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Abstract: In this paper, we propose the discrete homotopy analysis method(DHAM) to solve time-fractional difference equations. The

fractional differences are described by Caputo’s sense. Several illustrative examples present the capability of DHAM for wide classes

of fractional partial difference equations.
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1 Introduction

Fractional calculus has been considerable interest in numerous fields of science and engineering, such as electrical
networks, chemical physics, optics and signal processing, diffusion, viscoelasticity, and so on [1,2,3,4,5]. The fractional
difference is a discretized version of the fractional derivative. Recently, discrete fractional calculus has been increasing in
popularity [1,6,7,8,9].
Developing correct methods to solve partial differential equations has become important. Some of the (semi) analytical
methods for partial differential equations are the Adomian decomposition method(ADM)[5], variational iteration
method(VIM)[10], homotopy perturbation method(HPM)[11], and so on. Another analytical approach is the homotopy
analysis method(HAM)[12,13]. HAM is independent of small/large physical parameters, unlike the other methods. Very
recently, Zhu et al. [14] introduced the discrete homotopy analysis method(DHAM). This method can be employed for
solving complex problems containing discontinuity in fluid characteristics and geometry of the problem.
In this study, we propose the discrete homotopy analysis method for solving fractional partial difference equations.
Fractional differences are described by Caputo’s sense. We shall demonstrate the applicability of DHAM to standard
fractional partial difference equations through several test examples.

2 Preliminaries

In this section, we introduce some definitions and properties of discrete fractional calculus which are used further in this
paper.

Definition 1([7,8]). If f : Na → R and κ > 0 then the fractional sum of order κ , denoted by a∆−κ
t , is defined by

a∆−κ
t f (t) =

1

Γ (κ)

t−κ

∑
τ=a

(

t −σ(τ)
)(κ−1)

f (τ), t ∈ Na+κ ,
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where Na = {a,a+ 1,a+ 2, . . .}, σ(τ) = τ + 1.

The trivial sum is

a∆−0
t f (t) = f (t), t ∈ Na.

Here

t(κ) =
Γ (t + 1)

Γ (t + 1−κ)

is falling function.
This definition is analogous to Riemann-Liouville fractional integral.

Throughout, we assume that if (t + 1−κ)∈ {0,−1,−2, . . .}, then t(κ) = 0.
The power rule was proved in [7]

∆−κ
t t(υ) =

Γ (υ + 1)

Γ (κ +υ + 1)
t(κ+υ)

, υ ∈R
+
.

Definition 2([1,6]). If f : Na → R and κ > 0, then the Caputo-like delta fractional difference of the κ order, denoted by
C
a ∆ κ

t , is defined by

C
a ∆ κ

t f (t) =C
a ∆

−(l−κ)
t ∆ l f (t)

=
1

Γ (l −κ)

t−(l−κ)

∑
τ=a

(t −σ(τ))(l−κ−1)∆ l f (τ), t ∈ Na+(l−κ),

where l ∈ N0 is such that l − 1 < κ ≤ l.
C
a ∆ κ

t maps functions defined on Na to functions defined on Na+(l−κ).

In particular, if 0 < κ ≤ 1, then

C
a ∆ κ

t f (t) =
1

Γ (1−κ)

t−(1−κ)

∑
τ=a

(t −σ(τ))(−κ)∆ f (τ),

where ∆ f (τ) = f (τ + 1)− f (τ).
If κ is an integer, then this difference takes the ordinary forward difference operator

C
a ∆ κ

t = ∆ κ
, κ = 1,2,3, . . .

Proposition 1([?]). If f : Na → R and κ > 0, then

a+(l−κ)∆
−κ
t

C
a ∆ κ

t f (t) = f (t)−
l−1

∑
s=0

(t − a)(s)

s!
∆ s f (a),

where l ∈ N0 is such that l − 1 < κ ≤ l.

For special case 0 < κ ≤ 1,

a+(1−κ)∆
−κ
t

C
a ∆ κ

t f (t) = f (t)− f (a).

c© 2023 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 9, No. 3, 499-505 (2023) / www.naturalspublishing.com/Journals.asp 501

3 Discrete homotopy analysis method for the fractional difference equations

To illustrate the basic idea of the discrete homotopy analysis method(DHAM), we consider the following fractional partial
difference equation:

C
a ∆ κ

t Uk,t +L
(

Uk,t

)

+N
(

Uk,t

)

= gk,t , l − 1 < κ ≤ l, t ∈ Na+(l−κ), k ∈ N0, (1)

subject to the initial conditions

C
a ∆ s

t Uk,a = fks
, s = 0,1, . . . , l − 1, (2)

where L is a linear difference and N is nonlinear difference operator, gk,t is the source term.

Because of the original Eq(1) contains the linear operator C
a ∆ κ

t , we can choose the auxiliary linear operator

£
[

Uk,t

]

= C
a ∆ κ

t Uk,t . (3)

For simplicity, we can define the nonlinear operator

ℵ
[

Uk,t

]

= C
a ∆ κ

t Uk,t +L
(

Uk,t

)

+N
(

Uk,t

)

− gk,t . (4)

Similarly to continuous HAM, we can construct the so-called zeroth-order deformation equation by means of the
discrete HAM(DHAM)

(1− p)£
[

ϕk,t (p)−Uk0,t

]

= pℏHk,tℵ
[

ϕk,t(p)
]

, (5)

subject to the initial conditions

C
a ∆ s

t ϕk,a(p) = fks
, s = 0,1, . . . , l − 1, (6)

where p∈ [0,1] is an embedding parameter, ℏ 6= 0 is an auxiliary parameter which is called convergence-controlparameter,
Hk,t is a nonzero auxiliary function,Uk0,t denotes an initial guess of Uk,t , ϕk,t (p) is an unknown function on the independent
variables k,t,p. Obviously, when p = 0 and p = 1, it holds

ϕk,t (0) =Uk0,t and ϕk,t(1) =Uk,t , (7)

respectively. According to DHAM we expend ϕk,t(p) in Taylor series, with respect to p as follows:

ϕk,t(p) =Uk0,t +
∞

∑
m=1

Ukm,t pm
, (8)

where

Ukm,t =
1

m!

∂ mϕk,t(p)

∂ pm

∣

∣

∣

∣

p=0

. (9)

Assume that the auxiliary linear operator, the initial guess, the auxiliary parameter and the auxiliary function are
properly chosen such that the series (8) is convergent at p = 1. Thus, according to (7) we have

Uk,t =Uk0,t +
∞

∑
m=1

Ukm,t . (10)

When ℏ=−1 and Hk,t = 1, Eq(5) becomes

(1− p)£
[

ϕk,t(p)−Uk0,t

]

+ pℵ
[

ϕk,t(p)
]

= 0,

used in the discrete homotopy perturbation method[15].
To obtain mth-order deformation equation let us define the vector:

−→
Um = {Uk0,t ,Uk1,t ,Uk2,t , . . . ,Ukm,t}.
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Differentiating Eq(5) m-times with respect to the embedding parameter p, then setting p = 0 and finally dividing by
m!, we have mth-order deformation equation as follows:

£
[

Ukm,t − χmUkm−1,t

]

= ℏHk,tℜm

[−−−→
Um−1

]

, (11)

subject to the initial conditions

C
a ∆ s

t Ukm,a = 0, s = 0,1, . . . , l − 1, (12)

where

ℜm

[−−−→
Um−1

]

=
1

(m− 1)!

∂ m−1ℵ
[

ϕk,t (p)
]

∂ pm−1

∣

∣

∣

∣

p=0

, (13)

χm =

{

0, m ≤ 1
1, m > 1

.

Applying the fractional sum a+(l−κ)∆
−κ
t to both sides of Eq(11), we have

Ukm,t = χmUkm−1,t +ℏa+(l−κ)∆
−κ
t

[

Hk,t ℜm

[−−−→
Um−1

]

]

. (14)

So that mth-order deformation equation Eq(11) is linear, it can be solved easily.

4 Test examples

In this section, to demonstrate the applicability of our approach, we shall apply the DHAM to several fractional partial
difference equations.

Example 1.Let us consider the following fractional difference equation

C
0 ∆ κ

t Uk,t = ηUk,t , k ∈ N0, t ∈ N1−κ , 0 < κ ≤ 1, (15)

subject to initial condition

Uk,0 = a0, a0 ∈ R. (16)

By means of DHAM, we choose the linear operator

£
[

ϕk,t (p)
]

= C
0 ∆ κ

t ϕk,t (p), (17)

with property £
[

c
]

= 0, where c is constant. We define nonlinear operator

ℵ
[

ϕk,t(p)
]

= C
0 ∆ κ

t ϕk,t(p)−ηϕk,t(p). (18)

We construct the zeroth-order deformation equation by Eq(5). It is obvious that p = 0 and p = 1, we can write

ϕk,t(0) =Uk0,t =Uk,0 , ϕk,t(1) =Uk,t . (19)

Thus we obtain the mth-order deformation equation for m ≥ 1:

£
[

Ukm,t − χmUkm−1,t

]

= ℏHk,tℜm

[−−−→
Um−1

]

or

Ukm,t = χmUkm−1,t +ℏ(1−κ)∆
−κ
t

[

Hk,t ℜm

[−−−→
Um−1

]

]

, (20)
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where

ℜm

[−−−→
Um−1

]

=
1

(m− 1)!

∂ m−1ℵ
[

ϕk,t(p)
]

∂ pm−1

∣

∣

∣

∣

p=0

=C
0 ∆ κ

t Ukm−1,t −ηUkm−1,t .

(21)

In order to the approximations of Uk,t are only depend on auxiliary parameter ℏ, we select Hk,t = 1.
Thus we substitute the initial condition (16) in to (20) we have

Uk1,t =−ℏηa0
t(κ)

Γ (κ + 1)
,

Uk2,t =−ℏ(1+ℏ)ηa0
t(κ)

Γ (κ + 1)
+ℏ

2η2a0

(

t +(κ − 1)
)(2κ)

Γ (2κ + 1)
,

Uk3,t =−ℏ(1+ℏ)2ηa0
t(κ)

Γ (κ + 1)
+ 2ℏ2(1+ℏ)η2a0

(

t +(κ − 1)
)(2κ)

Γ (2κ + 1)

−ℏ
3η3a0

(

t + 2(κ − 1)
)(3κ)

Γ (3κ + 1)
,

Uk4,t =−ℏ(1+ℏ)3ηa0
t(κ)

Γ (κ + 1)
+ 3ℏ2(1+ℏ)2η2a0

(

t +(κ − 1)
)(2κ)

Γ (2κ + 1)

− 3ℏ3(1+ℏ)η3a0

(

t + 2(κ − 1)
)(3κ)

Γ (3κ + 1)
+ℏ

4η4a0

(

t + 3(κ − 1)
)(4κ)

Γ (4κ + 1)
,

...

and so on. Hence, the DHAM series solution is

Uk,t =Uk0,t +Uk1,t +Uk2,t +Uk3,t +Uk4,t + . . .

=a0 −ℏ
[

1+(1+ℏ)+ (1+ℏ)2+(1+ℏ)3+ . . .
]

ηa0

t(κ)

Γ (κ + 1)

+ℏ
2
[

1+ 2(1+ℏ)+ 3(1+ℏ)2+ . . .
]

η2a0

(

t +(κ − 1)
)(2κ)

Γ (2κ + 1)

−ℏ
3
[

1+ 3(1+ℏ)+ . . .
]

η3a0

(

t + 2(κ − 1)
)(3κ)

Γ (3κ + 1)
+ℏ

4η4a0

(

t +(κ − 1)
)(4κ)

Γ (4κ + 1)
+ . . .

Setting ℏ=−1, we get the solution in the following form:

Uk,t =a0 +ηa0
t(κ)

Γ (κ + 1)
+η2a0

(

t +(κ − 1)
)(2κ)

Γ (2κ + 1)
+η3a0

(

t + 2(κ − 1)
)(3κ)

Γ (3κ + 1)

+η4a0

(

t + 3(κ − 1)
)(4κ)

Γ (4κ + 1)
+ . . .

Uk,t = a0

∞

∑
n=0

ηn

(

t +(n− 1)(κ− 1)
)(nκ)

Γ (nκ + 1)
= a0E(κ)(η , t), (22)

where E(κ) is the discrete(like) Mittag-Leffler function[?].
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Example 2.In this example, we consider the following fractional order discrete diffusion equation

C
0 ∆ κ

t Uk,t = ∆ 2
k Uk,t + k∆kUk,t +Uk,t , k ∈ N0, t ∈N1−κ , 0 < κ ≤ 1, (23)

subject to initial condition

Uk,0 = k, (24)

where ∆k is the forward partial difference which is defined as usual, i.e., ∆kUk,t =Uk+1,t −Uk,t and ∆ 2
k Uk,t = ∆k(∆kUk,t) =

Uk+2,t − 2Uk+1,t +Uk,t .
By means of DHAM, we consider the following linear operator:

£
[

ϕk,t (p)
]

= C
0 ∆ κ

t ϕk,t (p), (25)

with property £
[

c
]

= 0, where c is constant. We define nonlinear operator as

ℵ
[

ϕk,t(p)
]

= C
0 ∆ κ

t ϕk,t(p)−∆ 2
k ϕk,t (p)− k∆kϕk,t(p)−ϕk,t(p). (26)

We construct the zeroth-order deformation equation by Eq(5). It is obvious that for p = 0 and p = 1, we can write

ϕk,t(0) =Uk0,t =Uk,0 , ϕk,t(1) =Uk,t . (27)

Thus we obtain the mth-order deformation equation for m ≥ 1:

Ukm,t = χmUkm−1,t +ℏ(1−κ)∆
−κ
t

[

Hk,t ℜm

[−−−→
Um−1

]

]

, (28)

where
ℜm

[−−−→
Um−1

]

= C
0 ∆ κ

t Ukm−1,t −∆ 2
k Ukm−1,t − k∆kUkm−1,t −Ukm−1,t . (29)

In order to the approximations of Uk,t are only depend on auxiliary parameter ℏ, we select Hk,t = 1.
Thus we substitute the initial condition (24) in to (28) we have

Uk1,t =−ℏ2k
t(κ)

Γ (κ + 1)
,

Uk2,t =−ℏ(1+ℏ)2k
t(κ)

Γ (κ + 1)
+ℏ

222k
(t +(κ − 1))(2κ)

Γ (2κ + 1)
,

Uk3,t =−ℏ(1+ℏ)22k
t(κ)

Γ (κ + 1)
+ 2ℏ2(1+ℏ)22k

(t +(κ − 1))(2κ)

Γ (2κ + 1)

−ℏ
323k

(t + 2(κ − 1))(3κ)

Γ (3κ + 1)
,

Uk4,t =−ℏ(1+ℏ)32k
t(κ)

Γ (κ + 1)
+ 3ℏ2(1+ℏ)222k

(t +(κ − 1))(2κ)

Γ (2κ + 1)

− 3ℏ3(1+ℏ)23k
(t + 2(κ − 1))(3κ)

Γ (3κ + 1)
+ℏ

424k
(t + 3(κ − 1))(4κ)

Γ (4κ + 1)
,

...

and so on. Hence, the DHAM series solution is

Uk,t =k−ℏ
[

1+(1+ℏ)+ (1+ℏ)2+(1+ℏ)3+ . . .
]

2k
t(κ)

Γ (κ + 1)

+ℏ
2
[

1+ 2(1+ℏ)+ 3(1+ℏ)2+ . . .
]

22k
(t +(κ − 1))(2κ)

Γ (2κ + 1)

−ℏ
3
[

1+ 3(1+ℏ)+ . . .
]

23k
(t + 2(κ − 1))(3κ)

Γ (3κ + 1)
+ℏ

424k
(t + 3(κ − 1))(4κ)

Γ (4κ + 1)
+ . . .
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Setting ℏ=−1, we obtain the solution in the following form

Uk,t =k+ 2k
t(κ)

Γ (κ + 1)
+ 22k

(t +(κ − 1)(2κ))

Γ (2κ + 1)
+ 23k

(t + 2(κ − 1))(3κ)

Γ (3κ + 1)

+ 24k
(t + 3(κ − 1))(4κ)

Γ (4κ + 1)
+ . . .

Uk,t = k
∞

∑
n=0

2n

(

t +(n− 1)(κ− 1)
)(nκ)

Γ (nκ + 1)
= kE(κ)(2, t). (30)

5 Conclusion

The discrete homotopy analysis method is implemented to fractional partial difference equations. The convergence region
of the solution series obtained by DHAM can be controlled by introducing an auxiliary parameter. Obtained results show
that DHAM can provide highly accurate solutions for fractional partial difference equations.
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