we obtain

$$u(x) = c_1((-1)^{k-1}S_{2(k-1)}(x) * R_{2(k-1)}(x)) * W_{2(k-1)}(x)$$

$$+ c_2((-1)^{k-2}S_{2(k-2)}(x) * R_{2((k-2)}(x)) * W_{2(k-2)}(x) + \dots$$

$$+ c_m((-1)^{k-m}S_{2(k-m)}(x) * R_{2(k-m)}(x)) * W_{2(k-m)}(x)$$

or

$$u(x) = \sum_{r=1}^{m} c_r((-1)^{k-r} S_{2(k-r)}(x) * R_{2(k-r)}(x)) * W_{2(k-r)}(x).$$
(39)

Similarly, as in the case(1), u(x) is an ordinary function for  $2k - 2r \ge n + 2|v|$  and is a tempered distribution for 2k - 2r < n + 2|v|.

(3) For the case  $m \ge k$  and suppose  $k \le m \le M$ , we have

$$\diamondsuit_{B}^{k} \left(\diamondsuit_{B} + d^{2}\right)^{k} u(x) = c_{k} \diamondsuit_{B}^{k} \left(\diamondsuit_{B} + d^{2}\right)^{k} \delta + c_{k+1} \diamondsuit_{B}^{k+1} \left(\diamondsuit_{B} + d^{2}\right)^{k+1} \delta 
+ \dots + c_{M} \diamondsuit_{B}^{M} \left(\diamondsuit_{B} + d^{2}\right)_{B}^{M} \delta.$$
(40)



We convolved both sides of the above equation by  $((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x)$ , we obtain

$$u(x) = c_1((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_B^k \left( \diamondsuit_B + d^2 \right)^k \delta$$
  
+  $c_2((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_B^{k+1} \left( \diamondsuit_B + d^2 \right)^{k+1} \delta$   
+  $\dots + c_m((-1)^k S_{2k}(x) * R_{2k}(x)) * W_{2k}(x) \diamondsuit_B^M \left( \diamondsuit_B + d^2 \right)^M \delta$ 

$$\begin{split} u(x) &= c_k \diamondsuit_B^k ((-1)^k S_{2k}(x) * R_{2k}(x)) * \left( \diamondsuit_B + d^2 \right)^k W_{2k}(x) \\ &+ c_{k+1} \diamondsuit_B \diamondsuit_B^k ((-1)^k S_{2k}(x) * R_{2k}(x)) * \left( \diamondsuit_B + d^2 \right) \left( \diamondsuit_B + d^2 \right)^k W_{2k}(x) \\ &+ \ldots + c_M \diamondsuit_B^{M-k} \diamondsuit_B^k ((-1)^k S_{2k}(x) * R_{2k}(x)) * \diamondsuit_B^{M-k} \left( \diamondsuit_B + d^2 \right)^k W_{2k}(x) \end{split}$$

By Theorem 3.1 and Theorem 3.2 again, we obtain

$$u(x) = c_k \delta + c_{k+1} \diamondsuit_B \left(\diamondsuit_B + d^2\right) \delta + c_{k+2} \diamondsuit_B^2 \left(\diamondsuit_B + d^2\right)^2 \delta$$
$$+ \dots + c_M \diamondsuit_B^{M-k} \left(\diamondsuit_B + d^2\right)^{M-k} \delta$$
$$= \sum_{r=k}^M c_r \diamondsuit_B^{r-k} \left(\diamondsuit_B + d^2\right)^{r-k} \delta.$$

Since  $(\diamondsuit_B + d^2)^{r-k} \delta$  is a singular distribution, hence u(x) is only the singular distribution. That completes the proofs.

#### Acknowledgement

The authors would like to thank The Thailand Research Fund, The Commission Higher Education and Graduate school, Maejo University, Thailand for financial support and also Prof. Amnuay Kananthai Department of Mathematics, Chiang Mai University for the helpful discussion.

#### References

- [1] A. Kananthai. *On the Solution of the n-Dimensional Diamond Operator*, Applied Mathematics and Computational, Elsevier Science Inc.New York, 1997, pp 27-37.
- [2] C. Bunpog and A. Kananthai, On the Bessel Diamond operator, Journal of Applied Functional Analysis, Vol 4, No 1, pp. 10-19(2009).
- [3] M. Aguirre Tellez. Some properties of Bessel Elliptic kernel and Bessel ultra-hyperbolic kernel, Thai Journal of Math. 2008, 6(1): pp.171-190.
- [4] H.Yildirim, M.Zeki Sarikaya and Sermin Öztürk, The solution of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No.4, November 2004, 375–387.
- [5] H. Yildirim. Riesz potentials generated by a generalized shift operator. Ph.D. Thesis, Ankara University (1995).
- [6] S.E. Trione. On Marcel Riesz's ultra-hyperbolic kernel, Studies in applied Mathematics, Vol. 79, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, pp.185-191 (1988).

- [7] Y.Nozaki. On Riemann-Liouville integral of Ultra-hyperbolic type, Kodai Math. Sem.Rep. 6(2)(1964)69-87.
- [8] W.F. Donoghue. Distributions and Fourier Transform, Academic Press, New York, (1969).



Wanchak Satsanit
received the PhD degree
in Mathematics at Chiangmai
University, Thailand.
His research interests
are in the areas of applied
mathematics, such as
Partial differential equation,
Ordinary differential equation
and Generalised function. He

has published research articles in reputed international journals of mathematical.