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Abstract: In this paper, we establish the existence and uniqueness of common fixed points for a pair of set-valued mappings satisfying
a generalized contractive condition in cone metric spaces with normal constantM = 1. An example is given to support our results. The
presented results improve, unify and generalize many knownresults in the literature.
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1 Introduction

Fixed point theory is one of the famous and traditional
theories in mathematics and has a broad set of
applications. In this theory, contraction is one of the main
tools to prove the existence and uniqueness of a fixed
point. Banach’s contraction principle [5] which gives an
answer to the existence and uniqueness of a solution of an
operator equationTx = x, is the most widely used fixed
point theorem in all of analysis. This principal is
constructive in nature and is one of the most useful
techniques in the study of nonlinear equations. Different
generalizations of the Banach’s contraction mapping
principle were studied by many authors in metric spaces
and Banach spaces, see [6,7,8,15,16,17,19,20,21,22,23,
24,25,27,28,31,33] and references given therein. Later,
Nadler Jr. [18] has proved multivalued version of the
Banach contraction principle which states that each
closed bounded valued contraction map on a complete
metric space has a fixed point. Many authors have been
using the Hausdroff metric to obtain fixed point results
for multivalued maps on metric spaces.

Recently, Huang and Zhang [11] generalized the
concept of a metric space, replacing the set of real
numbers by an ordered Banach space and obtained some
fixed point theorems for mappings satisfying different
contractive conditions. Wardowski [36] introduced the
concept of multivalued contractions in cone metric spaces

and using the notion of normal cones, obtained fixed
point theorems for such mappings. As we know, most of
known cones are normal with normal constant M = 1.
Further, Rezapour [29] proved two results about common
fixed points of multifunctions on cone metric spaces. For
a detailed study, see [1,2,3,4,9,10,12,13,14,26,29,30,
32,34,35]

Motivated by the above work, in this paper, we obtain
a unique common fixed point and for a pair of set-valued
mappings satisfying a generalized contractive condition
in cone metric spaces with normal constantM = 1. An
example is given to justify our results. The presented
results generalize many known results in cone metric
spaces.

2 Preliminaries

In this section, we recall the definition of cone metric
spaces and some of their properties.
Definition 2.1.Let E be a real Banach space. A subsetP of
E is called a cone if the following conditions are satisfied:

(i)P is closed, nonempty andP 6= {0};
(ii)a,b ∈ R,a,b ≥ 0 andx,y ∈ P imply thatax+ by ∈ P.
(iii) P∩ (−P) = {0}.

Given a coneP of E, we define a partial ordering≤
with respect toP by x ≤ y if and only if y−x∈ P. We shall
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write x < y to indicate thatx ≤ y but x 6= y, while x ≪ y
will stand fory− x ∈ intP.

A coneP is called normal if there is a numberK > 0
such that for allx,y ∈ E,

0≤ x ≤ y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above inequality
is called the normal constant ofP.
Definition 2.2.Let X be a nonempty set andd : X ×X →E
be a mapping such that the following conditions hold:

(i)0 ≤ d(x,y) for all x,y ∈ X andd(x,y) = 0 if and only
if x = y;

(ii)d(x,y) = d(y,x) for all x,y ∈ X ;
(iii) d(x,y)≤ d(x,z)+ d(z,y) for all x,y,z ∈ X .

Thend is called a cone metric onX and(X ,d) is called a
cone metric space.
Example 2.3. Let X = R, E = R2,

P = {(x,y) ∈ E : x,y ≥ 0} ⊂ R2 andd : X ×X → E such
thatd(x,y) = (|x− y|,δ |x− y|), whereδ ≥ 0 is a constant.
Then (X,d) is a cone metric space.
Example 2.4.Let E =C1

R
([0,1]) with norm‖ f‖= ‖ f‖∞+

‖ f
′
‖∞. The coneP= { f ∈E : f ≥0} is a non-normal cone.

Definition 2.5. Let (X ,d) be a cone metric space. We say
that{xn} is;

(i)a Cauchy sequence if for everyc ∈ E with 0≪ c, there
is N such that for allm,n > N,d(xn,xm)≪ c;

(ii)a convergent sequence if for everyc ∈ E with 0 ≪ c,
there isN such that for alln>N,d(xn,x)≪ c, for some
x ∈ X . We denote it by lim

n→∞
xn = x or xn → x.

A cone metric spaceX is said to be complete if every
Cauchy sequence inX is convergent inX . The limit of a
convergent sequence is unique providedP is a normal
cone with normal constantK (see [11]).
Lemma 2.6. Let (X ,d) be a cone metric space,P be a
normal cone with normal constantK. Let {xn} be a
sequence inX . Then{xn} is a Cauchy sequence if and
only if d(xn,xm)→ 0 asm,n → ∞.

Definition 2.7.Let (X ,d) be a cone metric space andB ⊆
X .

(i)A point b in B is called an interior point ofB whenever
there exists a pointp,0 << p such thatN(b, p) ⊆ B,
whereN(b, p) = {y ∈ X : d(y,b)<< p}.

(ii)A subsetA ⊆ X is called open if each element ofA is
an interior point ofA.

The familyB = {N(x,e) : x ∈ X ,0 << e} is a sub-basis
for a topology onX . We denote this cone topology byτc is
called Hausdroff and first countable.
Lemma 2.8. Let (X ,d) be a cone metric space,P be a
normal cone with normal constantM = 1 and A be a
compact set in(X ,τc). Then, for everyx ∈ X there exists
a0 ∈ A such that

‖d(x,a0)‖= inf
a∈A

‖d(x,a)‖.

Lemma 2.9. Let (X ,d) be a cone metric space,P be a
normal cone with normal constantM = 1 andA,B be two
compact sets in(X ,τc). Then,

sup
x∈B

D(x,A)< ∞,

whereD(x,A) = inf
a∈A

‖d(x,a)‖, for eachx ∈ X .

Definition 2.10.Let (X ,d) be a cone metric space,P be a
normal cone with normal constantM = 1, Hc denote the
set of all compact subsets of(X ,τc) andA ∈ Hc. Now by
Lemma 2.8, we define

hA : Hc(X)→ [0,∞) and dH : Hc(X)×Hc(X)→ [0,∞)

by

hA(B)= sup
x∈A

D(x,B)<∞ anddH(A,B)=max{hA(B),hB(A)},

respectively.

Remarks 2.11.Let (X ,d) be a cone metric space,P be a
normal cone with normal constantM = 1. Defineρ : X ×
X → [0,∞) by ρ(x,y) = ‖d(x,y)‖. Then,(X ,ρ) is a metric
space. This implies that for eachA,B∈ Hc andx,y ∈ X , we
have the following relations:

(i)D ≤ ‖d(x,y)‖+D(y,A),
(ii)D ≤ D(x,B)+ hB(A), and
(iii) D ≤ ‖d(x,y)‖+D(y,B)+ hB(A).

3 Main Results

Theorem 3.1.Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS,T : X → Hc(X) be two
set-valued mappings such that

d(Sx,Ty)≤ α max{d(x,Sx),d(y,Ty),d(x,y)} (1)

for all x,y ∈ X where 0≤ α < 1. ThenS and T have a
unique common fixed point inX .

Proof Let x0 ∈ Xbe a arbitrary point. Then by Lemma 2.8,
there existx1 ∈ Sx0 andx2 ∈ T x1such that

D(x0,Sx0) = ‖d(x0,x1)‖

and
D(x1,Tx1) = ‖d(x1,x2)‖.

Likewise, forn ∈ N, we define a sequence{xn} in X such
that

x2n−1 ∈ Sx2n−2,x2n ∈ T x2n−1.

Therefore,

D(x2n−2,Sx2n−2) = ‖d(x2n−2,x2n−1)‖

and
D(x2n−1,T x2n−1) = ‖d(x2n−1,x2n)‖
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for all n ∈ N. Thus, for alln ∈ N, we have the following

‖d(x2n,x2n+1)‖ = D(x2n,Sx2n)

≤ hTx2n−1(Sx2n)

≤ dH(T x2n−1,Sx2n)

≤ α max{D(x2n,Sx2n),D(x2n−1,T x2n−1),

D(x2n,x2n−1)}

= α max{‖d(x2n,x2n+1)‖,‖d(x2n−1,x2n)‖}.

Case I:
If

max{‖d(x2n,x2n+1)‖,‖d(x2n−1,x2n)‖} = ‖d(x2n,x2n+1)‖,
then

‖d(x2n,x2n+1)‖ ≤ α‖d(x2n,x2n+1)‖

which implies that

‖d(x2n,x2n+1)‖→ 0 as n → ∞,

since 0< α < 1.
Case II:

If
max{‖d(x2n,x2n+1)‖,‖d(x2n−1,x2n)‖} = ‖d(x2n−1,x2n)‖,
then

‖d(x2n,x2n+1)‖ ≤ α‖d(x2n−1,x2n)‖

Proceeding in this way, we obtain

‖d(x2n,x2n+1)‖ ≤ α2n‖d(x0,x1)‖, n ∈N

Also for n > m, we have

‖d(xn,xm)‖ ≤ ‖d(xn,xn−1)‖+ ‖d(xn−1,xn−2)‖+ · · · · · ·+

‖d(xm+1,xm,u)‖

≤ (αn−1+αn−2+ · · · · · ·+αm)‖d(x1,x0)‖

≤
αm

1−α
‖d(x1,x0)‖

Thus‖d(xn,xm)‖→ 0, asn → ∞, since
km

1− k
→ 0, asn →

∞.

Therefore, in both cases,{xn} is a Cauchy sequence in
X . Hence there exists a pointz ∈ X such thatxn → z, as
n → ∞. Further, by using Remark 2.11, we have

D(z,Sz) ≤ D(z,T x2n−1)+ hTx2n−1(Sz)

≤ D(z,T x2n−1)+ dH(T x2n−1,Sz)

≤ ‖d(z,x2n)‖+

α max{D(z,Sz),D(x2n−1,T x2n−1),D(z,x2n−1)}

= ‖d(z,x2n)‖+

α max{D(z,Sz),D(x2n−1,x2n),D(z,x2n−1)},

now, lettingn→∞, we getD(z,Sz) = 0.Hence, by Lemma
2.8,z ∈ Sz. Similarly,

D(z,T z) ≤ D(z,Sx2n)+ hSx2n(T z)

≤ D(z,Sx2n)+ dH(Sx2n,Tz)

≤ ‖d(z,x2n+1)‖+

α max{D(z,T z),D(x2n,Sx2n),D(z,x2n)}

= ‖d(z,x2n+1)‖+

α max{D(z,T z),D(x2n,x2n+1),D(z,x2n)},

now, letting n → ∞, we get D(z,T z) = 0. Hence, by
Lemma 2.8,z ∈ T z. Therefore,z ∈ X is a common fixed
point ofS andT .
Uniqueness:

Let z̃ be another common fixed point ofS andT , that
is, Sz̃ = T z̃ = z̃. Then

‖d(z, z̃)‖ = ‖d(Sz,T z̃)‖

≤ α max{‖d(z,Sz)‖,‖d(z̃,T z̃)‖,‖d(z, z̃)‖}

which implies that‖d(z, z̃)‖ = 0, since α < 1 for all
u ∈ X . Thusz is a unique common fixed point ofS andT .

Remarks 3.2.Theorem 3.1 generalizes Theorem 3.1 of
[9]. Also, our result establishes the uniqueness of the
common fixed point ofS andT .

Corollary 3.3. Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS,T : X → Hc(X) be two
set-valued mappings such that

d(Sx,Ty)≤ ad(x,Sx)+ bd(y,Ty)+ cd(x,y) (2)

for all x,y ∈ X anda,b,c ≥ 0, wherea+b+c < 1. ThenS
andT have a unique common fixed point inX .

Remarks 3.4.If we take a = b and c = 0 in Corollary 3.3,
then we get the Theorem 2.3 of Rezapour [29]. In the case,
S = T anda = b = 0, we obtain Nadler’s result [18].

Further, we obtain the following particular results from
Corollary 3.3.

Corollary 3.5. Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS,T : X → Hc(X) be two
set-valued mappings such that

d(Sx,Ty)≤ ad(x,Sx)+ bd(y,Ty)

for all x,y ∈ X anda,b ≥ 0, wherea+ b < 1. ThenS and
T have a unique common fixed point inX .

Corollary 3.6. Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS : X → Hc(X) be a set-
valued mapping such that

d(Sx,Sy)≤ ad(x,Sx)+ bd(y,Sy)+ cd(x,y)

for all x,y ∈ X anda,b,c ≥ 0, wherea+b+c < 1. ThenS
andT have a unique common fixed point inX .
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Corollary 3.7. Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS : X → Hc(X) be a set-
valued mapping such that

d(Sx,Sy)≤ ad(x,Sx)+ bd(y,Sy)

for all x,y ∈ X anda,b ≥ 0, wherea+ b < 1. ThenS and
T have a unique common fixed point inX .

Remarks 3.8.Corollary 3.7 gives the set-valued Kannan
type contractive condition [15] in cone metric spaces.

Theorem 3.9.Let (X ,d) be a complete cone metric space
with normal constantM = 1 andS,T : X → Hc(X) be two
set-valued mappings such that

d(Sx,Ty)≤ α max{d(x,Ty),d(y,Sx),d(x,y)} (3)

for all x,y ∈ X where 0≤ α < 1. Then S and T have a
unique common fixed point inX .

Proof Using the similar argument of the proof of Theorem
3.1, we can show that there exists a Cauchy sequence{xn}
in X such that

x2n−1 ∈ Sx2n−2,x2n ∈ T x2n−1.

Therefore,

D(x2n−2,Sx2n−2) = ‖d(x2n−2,x2n−1)‖

and
D(x2n−1,T x2n−1) = ‖d(x2n−1,x2n)‖

for all n ∈ N. Thus, we can find a element ˜x ∈ X such that
xn → x̃ asn → ∞. Applying Remark 2.11, we obtain

D(x̃,Sx̃) ≤ D(x̃,T x2n−1)+ hTx2n−1(Sx̃)

≤ D(x̃,T x2n−1)+ dH(T x2n−1,Sx̃)

≤ ‖d(x̃,x2n)‖+

α max{D(x̃,T x2n−1),D(x2n−1,Sx̃),D(x̃,x2n−1)}

= ‖d(x̃,x2n)‖+

α max{D(x̃,x2n),D(x2n−1,Sx̃),D(x̃,x2n−1)},

now, lettingn→∞, we getD(x̃,Sx̃)= 0.Hence, by Lemma
2.8,x̃ ∈ Sx̃. Similarly,

D(x̃,T x̃) ≤ D(x̃,Sx2n)+ hSx2n(T x̃)

≤ D(x̃,Sx2n)+ dH(Sx2n,T x̃)

≤ ‖d(x̃,x2n+1)‖+

α max{D(x̃,Sx2n),D(x2n,T x̃),D(x̃,x2n)}

= ‖d(x̃,x2n+1)‖+

α max{D(x̃,x2n+1),D(x2n,T x̃),D(x̃,x2n)},

now, letting n → ∞, we get D(x̃,T x̃) = 0. Hence, by
Lemma 2.8, ˜x ∈ T x̃. Therefore, ˜x ∈ X is a common fixed

point ofS andT .
Uniqueness:

Let z̃ be another common fixed point ofS andT , that
is, Sz̃ = T z̃ = z̃. Then

‖d(x̃, z̃)‖ = ‖d(Sx̃,T z̃)‖

≤ α max{‖d(x̃,T z̃)‖,‖d(z̃,Sx̃)‖,‖d(x̃, z̃)‖}

which implies that‖d(x̃, z̃)‖ = 0, since α < 1 for all
u ∈ X . Thusx̃ is a unique common fixed point ofS andT .

Remarks 3.10.Theorem 3.1 generalizes Theorem 3.2 of
[9]. Further, it establishes the uniqueness of the common
fixed point ofS andT .
Corollary 3.11. Let (X ,d) be a complete cone metric
space with normal constantM = 1 andS,T : X → Hc(X)
be two set-valued mappings such that

d(Sx,Ty)≤ ad(x,Ty)+ bd(y,Sx)+ cd(x,y)

for all x,y ∈ X anda,b,c ≥ 0, wherea+b+c < 1. ThenS
andT have a unique common fixed point inX .
Remarks 3.12.If we take a = b and c = 0 in Corollary
3.11, then we get the Theorem 2.4 of Rezapour [29].

The following example supports our results.
Example 3.13.Consider the metric defined in Example
2.3. Now define

S,T : X → X

such that

Sx =
1
2

and T x =
x2

2
, ∀x ∈ X .

d(Sx,Ty) =

(

1
2

∣

∣1− y2
∣

∣,
δ
2

∣

∣1− y2
∣

∣

)

(4)

max

{

d(x,Sx),d(y,Ty),d(x,y)

}

=

max

{(

∣

∣x−
1
2

∣

∣,
δ
2

∣

∣x−
1
2

∣

∣

)

,

(

∣

∣y−
y2

2

∣

∣,δ
∣

∣y−
y2

2

∣

∣

)

,

(

∣

∣x− y
∣

∣,δ
∣

∣x− y
∣

∣

)}

.

(5)

From equations (4) and (5), it can be easily seen that all the
conditions of Theorems 3.1 and 3.9 are satisfied. Hence,S
andT have a unique fixed point 1.

4 Conclusion

We have obtained a unique common fixed point for a pair
of set-valued mappingsS andT without the property of
weakly compatibility in the setting of cone metric spaces
by taking the normal constantM = 1. We have weakened
the contractive nature of already existing maps to achieve
the existence and uniqueness of common fixed point that
extend and generalize many known results in the literature.
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181 (1922).

[6] I. Beg, A. R Butt, Fixed point for set-valued mappings
satisfying an implicit relation in partially ordered metric
spaces, Nonlinear Anal.71(9), 3699-3704 (2009).
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