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Abstract: In this paper, we propose the discrete homotopy analysis method(DHAM) to solve time-fractional difference equations. The
fractional differences are described by Caputo’s sense. Several illustrative examples present the capability of DHAM for wide classes
of fractional partial difference equations.
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1 Introduction

Fractional calculus has been considerable interest in numerous fields of science and engineering, such as electrical
networks, chemical physics, optics and signal processing, diffusion, viscoelasticity, and so on [1,2,3,4,5]. The fractional
difference is a discretized version of the fractional derivative. Recently, discrete fractional calculus has been increasing in
popularity [1,6,7,8,9].

Developing correct methods to solve partial differential equations has become important. Some of the (semi) analytical
methods for partial differential equations are the Adomian decomposition method(ADM)[5], variational iteration
method(VIM)[10], homotopy perturbation method(HPM)[11], and so on. Another analytical approach is the homotopy
analysis method(HAM)[12, 13]. HAM is independent of small/large physical parameters, unlike the other methods. Very
recently, Zhu et al. [14] introduced the discrete homotopy analysis method(DHAM). This method can be employed for
solving complex problems containing discontinuity in fluid characteristics and geometry of the problem.

In this study, we propose the discrete homotopy analysis method for solving fractional partial difference equations.
Fractional differences are described by Caputo’s sense. We shall demonstrate the applicability of DHAM to standard
fractional partial difference equations through several test examples.

2 Preliminaries

In this section, we introduce some definitions and properties of discrete fractional calculus which are used further in this
paper.

Definition 1([7,8]). If f : N, — R and x > 0 then the fractional sum of order ¥, denoted by ,A;” ¥, is defined by

A0 = 17 L (- 0) VA, €N
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where N, = {a,a+1,a+2,...},0(t) =71+ 1.

The trivial sum is

aAtiof(t):f(t)a 1 €Ng.

Here

w_ L+l
I't+1-x)

is falling function.

This definition is analogous to Riemann-Liouville fractional integral.
Throughout, we assume that if (r + 1 — k) € {0,—1,—2,...}, then t(X) = 0.
The power rule was proved in [7]

_ r(v+1)
k(o) _ _~\¥VT ) (k+v) +
A"t Fm+v+Ut , veR™.

Definition 2([1,6]). If f : N, — R and k > 0, then the Caputo-like delta fractional difference of the k order, denoted by
gAlK, is defined by

CAFF() =Ca A F (1)
1 t—(I—xK)

“Fi=® Z (— o) VA1), 1€Napyop,

where | € Ny is such that | — 1 < x < [.
CAF maps functions defined on N, to functions defined on Nat(-x)-

In particular, if 0 < k¥ < 1, then

t—(1—x)
Ficg L 0—o(®) Vas),

T=a

aCAth (t ) =

where Af(7) = f(t+1) — f(7).

If x is an integer, then this difference takes the ordinary forward difference operator

CAK = AKX, Kk=1,23,...

Proposition 1([?]). If f : N, — R and k > 0, then

-1 (t _ a)(s)

a+(17K)A,7KgAZKf(t) =ft)— ]

A’f(a),

s=0

where | € Ny is such that | — 1 < x < [.
For special case 0 < k < 1,

(1A CAS () = f(1) = fla).
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3 Discrete homotopy analysis method for the fractional difference equations

To illustrate the basic idea of the discrete homotopy analysis method(DHAM), we consider the following fractional partial
difference equation:

CANUG +L(Ug) +N(Usy) = gkss 1—1<k<1l,  tEN,(x, keN, (1)

subject to the initial conditions

CAUa=fr,,  s=0,1,...,0—1, @)
where L is a linear difference and N is nonlinear difference operator, g, is the source term.
Because of the original Eq(1) contains the linear operator A, we can choose the auxiliary linear operator
£[Urs] = SAK UL, (3)

For simplicity, we can define the nonlinear operator

R [Urs] = SAf Uk, + L(Ury) +N(Uss) — 8ir- 4)

Similarly to continuous HAM, we can construct the so-called zeroth-order deformation equation by means of the
discrete HAM(DHAM)

(1= p)£ [ (p) — Ury| = phHi X [@1(p)]. )

subject to the initial conditions

gAtS(Pkya(p):fky? S:0717"'71717 (6)

where p € [0, 1] is an embedding parameter, /s # 0 is an auxiliary parameter which is called convergence-control parameter,
Hy; is a nonzero auxiliary function, Uy, ; denotes an initial guess of Uy ;, @y, (p) is an unknown function on the independent
variables k,z,p. Obviously, when p = 0 and p = 1, it holds

Ot (0)= Uiy and q’k,z(l) = Uy, (7)
respectively. According to DHAM we expend ¢, (p) in Taylor series, with respect to p as follows:

(% (P) = Uko,t + Z Ukm,zpma (8)
m=1
where
1 "
L 1)) ©)
m! dp™ =0

Assume that the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary function are
properly chosen such that the series (8) is convergent at p = 1. Thus, according to (7) we have

Uk,z = Uko,z + Z Ukm,z- (10)
m=1

When 4 = —1 and Hy, = 1, Eq(5) becomes

(1= p)E[@rs(p) — Uryr] + PR [@rs(p)] =0,

used in the discrete homotopy perturbation method[15].
To obtain mth-order deformation equation let us define the vector:

—
Um = {Uko,la Uk] 1 Ukz,la SR Ukm,[}'
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Differentiating Eq(5) m-times with respect to the embedding parameter p, then setting p = 0 and finally dividing by
m!, we have mth-order deformation equation as follows:

—
£ [Ukm,t - XmUkm,] ,t} = th,tcﬁm [Umfl] ) (11)
subject to the initial conditions
CAU,,a=0, s=0,1,...,1—1, (12)
where
— 1 0" X[ (p)]
R |Upn—1| = . 13
m[ m 1] (mfl)' apm71 p:(), (13)
_Jo,m<1
Im =1, m>1
Applying the fractional sum a+(,,K)A,’K to both sides of Eq(11), we have
_ e
Utys = XmUk, 16+ By g0 " [Hk,z‘)‘m [Uml]} : (14)

So that mth-order deformation equation Eq(11) is linear, it can be solved easily.

4 Test examples

In this section, to demonstrate the applicability of our approach, we shall apply the DHAM to several fractional partial
difference equations.

Example 1.Let us consider the following fractional difference equation

SA U, = Uy, k € Ny, teN_g, 0<k<l, (15)

subject to initial condition

U0 = ao, ap € R. (16)

By means of DHAM, we choose the linear operator

£[@es(p)] = §A 0is (), (17)

with property £ [c} =0, where c is constant. We define nonlinear operator

%[0 (p)] =52 0 (p) — Nors () (18)

We construct the zeroth-order deformation equation by Eq(5). It is obvious that p = 0 and p = 1, we can write

O (0) = Ury s = U ; O (1) = Upy. (19)

Thus we obtain the mth-order deformation equation for m > 1:

—
£[Usy s — %mUs,, 1 1] = hHi R [Upn—1]
or
_ —
Ukm-,l = mekm—l ! + h(l*K)Al ) |:Hk~lgtm |:Umlj|:| ’ (20)

© 2023 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 3, 499-505 (2023) / www.naturalspublishing.com/Journals.asp NS e 503

where

—— 1 9" 'Ren(p)]
mm[Umfl] :(m_])| apmfl[

CAK
= Al Ukm—l £ nUkm—] oL

p=0 21

In order to the approximations of Uy, are only depend on auxiliary parameter /1, we select Hy; = 1.
Thus we substitute the initial condition (16) in to (20) we have

5 t(K)
Uklatii naOF(K+1)7
19 (t+ (= 1)
— K1 a0 o UTARTL))
Ut == 1+ hnao mrms 0 a0 —p 5y
(x) (14 (= 1)
__ 2 4 2 2
ng,t = ﬁ(1+ﬁ) naOF(K—i-]) +2h (1+ﬁ)n ap F(ZK‘—I—])
s (20— 1)0
775’ Tl ag 9
I'(3x+1)
1(¥) (t+ (k= 1))
— K1 3 2] 2.2
Uk == A1+ ) Mao s + 30 (LR a0 —F 225
(3x) (4K)
s 5 (r+2(k=1)) a4 (t+3(x=1))
SR a0y A e
and so on. Hence, the DHAM series solution is
Uiy =Ukys T Uk T Upyt Y Uiy s +Upy s + - -
(x)
o 2 3 !
=ap—h[1+ (1+7)+ (1+7)+ (1+h) +"']na°1‘7(1<+1)
(2x)
t+(k—1))
21 +2(1 1+h)%+...In? (+ (k=)
+ R [1+2(1+R)+3(1+h)*+...]n%a Fax T 1)
(3x) (4K)
33 3 (t+2(x—1)) s (t+(x—1))
B1+3(1+h)+...]n a TGrr 1) +h*n"ag FaxT D)
Setting h = —1, we get the solution in the following form:
1) s (t+(c=1))% (20— 1)
e A T T YTy
(4x)
s (t+3(xk—1))
+ M ap Taxt1) +...

o L) x—1)"™
U"”’“O,;)” Tkt 1)

:aoE(K)(nat)v (22)

where E(x is the discrete(like) Mittag-Leffler function[?].
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Example 2.1n this example, we consider the following fractional order discrete diffusion equation

SAS Ui, = AfU, + kAU, +Ury,  k€Ny,  t€N, 0<k<I, (23)
subject to initial condition

Uo =k, (24)

where Ay is the forward partial difference which is defined as usual, i.e., A Uy ; = Uy41; — Uy, and A,ka,, = A (AUyy) =
Uit24 = 2Ups 14+ Uiy
By means of DHAM, we consider the following linear operator:

£[(Pk,t (P)] = OCAtK(Pk,t (P)a (25)
with property £ [c} = 0, where c is constant. We define nonlinear operator as

X [(pk,t (P)] = CAIK¢k,t (P) - Akzq’k,t (p) — kA Prs (p) — Qrt (P) (26)

We construct the zeroth-order deformation equation by Eq(5). It is obvious that for p =0 and p = 1, we can write
(% (0) = Ukt = Uk ) (Pk,t(l) =Up,- (27)

Thus we obtain the mth-order deformation equation for m > 1:
_ —
Uit = XmUs, 1+ ﬁ(I,K)A; K [Hk,zmm [Uml]:| ) (28)
where
—

C.Km [Um*l] = CAIKUkm—] £ AI%Ukm—] £ kAkUkm—l £ Ukm—l i (29)

In order to the approximations of Uy, are only depend on auxiliary parameter 7, we select Hy, = 1.
Thus we substitute the initial condition (24) in to (28) we have

+(K)
Ury s = — T2k

I'(xk+1)’
t(¥) (t4 (x—1))2%
=—nh(l 2k —— L) SRR S VA
Vs ==R1+H) Ty T Tk
(%) —1))@%)
e e R 1)
Utys = ﬁ(1+ﬁ)2kF(K+l)+2h(1+ﬁ)2k T
,ﬁ323k(t+2(’<—1))(3k)
r3e+1) ~’
t(¥) (t4 (x—1))2%)

Ups =—N(1 +h)32kF +312(1 4 h)*2%k

(k+1) r2x+1)

(t42(x — 1)) +ﬁ424k(t+3(1c7 1))“x)

233 3
O Sy Clax+1)

and so on. Hence, the DHAM series solution is

t(K)
Fier 1)
(¢4 (k= 1)

r(2K+1)

(t+2(xc— 1)) (t+3(1c— 1))@
I'(3x+1) TR I'(4x+1)

Uk =k —h[1+ (1+7)+ (1+h)*+ (1+h)+...]2k
+R[1+2(1+R) +3(1+h)*+...]2%

—P[1+3(1+h)+...]2°%
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Setting i = —1, we obtain the solution in the following form
1) 5, (=1%o (4 2(k—1))BF)
Uk’lik+2k1"7(1<+1)+2k TFx+ D) +2°k TGrT1)
F 3 (k= 1))60)
PR LGt
M P S
oo (nx)
(t+(n—1)(k—1))
Uss k;o T 1) KE(1)(2,1) (30)

5 Conclusion

The discrete homotopy analysis method is implemented to fractional partial difference equations. The convergence region
of the solution series obtained by DHAM can be controlled by introducing an auxiliary parameter. Obtained results show
that DHAM can provide highly accurate solutions for fractional partial difference equations.
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