
Appl. Math. Inf. Sci.8, No. 3, 1389-1399 (2014) 1389

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080356

Comparisons of Hybrid Multi-Objective Programming
Algorithms with Grey Target and PCA for Weapon
System Portfolio Selection
Yajie Dou∗, Pengle Zhang, Jiang Jiang, Kewei Yang and Yingwu Chen

College of Information System and Management, National University of Defense Technology, Changsha, Hunan, 410073, P. R. China

Received: 27 Jun. 2013, Revised: 1 Nov. 2013, Accepted: 2 Nov. 2013
Published online: 1 May. 2014

Abstract: Weapon Systems Portfolio Selection (WSPS) can be considered as a multi-objective decision analysis (MODA) problem.
Aiming at its challenging features because of, 1) interactions and independencies among weapon systems, 2) the uncertainty of the
sample data set for assessment, and 3) the missing target value of the assessment criteria, the WSPS problem is solved form four
perspectives: portfolio without the independencies or target value, portfolio with the independencies but without target value, portfolio
with the independencies and target value, portfolio in a incomplete sample data with the independencies and with target value. The
synergy concept is introduced to describe the independencies among systems and Grey Target (GT) and principal component analysis
(PCA) method are employed in this study to deal with the missing target value and incomplete sample data set. Three hybrid multi-
objective programming algorithms are proposed as GT-MOP1, GT-MOP2 and PCA-MOP2 and non-dominated portfolios are generated
as by sorting algorithm as a set of Pareto-optimal solutions. Finally, numerical experiments are given under four scenarios to illustrate
the feasibilities and advantages of the three hybrid algorithms.

Keywords: Weapon system portfolio selection (WSPS), multi-objective programming (MOP), grey target (GT), principal component
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1 Introduction

Weapon Systems Portfolio Selection (WSPS) is directly
and tightly correlated with national military force
development. Especially for the future battle spaces, it is
meaningful and useful to deliver an integrated operational
force which performs effectively and avoids increasing
technical risks in defense industry. In the past twenty
years of research on military portfolio selection, the most
common analysis techniques include multiple objective
analysis [1,2,3,4,5,6,7,8,9,12], multiple criteria analysis
[10], value analysis [4,5,6,7,8,9], optimization [6,7,8,9,
10,11], cost-efficiency analysis [9,10] and expert
judgments [1,5,9], etc. Generally, the objective of WSPS
is to select the optimal weapon portfolio form all the
candidate weapon systems with regard to its basic
capabilities, integrated operational capabilities and
technical effects under the available capital and resources
conditions [9]. Therefore, just like some other
decision-making problem in real-world, including
supplier selection [13], resource allocation [13],

manufacturing technology selection [14] and project
selection [15], WSPS requires a multi-objective decision
analysis (MODA). There are many literatures correlated
with the multi-objective weapon portfolio selection
problem in defense industry. Greiner [12] (2003), Deviren
[4] (2009) and Jaewook [11] (2010) studied the selection
problem for the weapon projects based on the multiple
attribute (objective) decision making method.

As a mathematical programming method, MODA
involves multiple objective functions (may be
independent or competing objectives) and some
constraints [11].For the multi-objective problem, the
popular method is to carry out the value or utility analysis
and use multi-objective optimization algorithm to obtain
the Pareto set. The military application of Portfolio
Decision Analysis (PDA) often uses value instead of
utility as the measure of the weapon system or project
portfolio [4,5,6,7,8,9]; Especially in WSPS problem, the
definition of value is determined by the decision
objectives and the measured criteria. Additionally, these

∗ Corresponding author e-mail:douyajienudt@163.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080356


1390 Y. Dou et. al. : Comparisons of Hybrid Multi-objective Programming...

value assessments, especially in weapon system portfolio
selection (WSPS), are more challenging, because of, 1)
safety reasons, as it is often difficult to test military
systems (e.g., weapon of mass destruction) and, therefore,
to ascertain their value in realistic operational conditions
[2,3], 2) the possible interactions and independencies
among the weapon system, which influence the final value
assessment of the portfolio and 3) the uncertainty of the
sample datasets for assessment and the target integrated
portfolio value. Therefore, with regard to WSPS, it is
necessary to carry out a sound, evidence-based value
analysis and take full advantage of the available criteria
and data in the multi-objective decision process.

For the value analysis of weapon systems,
multi-criteria assessment is used mostly with various
important criteria to select out the high-capability,
technical weapon system portfolio at acceptable cost.
With regard to the interactions and independencies in a
single portfolio, Jussi and Juuso et al. [9] identified the
value of a weapon system portfolio through combat
simulation to estimate interdependencies. Liesiö, J. [16]
carried out robust portfolio modeling (RPM)
methodology with incomplete cost information and
project interdependencies; João. C. L. [17] addressed a
synergy between the costs and /or the benefits of two
projects and constructed the corresponding cost and
benefits computation models. Finally, for the uncertain
target-value of the dataset samples processing, some
related methods accounting for uncertainty can be applied
in this study.

Based on the Grey System theory, the grey target
(GT) was proposed by Deng [18] to deal with the decision
problems with partially known and partially unknown
information, also called as “grey” information [19]. When
dealing with limited data information, GT has been
widely used in various fields and performed excellently
[19,20]. GT is applied in this study for weapon system
portfolio value analysis because of its feasibility. GT is
found by the comparison between the target system and
the referenced system. Since most weapon systems with
interactions and independencies relationship originated
from the candidate single weapon system for reference,
which makes it possible for the application of GT.

Under the conditions of criteria with target-value,
principal component analysis (PCA) is employed in the
present study with utility functions to determine the
relative value of the weapon system portfolio. In contrast
with GT, the weights obtained from PCA are derived from
actual data [21,22], and target-value is assigned to criteria
that have more information. Based on the value analysis
of the weapon system portfolio, we seek to propose a
hybrid multi-objective programming algorithms based the
weapon system portfolio value analysis through GT and
PCA for WSPS problem. First, the multi-objective
programming models are built form two perspectives:
weapon system portfolio without the interactions and
independencies and weapon system portfolio with the
interactions and independencies. The former model is

defined as MOP1 (multiple objective programming) and
the later one is MOP2.Finally, three hybrid algorithms,
including GT-MOP1, GT-MOP2 and PCA-MOP2, are
proposed for four conditions which are given as follows:

–portfolio without the independencies or target value
–portfolio with the independencies but without target
value

–portfolio with the independencies and target value
–Portfolio in an incomplete sample data set with the
independencies and target value.

The rest of the paper is organized as follows: Section
2 presents the WSPS problem and the weapon system
synergy effects. Hybrid algorithms, including GT-MOP1,
GT-MOP2 and PCA-MOP2, are given in Section 3 and
non-dominated portfolios are generated as by sorting
algorithm as a set of Pareto-optimal solutions. Numerical
experiments are given under four scenarios to illustrate
the feasibilities and advantages of the three hybrid
algorithms in Section 4. Conclusions and future work are
drawn in Section 5.

2 Problem Demonstrations

2.1 Notations

In this paper, weapon system portfolio selection is only
concern with a setS = {st , t = 1, . . . ,h} of n weapon
systems that are worth funding and developing. Formally,
a weapon system portfolio is denoted as a subsetPj of
candidate weapon systems setS that holds the following
conditions:

Pj ⊆ S (1)

where j is the number of all the possible portfolioP∗ =
{Pj, j = 1, . . . ,2h−1} comprised of the candidate weapon
system. Theoretically [10], the index j = 2h−1.

Typically, the overall cost of the portfolioC(Pj) can
be estimated by the weapon system acquisition cost per
unit. The overall cost computation of the portfolio can be
considered as under the assumption that the component
systems have the same amounts in a portfolio. A weapon
system portfolio can be considered as a feasible one only
if it meets with the available capital and resources
constraints. The set of feasible portfolioP∗F ⊆ P∗ is

P∗F = {Pj ∈ P∗|C(Pj)≤ B} (2)

whereB represents the available capital and resources. The
value of a weapon system portfolio is obtained from the
multiple criteria assessment model, we assume that there
are m value criteria such that the value of the portfolioPj
with regard to theVu(Pj) ∈ R, u = 1, . . . , l. The full set of
value along with regard to the corresponding value criteria
can be denoted as the vectorV = [V1(Pj), . . . ,Vm(Pj)] ∈

Rl . All the value criteria are also measured by lots of sub-
criteria.
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Definition 1 [10,16]. Let Pj,Pj′ ∈ P∗F , portfolio Pj

dominatesPj′ , denoted byPj ≻ Pj′ , if, and only if,
Vu(Pj)≥Vu(Pj′ ) andC(Pj)≤C(Pj′ ), for all u = 1, . . . , l.

Definition 2 [10,16]. A feasible Pj ∈ P∗F is a
Non-dominated portfolio if, and only if,Pj′ ∈ P∗F does not
exist, such thatPj′ ≻ Pj.

The generation of a single Non-dominated weapon
system portfolio is easily realized through maximizing the
value criteria of the system portfolio, subject to the given
cost constraints. Because of the need for multi-objective,
the computation of Non-dominated portfolios is often
performed by finding all Pareto-optimal solutions of a
multi-objective integer programming problem. In which
case, thel +1 objective integer-programming model [10]
is formulated as follows:

v-max
Pj∈P∗F

[V1(Pj, . . . ,Vu(Pj), . . . ,Vl(Pj),−C(Pj)] (3)

So a portfolioPj ∈ P∗F is Non-dominated if, and only
if, another portfolio,Pj′ ∈ P∗F does not exist, such that:

[V1(Pj′ ), . . . ,Vu(Pj′ , . . . ,Vl(Pj′ ),−C(Pj′ )]

	 [V1(Pj), . . . ,Vu(Pj), . . . ,Vl(Pj),−C(Pj)] (4)

where the relationship	 between two vectors is
consistent with the dominance structure given by
Definition 1 and Definition 2. Eq. (4) can be used to
ascertain the Non-dominated portfolio through pairwise
comparisons between any pair of weapon system
portfolios.

2.2 Weapon system independencies

To account for the interactions and independencies among
weapon systems, a synergy concept [16,17] is introduced
in this study. For the two or more weapon systems, the
synergistic effect on the overall cost of a portfolio is
treated as a discount adding to the sum all of the
component weapon systems cost, and the synergistic
effect on the portfolio value is integrating the separate
weapon system value into a synergy one. The various
synergies illustrate the different pattern of the interactions
and independencies among weapon systems. The
principles of synergy in a weapon system portfolio can be
described as the following models:

I. Maximization Synergy Model (MASM)
The final synergy value of any two or more weapon

systems is determined by the maximal criteria value of all
the weapon system.

II. Minimization Synergy Model (MISM)
The final synergy value of any two or more weapon

systems is determined by the minimal criteria value of all
the weapon system.

III. Discount Synergy Model (DSM)
The final synergy value of any two or more weapon

systems is determined by the sum of all the criteria value
with a discount.

3 The Proposed Hybrid Multi-objective
Programming algorithms with Grey Target
and PCA

3.1 Grey Target

The fundamentals of GT are introduced as following [18,
19,20].

Step 1: Translation of all indices into data patterns;
Suppose thatwi is a series with multi-polarized indices

andk represents the index mark.

wi = (wi(1),wi(2), . . . ,wi(n)),

∀wi(k) ∈ wi⇒ k ∈ K = {1,2, . . . ,n}, i ∈ I = {1,2, . . . ,m}
(5)

Step 2: Construction of the standard system;
Suppose thatPOL(max), POL(min), POL(mem)

represent the maximum, minimum and the average polar
respectively, which means that

w0(k) = max
i

wi(k),wi(k) ∈ w(k) (6)

whenPOL(w(k)) = POL(max);

w0(k) = min
i

wi(k),wi(k) ∈ w(k) (7)

whenPOL(w(k)) = POL(min);

w0(k) = avg
i
(wi(k),wi(k) ∈ w(k)) (8)

whenPOL(w(k)) = POL(mem).
Thus, w0 = (w0(1),w0(2), . . . ,w0(n)) is the standard

system, which is also called as the “best system”.

Step 3: Transformation of grey target;
Carry out the grey target transformation,T , so that

Twi(k) = xi(k). One typical grey target transformation is
denoted as following:

Twi(k) = xi(k) =
min{wi(k),w0(k)}
max{wi(k),w0(k)}

(9)

Step 4: Construction of grey correlation differentiation
information space;
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∆GR = (∆ ,ξ ,∆0i,(max),∆0i,(min)

∆ = (∆0i(k)|i ∈ I = {1,2, . . . ,m},

k ∈ K = {1,2, . . . ,n},

∆0i(k) = |x0(k)− xi(k)|= |1− xi(k)|, (10)

x0(k) ∈ x0⇒ x0 = Tw0)

ξ = 0.5

∆0i(max) = max
i

max
k

∆0i(k) = max
i

max
k
|1− xi(k)|,

∆0i(min) = min
i

min
k

∆0i(k) = min
i

min
k
|1− xi(k)|

Suppose that∆GR is the grey correlation differentiation
information space on @GRF .

Step 5: Calculation of center target coefficient and the
grey target degree. Center target coefficient denoted as
γ(x0(k),xi(k)) is given follows:

γ(xi(0),xi(k)) =
min

i
min

k
∆0i(0,k)+ξ max

i
max

k
∆0i(0,k)

∆0i(0,k)+ξ max
i

max
k

∆0i(0,k)

The grey target degreeγ(x0,xi) can be formulated as:

γ(x0,xi) =
1
n

n

∑
k=1

γ(x0(k),xi(k)) (11)

Step 6: Calculation of the grey target contribution degree.
The contribution coefficient of the indexk in the point

i can be derived from grey correlation coefficient
γ(xi(0),xi(k)) as follows:

γ(xi(0),xi(k)) =
min

i
min

k
∆i(0,k)+ξ max

i
max

k
∆i(0,k)

∆i(0,k)+ξ max
i

max
k

∆i(0,k)

γ(x(0),x(k)) is the contribution of indexk denoted as:

γ(x(0),x(k)) =
1
m

m

∑
i=1

γ(xi(0),xi(k)) (12)

3.2 PCA

As a widely used statistical analysis technique, principal
component analysis (PCA) method accounts for selecting
the most valuable features or patterns from multivariate
data set in order to simplify complex problems [21,22]. A
popular application of PCA technique in computer
science area is data preprocessing, and especially
dimensionality reduction which aims at extracting
essential features to preserve most of the original
information. A typical PCA process can be described as
follows [21]:

We assume that a data matrixX consists of all of the
data in training testing sets, when it is put in PCA model,

several principal components can be exported as the
eigenvectors of the correlation matrix. Formally, the
formulation of the correlation matrixR is given as below:

R = E[XXT ] =
1
N

XXT (13)

whereN indicates the samples number in data matrixX .
Then, the eigen problemRq = λq is settled,q represents the
eigenvectors ofR while λq indicates its eigenvalue. Lots
of eigenvalues forR can be expressed byλe for e from
1 to v. Besides, each eigenvectorqe is correlated with an
eigenvalueλe.

Consequently, the projection a of a matrix Y on the
principal direction can be calculated by the transformation
function denoted asT = [q1,q2, . . . ,qv] in the following
[22]:

a = [a1,a2, . . . ,av]
T

= [Y T q1,Y
T q2, . . . ,Y

T qv]
T (14)

= T TY

whereae indicates the projection ofY on that principal
direction. Therefore, a transformation functionT is
obtained by PCA from the original data matrixX , which
is afterwards used in another coordinate system in
calculating the projection a with the same data matrix
[21].

By means of the PCA process, projection a are ranked
in descending order according to the principal directions.
The first principal component contribution is larger than
90%, which eigenvalues are employed in this study to
represent the weights of the criteria.

3.3 Hybrid GT-MOP1 algorithm

Hybrid GT-MOP1 algorithm aims at solving the WSPS
problem when Weapon system portfolio is without the
interactions and independencies and the criteria
target-value is unknown. The algorithm process can be
described as follows:
Step 1: Calculate all the contribution of criteriak
γ(x(0),x(k)) by GT method through the single weapon
system data sample;
Step 2: Similarity, carry out the Transformation of grey
target and calculate all the weights of criteria by GT
method;
Step 3: Calculate the entire possible weapon system
portfolio Vu(Pj) with weighted additive average model for
u = 1, . . . , l, j = 1, . . . ,2h−1.
Step 4: Calculate the overall cost of the entire possible
weapon system portfolioCu(Pj) for j = 1, . . . ,2h−1
Step 5: Perform the multiple objective programming
model without system synergy or cost discount.

v-max
Pj∈P∗F

[V1(Pj), . . . ,Vu(Pj), . . . ,Vl(Pj),−C(Pj)]
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3.4 Hybrid GT-MOP2 algorithm

Hybrid GT-MOP2 algorithm aims at solving the WSPS
problem when Weapon system portfolio is with the
interactions and independencies and the criteria
target-value is unknown. The algorithm process can be
described as follows:

Step 1 and Step 2 are similar to Hybrid GT-MOP1
algorithm, however, the samples data are increased with
system synergy and cost synergy data, MASM, MISM
and DSM are employed to generate the original synergy
samples data;

Step 3: Calculate the entire possible weapon system
portfolio Vu(Pj) with MASM and MISM model for
u = 1, . . . , l, j = 1, . . . ,2h−1.

Step 4: Calculate the overall cost of the entire possible
weapon system portfolioCu(Pj) with DSM for
j = 1, . . . ,2h−1.

Step 5: Perform the multi-objective programming model
with system synergy or cost discount.

v-max
Pj∈P∗F

[V1(Pj), . . . ,Vu(Pj), . . . ,Vl(Pj),−C(Pj)]

3.5 Hybrid PCA-MOP2 algorithm

Hybrid PCA-MOP2 algorithm aims at solving the WSPS
problem when Weapon system portfolio is with the
interactions and independencies and the criteria
target-value is known. The algorithm process can be
described as follows:

Step 1: Calculate several principal components through
the eigenvectors of the correlation matrix by PCA method
(the samples data are increased with system synergy and
cost synergy data, MASM, MISM and DSM are
employed to generate the original synergy samples data);

Step 2: According the principal component contribution,
select the proper eigenvalues to indicate the weights of the
criteria;

Step 3: Calculate the criteria value with the target-value
and value function;

Step 4: Calculate the entire possible weapon system
portfolio Vu(Pj) with MASM and MISM model for
u = 1, . . . , l, j = 1, . . . ,2h−1.

Step 5: Calculate the overall cost of the entire possible
weapon system portfolioCu(Pj) with DSM for
j = 1, . . . ,2h−1.

Step 6: Perform the multiple objective programming
model with system synergy or cost discount.

v-max
Pj∈P∗F

[V1(Pj), . . . ,Vu(Pj), . . . ,Vl(Pj),−C(Pj)]

3.6 Algorithm for generation of Non-dominated
portfolios

However, the pairwise comparisons will exponentially
increase and computation becomes time-consuming when
the number of feasible system portfolios is large. A
sorting strategy, with regard to cost, presented by Kung
[24] and Deb [23] has proven to be efficient in identifying
the Pareto-optimal solutions from vast amounts of
feasible options [10]. The algorithm is given as follows,
based on sorting strategy to construct a Non-dominated
portfolio set [10]:

Step 1: Assume that the number of the feasible portfolios
in P∗F is M, M ≤ p ∈ N+. The feasible portfolio sorted in
descending order with regard to cost is enumerated asP∗F =

{P1,P2, . . . ,PM}, which holds thatC(Pj)≥C(Pj′ ) if j < j
′
.

Step 2: The initialization of the Non-dominated portfolios
set, j. P∗0ND←φ and j← 0.

Step 3: The iterations are carried out through all the
portfoliosPj ∈ P∗F in an increasing order of indexj.

While j < M,

(a)The index s increases toj+1.
(b)If ∃Ps′ ∈ P∗s−1

ND such thatPj′ ≻ Pj then setP∗ j
NP← P∗ j−1

NP
and go to step 3.

(c)SetP∗ j
ND←{Pj}∪{Pj′ ∈P∗ j−1

ND |Pj 6≻Pj′ } and go to Step
3.

Step 4: Set P∗ND ← P∗MND . P∗ND is the final set of
Non-dominated portfolios.

4 Numerical Experiment and Results

4.1 Scenarios description and input data

To illustrate the procedures involved in the proposed three
hybrid algorithms, GT-MOP1, GT-MOP2 and
PCA-MOP2, we present a numerical experiment on
Air-defense systems portfolio selection. As shown in
Fig. 1, ten candidate systems are considered and
evaluated based on three criteria and 16 sub criteria. Each
sub criterion, identified and structured in the previous
stage, has its own characteristic data about the candidate
weapon system and relative synergies. The criteria and
characteristic data were identified and studied by Ahn
[25] and Jaewook [11] as shown in the following Fig.1.

The candidate weapon systems indexed by
i = 1,2, . . . ,10 are denoted as a set:

S∗ = {S1,S2,S3,S4,S5,S6,S7,S8,S9,S10}

There are six systems in the former research and we
add some new data to the original one. Other four system
data (S7, S8, S9 andS10) is arbitrary and Synergies Data has
been generated by MASM, MISM and DSM model (see
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Table.1, 2 and3). As shown in Tables2 and3, the cost is
given in thousands of dollars (e.g. $1000). However, they
are enough meaningful and reasonable to illustrate these
algorithms.

Fig. 1: Hierarchical structure for Air-Defense systems selection

Four scenarios which are tested by the three algorithms
are given as follows:

–Scenario 1
Air-defense systems portfolio is without the
interactions and independencies and the criteria target
value is unknown

–Scenario 2
Air-defense systems portfolio is with the interactions
and independencies and the criteria target value is
unknown

–Scenario 3
Air-defense systems portfolio is with the interactions
and independencies and the criteria target-value is
known, the target values can be given as shown in
Table. 4 which is adopted form the data tested by
Jaewook [11].

–Scenario 4
Air-defense systems portfolio is with the interactions
and independencies and the criteria target value is
known but the sample data set is incomplete.

4.2 Results analysis and discussion

The values of BC, OC and TE distribution with increase
of cost under scenario 1, are shown in Figure2,
respectively. On the whole, the value of BC, OC and TE
range from 0.4∼1 and the influence of the increasing cost
consumption from $950,000 to $1250,000 by the
improvement of BC, OC and TE is inconspicuous. Most
of the overall costs of Non-dominated portfolios (about
85%) lie between $950,000 and $1250,000.

Fig. 2: The value of BC, OC and TE distribution with increase of
cost under scenario 1 computed by GT-MOP1.

Fig. 3: The value of BC, OC and TE distribution with increase of
cost under scenario 2 computed by GT-MOP2.

An obvious convergence can be seen from Figure3
with regard to values of BC, OC and TE with increasing
cost consumption, from $1000,000 to $7000,000.
Therefore, it is easy to see that the interactions and
independencies among the component weapon system
influence the final portfolio value of BC, OC and TE very
much, besides, the overall costs of the 106 non-dominated
express a discrete assumption distribution.

With the target value and the synergy gained by three
synergy model, the value of BC, OC and TE with increase
of cost under scenario 3 is generally fluctuant around
2.35, 2.45 and 1.58, respectively. The PCA-MOP2
algorithm captures the main features of the sample data
set.

However, the incomplete data sample has the different
performance under scenario 4 in contrast with scenario
3(see figure 5).The value of basic capability has
fluctuated widely between 2∼2.6 because of the
incomplete information related to the sub criteria of basic
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Table 1: Characteristic data on candidate systems and their synergies

Criteria Sub-criteria Type
Candidate System

System 1 System 2 System 3 System 4 System 5 System 6
Range Benefit 150 160 135 140 155 170

Altitude Benefit 24 28 22 24 28 30
Hit probability Benefit 0.75 0.8 0.75 0.75 0.8 0.8

BC Reaction time Cost 12 9 13 12 10 9
Setup time Cost 5.5 5 6 5.5 5 5

Detection targets Benefit 95 110 85 95 100 100
Engagement targets Benefit 6 9 6 6 8 8

OC

Interoperability Benefit 0.75 0.8 0.65 0.65 0.7 0.7
FCM Benefit 0.65 0.75 0.65 0.65 0.75 0.75

Anti-ARM Benefit 0.75 0.8 0.65 0.7 0.7 0.8
Mobility Benefit 0.65 0.65 0.75 0.75 0.75 0.7

Trainability Benefit 0.75 0.75 0.7 0.65 0.65 0.65
ILS availability Benefit 0.8 0.8 0.75 0.75 0.75 0.75

Technological effect Benefit 0.9 0.9 1.1 1 0.9 0.9
TE Industrial effect Benefit 0.8 0.8 1.2 1.1 1 0.8

Corporation growth Benefit 0.9 0.9 1.1 1 1 0.8
Abbreviations Explanation: BC=Basic Capabilities; OC=Operational Capabilities TE= Technical Effects;

System 7 System 8 System 9 System 10 Synergy1,4 Synergy1,5 Synergy1,6 Synergy1,7
165 145 155 160 150 155 170 165
22 26 24 28 24 28 30 24
0.7 0.75 0.7 0.8 0.75 0.8 0.8 0.75
12 9 13 12 12 12 12 12
5.5 4.5 6 6.5 5.5 5.5 5.5 5.5
90 95 110 100 95 100 100 95
7 8 6 8 6 8 8 7

0.7 0.8 0.65 0.6 0.7 0.73 0.73 0.73
0.6 0.75 0.7 0.75 0.65 0.7 0.7 0.63
0.75 0.7 0.75 0.7 0.8 0.8 0.85 0.8
0.75 0.7 0.65 0.7 0.8 0.8 0.75 0.8
0.65 0.65 0.65 0.7 0.7 0.7 0.7 0.7
0.8 0.8 0.75 0.7 0.78 0.78 0.78 0.8
1 0.9 1.1 0.9 1.05 0.95 0.95 1.05

0.9 1.1 1.2 1 1.15 1.05 0.85 0.95
0.9 0.8 0.9 0.8 1.05 1.05 0.95 0.95

Synergy1,8 Synergy1,9 Synergy1,10 Synergy2,4 Synergy2,5 Synergy2,6 Synergy2,7 Synergy3,4
150 155 160 160 160 170 165 140
26 24 28 28 28 30 28 24

0.75 0.75 0.8 0.8 0.8 0.8 0.8 0.75
12 13 12 12 10 9 12 13
5.5 6 6.5 5.5 5 5 5.5 6
95 110 100 110 110 110 110 95
8 6 8 9 9 9 9 6

0.78 0.7 0.65 0.73 0.75 0.75 0.75 0.65
0.7 0.68 0.7 0.7 0.75 0.75 0.7 0.65
0.8 0.8 0.8 0.85 0.85 0.85 0.85 0.75
0.75 0.7 0.75 0.8 0.8 0.75 0.8 0.8
0.7 0.7 0.73 0.7 0.7 0.7 0.7 0.68
0.8 0.78 0.75 0.78 0.78 0.78 0.8 0.75
0.95 1.15 0.95 1.05 0.95 0.95 1.05 1.15
1.15 1.25 1.05 1.15 1.05 0.85 0.95 1.25
0.95 0.95 0.95 1.05 1.05 0.95 0.95 1.15

Synergy3,5 Synergy3,6 Synergy4,5 Synergy4,6 Synergy7,8 Synergy1,2,3 Synergy5,6,7 Synergy8,9,10

155 170 155 170 165 160 170 160
28 30 28 30 26 28 30 28
0.8 0.8 0.8 0.8 0.75 0.8 0.8 0.8
13 13 12 12 12 13 12 13
6 6 5.5 5.5 5.5 6 5.5 6.5

100 100 100 100 95 110 100 110
8 8 8 8 8 9 8 8

0.68 0.68 0.68 0.68 0.75 0.73 0.7 0.68
0.7 0.7 0.7 0.7 0.7 0.68 0.7 0.73
0.75 0.85 0.75 0.85 0.8 0.85 0.85 0.8
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.75
0.68 0.68 0.65 0.65 0.65 0.73 0.65 0.67
0.75 0.75 0.75 0.75 0.8 0.78 0.77 0.75
1.15 1.15 1.05 1.05 1.05 1.15 1.05 1.15
1.25 1.25 1.15 1.15 1.15 1.25 1.05 1.15
1.15 1.15 1.05 1.05 0.95 1.15 1.05 0.95

Table 2: Cost assumption of candidate systems
System 1 System 2 System 3 System 4 System 5 System 6 System 7 System 8 System 9 System 10

Cost 1100 1250 950 1050 1050 1100 950 1000 1200 1150
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Table 3: Cost synergies of candidate systems and their discounts
Synergy1,4 Synergy1,5 Synergy1,6 Synergy1,7 Synergy1,8 Synergy1,9 Synergy1,10

Discount -200 -200 -200 -200 -200 -200 -200
Synergy2,4 Synergy2,5 Synergy2,6 Synergy2,7 Synergy3,4 Synergy3,5 Synergy3,6

Discount -200 -200 -200 -200 -200 -200 -200
Synergy4,5 Synergy4,6 Synergy7,8 Synergy1,2,3 Synergy5,6,7 Synergy8,9,10

Discount -200 -200 -200 -450 -450 -450

Table 4: Target values for all the sub-criteria
Sub- Range Altitude Hit Reaction Setup Detection Engagement Interoperability

criteria probability time time targets targets
Target 150 25 0.8 10 5 100 8 0.7
values
Sub- FCM Anti- Mobility Trainability ILS Technological Industrial Corporation

criteria ARM availability effect effect growth
Target 0.7 0.8 0.7 0.7 0.8 1 1 1
values

Fig. 4: The value of BC, OC and TE distribution with increase of
cost under scenario 3 computed by PCA-MOP2.

capability. Contrastively ,the value of OC and TE almost
unchanged. Therefore, a conclusion can be draw that the
PCA-MOP2 algorithm performed excellently with regard
to solving the uncertainty of sample data.

Figure 6 shows the relationship among the value of
BC, OC and TE of all the Non-dominated weapon system
portfolios computed by the proposed three algorithms. As
the Figure6 shown, the results can be clearly divided into
two types, the former two has the similar surface because
of the application of grey target and the later ones are
similar due to the PCA methods. The collective feature of
the non-dominated portfolio in the former two scenarios
is more obvious than that in the later ones. It means that

Fig. 5: The value of BC, OC and TE distribution with increase of
cost under scenario 4 computed by PCA-MOP2.

more abundant portfolio alternatives will be generated by
the PCA-MOP2 algorithm.

Table 5 shows the list the 93 weapon system
portfolios computed by GT-MOP1 under scenario 1.
System 3 is prominent with the most high frequency in
the 93 non-dominated portfolio when target value is
missing under scenario 1(See Table6), however, it only
comes out once in the non-dominated portfolio generated
by PCA-MOP2 algorithm with target value under
scenario 4. System 5 and System 6 have the similar high
frequency under the four scenarios. Therefore, target
value has the direct effect on determine whether the
system is valuable or not. Furthermore, the weapon
system with high quality and excellent performance
generally become to be the core system in the
non-dominated portfolio. Then, all the system frequency
and rate in the Non-dominated portfolios computed by
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Fig. 6: The value of BC, OC and TE distribution under four scenarios computed by three algorithms.

Table 5: List of the 93 weapon system portfolios computed by GT-MOP1 under scenario 1
Portfolio Systems Portfolio Systems Portfolio Systems Portfolio Systems

P1 S9 P25 S3,S5 P49 S2,S5,S8 P73 S2,S3,S5,S8,S9
P2 S8 P26 S3,S5,S9 P50 S2,S5,S6 P74 S2,S3,S5,S7
P3 S7 P27 S3,S5,S8 P51 S2,S5,S6,S8 P75 S2,S3,S5,S7,S8
P4 S7,S8 P28 S3,S5,S8,S9 P52 S2,S5,S6,S8 P76 S2,S3,S5,S6
P5 S6 P29 S3,S5,S7,S8 P53 S2,S5,S6,S8,S9 P77 S2,S3,S5,S6,S9
P6 S6,S9 P30 S3,S5,S6 P54 S2,S5,S6,S7 P78 S2,S3,S5,S6,S8
P7 S6,S8 P31 S3,S5,S6,S8 P55 S2,S5,S6,S7,S8 P79 S2,S3,S5,S6,S8,S9
P8 S5 P32 S3,S5,S6,S8,S9 P56 S2,S4,S8 P80 S2,S3,S5,S6,S7
P9 S5,S8 P33 S3,S5,S6,S7 P57 S2,S4,S6,S8 P81 S2,S3,S5,S6,S7,S8
P10 S5,S7,S8 P34 S3,S5,S6,S7,S8 P58 S2,S4,S5,S6 P82 S2,S3,S4
P11 S5,S6 P35 S3,S4 P59 S2,S4,S5,S6,S8 P83 S2,S3,S4,S9
P12 S5,S6,S8 P36 S3,S4,S9 P60 S2,S3 P84 S2,S3,S4,S8
P13 S3 P37 S3,S4,S6,S8 P61 S2,S3,S9 P85 S2,S3,S4,S8,S9
P14 S3,S9 P38 S2 P62 S2,S3,S8 P86 S2,S3,S4,S7
P15 S3,S8 P39 S2,S9 P63 S2,S3,S7 P87 S2,S3,S4,S7,S8
P16 S3,S8,S9 P40 S2,S8 P64 S2,S3,S7,S8 P88 S2,S3,S4,S5
P17 S3,S7 P41 S2,S8,S9 P65 S2,S3,S7,S8,S9 P89 S2,S3,S4,S5,S8
P18 S3,S7,S9 P42 S2,S7,S8 P66 S2,S3,S6 P90 S2,S3,S4,S5,S8,S9
P19 S3,S7,S8 P43 S2,S6 P67 S2,S3,S6,S9 P91 S2,S3,S4,S5,S6,S7,S8
P20 S3,S6 P44 S2,S6,S9 P68 S2,S3,S6,S8 P92 S1,S3,S8
P21 S3,S6,S9 P45 S2,S6,S8 P69 S2,S3,S6,S8,S9 P93 S1,S2,S8
P22 S3,S6,S8 P46 S2,S6,S8,S9 P70 S2,S3,S6,S7,S8
P23 S3,S6,S8,S9 P47 S2,S6,S7,S8 P71 S2,S3,S5
P24 S3,S6,S7,S8 P48 S2,S5 P72 S2,S3,S5,S8

GT-MOP2 and PCA-MOP2 under other three scenarios
are given in Table7, Table8 and Table9.
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Table 6: The system frequency and rate in the 93 Non-dominated portfolios computed by GT-MOP1
System 1 2 3 4 5 6 7 8 9 10

Frequency 2 55 58 17 40 42 25 52 27 0
Rate 2.15% 59.14% 62.37% 18.28% 43.01% 45.16% 26.89% 55.91% 29.03% 0

Table 7: The system frequency and rate in the 106 Non-dominated portfolios computed by GT-MOP2
System 1 2 3 4 5 6 7 8 9 10

Frequency 32 80 63 53 55 56 30 41 14 0
Rate 30.19% 75.47% 59.43% 50% 51.89% 52.83% 28.30% 38.68% 13.21% 0

Table 8: The system frequency and rate in the 71 Non-dominated portfolios computed by PCA-MOP2 with complete samples
System 1 2 3 4 5 6 7 8 9 10

Frequency 53 21 0 14 48 38 36 30 19 9
Rate 74.65% 29.58% 0 19.72% 67.61% 53.52% 50.70% 42.25% 26.76% 12.68%

Table 9: The system frequency and rate in the 73 Non-dominated portfolios computed by PCA-MOP2 with incomplete samples
System 1 2 3 4 5 6 7 8 9 10

Frequency 45 25 1 33 40 40 10 20 25 6
Rate 61.64% 34.25% 1.37% 45.21% 54.79% 54.79% 13.70% 27.40% 34.25% 8.22%

5 Conclusion

In this paper, Weapon Systems Portfolio Selection
(WSPS) can be considered as a multi-objective decision
analysis (MODA) problem. For the multi-objective
problem, the popular method is to carry out the value or
utility analysis and use multi-objective optimization
algorithm to obtain the Pareto set. Because of the
challenging features of WSPS, Grey Target (GT) and
principal component analysis (PCA) method are
employed in this study to solving the value analysis of
weapon system portfolio with system interaction and
independencies value under small data set sample
conditions. WSPS problem are simplified into four
scenarios: portfolio without the independencies or target
value, portfolio with the independencies but without
target value, portfolio with the independencies and target
value and portfolio in an incomplete sample data with the
independencies and with target value. Three hybrid
algorithms, GT-MOP1, GT-MOP2 and PCA-MOP2 are
proposed to solving the problems in contrast with each
other. Numerical experiments are given in Section 4
illustrate the feasibilities and advantages of the three
hybrid algorithms under four scenarios.
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[17] C. L. Jõoo, M. Alec, A. B. C. Carlo, PROBE-A multicriteria
decision support system for portfolio robustness evaluation,
Decision support systems,54, 534-550 (2012).

[18] J. L. Deng, Theory of grey systems, Wuhan, Hubei:
Huazhong University of Science and Technology Press,
(1990).

[19] E. Kayacan, B. Ulutas, O. Kaynak, Grey system theory-
based models in time series prediction, Expert Systems with
Applications,37, 1784-1789 (2010).

[20] Z. J. Xie, Y. C. Bao, R. Q. Xie, F. S. Peng, Grey quantitative
method about the affection degree of tactics and technology
performance indices to the effectiveness of weapon systems,
Systems Engineering and Electronics,27, 1924-1926 (2005).

[21] I. T. Jolliffe, Principal Component Analysis, second ed,
Springer, Berlin, (2002).

[22] H. Abdi, L. J. Williams, Principal component analysis,
Wiley Interdisciplinary Reviews: Computational Statistics,2,
433-459 (2010).

[23] K. Deb, Multi-Objective Optimization Using Evolutionary
Algorithms. John Wiley & Sons, Chichester, (2001).

[24] H. Kung, F. Luccio, F. Preparata, On finding the maxima
of a set of vectors, Journal of the Association for Computing
Machinery,22, 469-476 (1975).

[25] C. W. Ahn, A study on the determining missile system by
using integer goal programming and AHP, Korea National
Defense University, (2003).

Yajie Dou received
the M.Sc. degree in engineering
from the National University
of Defense Technology (NUDT),
Changsha, P. R.China, in 2011.
He is pursuing the Ph.D. degree
in the School of Information
System and Management
Science at NUDT. His
main research interests include

weapon system portfolio decision and effectiveness evaluation.

Pengle Zhang received
the B.Sc. degree in Management
from NUDT in 2013.He
is currently a Master candidate
in the School of Information
System and Management
Science at NUDT. His main
research interests include system
of systems requirement planning,
and effectiveness evaluation.

Jiang Jiang received the
B.Sc. degree and M.Sc. degree
in system engineering from
NUDT, PRC in 2004 and 2006,
respectively. He is currently a
lecture in School of Information
System and Management,
NUDT. His research interests
include multiple criteria decision
making and risk analysis.

Kewei Yang received
the Ph.D. degree in Management
from NUDT in 2004. He
is an Associate Professor at the
College of Information System
and Management in NUDT.
His research interests focus
on Intelligent Agent Simulation,
Defense Acquisition and
System of Systems requirement

modeling.

Yingwu Chen received
the M.Sc. degree in system
engineering, and the Ph.D.
degree in engineering from
NUDT in 1987 and 1994,
respectively. He is a Professor
in NUDT. His current research
interests include assistant
decision making systems
for planning, decision-making

systems for project evaluation, management decisions and
system of systems engineering.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Problem Demonstrations
	The Proposed Hybrid Multi-objective Programming algorithms with Grey Target and PCA
	Numerical Experiment and Results
	Conclusion

