A Controlled Contraction Principle in Partial S-Metric Spaces

Kamaleldin Abodayeh

Department of Mathematical Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia

Received: 22 Dec. 2014, Revised: 15 Sep. 2015, Accepted: 18 Sep. 2015
Published online: 1 May 2016

Abstract: In this paper, we introduce the notion of a partially α--contractive self mapping and prove the existence and uniqueness of a fixed point for such mapping. Our results improve and generalize many results in S-metric spaces.

Keywords: Fixed point theory, Partial S-metric space, S-metric space

1 Introduction

The existence and uniqueness of fixed point for a self mapping was first introduced by Banach on a metric space. That was the starting point for many research work on this topic. Under different contraction principle and different types of metric space, such as partial metric space, and b-metric space, see [[3]-[19]]. In this article, we work in partial S-metric space.

The existence and uniqueness of a fixed point for a self mapping on different types of metric spaces were the main topic for many research papers [[2]-[18]]. The notion of S-metric space was introduced by Sedghi [4]. A generalization of S-metric space was given by Nabil in [1], where he introduced partial S-metric spaces. Moreover, he proved the existence of a fixed point for a self mapping in partial S-metric space. In this paper, we generalize the results in [1] by adding a control function to the contraction principle, which makes the results in [1] a direct consequences of our theorems.

Before proceeding to the main results, we set forth some definitions that will be used in the sequel.

Definition 1. [5] Let X be a nonempty set and $p : X \times X \longrightarrow [0, +\infty)$. We say that (X, p) is a partial metric space if for all $x, y, z \in X$ we have:

1. $x = y$ if and only if $p(x, y) = p(x, x) = p(y, y);$
2. $p(x, x) \leq p(x, y);$
3. $p(x, y) = p(y, x);$
4. $p(x, z) \leq p(x, y) + p(y, z) - p(y, y).$

Definition 2. [4] Let X be a nonempty set. An S-metric space on X is a function $S : X^3 \longrightarrow [0, \infty)$ that satisfies the following conditions, for all $x, y, z, a \in X$:

$- S(x; y; z) \geq 0,$
$- S(x; y; z) = 0$ if and only if $x = y = z,$
$- S(x; y; z) \leq S(x; x; a) + S(y; y; a) + S(z; z; a).$

The pair $(X; S)$ is called an S-metric space.

Next, we give the definition of partial S-metric space.

Definition 3. [1] Let X be a nonempty set. A partial S-metric space on X is a function $S_p : X^3 \longrightarrow [0, \infty)$ that satisfies the following conditions, for all $x, y, z, t \in X$:

(i) $x = y$ if and only if $S_p(x, x, x) = S_p(y, y, y) = S_p(x, y, y)$
(ii) $S_p(x, y, z) \leq S_p(x, x, t) + S_p(y, y, t) + S_p(z, z, t) - S_p(t, t, t)$
(iii) $S_p(x, x, x) \leq S_p(x, y, z)$
(iv) $S_p(x, x, y) = S_p(y, y, x).$

The pair (X, S_p) is called a partial S-metric space.

Definition 4. A sequence $\{x_n\}^\infty_{n=0}$ of elements in (X, S_p) is called p-Cauchy if the limit $\lim_{m,n \longrightarrow \infty} S_p(x_n, x_m)$ exists and finite. The partial S-metric space (X, S_p) is called complete if for each p-Cauchy sequence $\{x_n\}^\infty_{n=0}$ there exists $z \in X$ such that $S_p(z, z, z) = \lim_{n} S_p(z, x_n, x_n) = \lim_{m,n} S_p(x_n, x_m, X).$

* Corresponding author e-mail: kamal@psu.edu.sa
Moreover, \((X, S_p)\) is a complete partial S-metric space if and only if \((X, S_p^n)\) is a complete S-metric space. A sequence \(\{x_n\}_n\) in a partial S-metric space \((X, S_p)\) is called 0-Cauchy if \(\lim_{n,m \to \infty} S_p(x_n, x_m) = 0\). We say that \((X, S_p)\) is 0-complete if every 0-Cauchy in \(X\) converges to a point \(x \in X\) such that \(S_p(x, x, x) = 0\).

One can easily construct an example of a partial S-metric space by using the ordinary partial metric space.

Example 1. \([1]\) Let \(X = [0, \infty)\) and \(p\) be the ordinary partial metric space on \(X\). Define the mapping on \(X^3\) to be \(S_p(x, y, z) = p(x, y) + p(y, z)\). Then \(S_p\) defines a partial S-metric space.

Definition 5. Let \((X, S_p)\) be a partial S-metric space and \(T : X \to X\) be a given mapping. We say that \(T\) is partially \(\alpha\)-contractive if there exists a constant \(k \in (0, 1)\) and a function \(\alpha : X \times X \to (0, +\infty)\) such that for all \(x, y \in X\) we have
\[
\alpha(x, y)S_p(Tx, Ty) \leq \max\{kS_p(x, x, y), S_p(x, x, x), S_p(y, y, y)\},
\]
for all \(n \geq 0\). Also, since \(T\) is \(\alpha\)-admissible; \(\alpha(x_0, x_0) \geq 1\) implies \(\alpha(x_0, x_1) = \alpha(x_0, T(x_0), x_0) \geq 1\) and hence \(\alpha(x_1, x_0) = \alpha(T(x_0), x_0) \geq 1\). By induction on \(n\) we get
\[
\alpha(x_n, x_{n+1}) \geq 1,
\]
for all \(n \geq 0\).

Example 2. Let \(X = [0, +\infty)\). Define \(T : X \to X\) by \(T(x) = \sqrt{x}\) and \(\alpha : X \times X \to (0, +\infty)\) by
\[
\alpha(x, y) = \begin{cases}
 e^{x-y} & \text{if } x \geq y \\
 0 & \text{if } x < y.
\end{cases}
\]

Therefore, \(\{S_p(x_n, x_n, x_n)\}_{n \geq 0}\) is a nonincreasing sequence. Define
\[
r_0 := \lim_{n \to \infty} S_p(x_n, x_n, x_n) = \inf_{n \geq 0} S_p(x_n, x_n, x_n) \geq 0,
\]
and
\[
M_0 := \frac{2}{1-k} S_p(x_0, x_0, x_1) + S_p(x_0, x_0, x_0).
\]

2 Main Result

In this section, we prove the existence of a fixed point in partial S-metric space. We prove relevant corollary. This next theorem is considered to be our main result.

Theorem 1. Let \((X, S_p)\) be a complete partial S-metric space, \(T\) be a self mapping on \(X\) and assume that \(T\) is partially \(\alpha\)-contractive. If \(T\) is \(\alpha\)-admissible and \(R_\alpha\)-admissible and if \(X_p(\alpha)\) is nonempty, then \(Z_p(\alpha)\) is nonempty. Also, assume that there exists \(x_0 \in X\) such that \(\alpha(x_0, x_0) \geq 1\) then:

1. The set \(X_p(\alpha)\) is nonempty;
2. There exists \(x \in X_p(\alpha)\) such that \(T(a) = a\).

Moreover, if for all \(u, v \in X_p(\alpha)\) with the property \(Tu = u\) and \(Tv = v\) we have \(\alpha(u, v) \geq 1\), then \(T\) has a unique fixed point in \(X_p(\alpha)\).

Proof. Let \(x_0 \in X\) such that \(\alpha(x_0, x_0) \geq 1\). Define a sequence \(\{x_n\}\) for all \(n \geq 0\) in \(X\) such that \(x_1 = T(x_0), x_2 = T(x_1), \ldots, x_{n+1} = T(x_n)\). Since \(T\) is \(R_\alpha\)-admissible and \(\alpha\)-admissible, we have \(\alpha(x_0, x_1) = \alpha(x_0, T(x_0)) \geq 1\) and hence \(\alpha(x_1, x_2) = \alpha(T(x_0), T(x_1)) \geq 1\). So, by induction on \(n\) we get
\[
\alpha(x_n, x_{n+1}) \geq 1,
\]
for all \(n \geq 0\). Also, since \(T\) is \(R_\alpha\)-admissible; \(\alpha(x_0, x_0) \geq 1\) implies \(\alpha(x_0, x_1) = \alpha(x_0, T(x_0)) \geq 1\). By induction on \(n\), we also conclude that
\[
\alpha(x_n, x_n) \geq 1.
\]

Therefore, \(\{S_p(x_n, x_n, x_n)\}_{n \geq 0}\) is a nonincreasing sequence. Define
\[
r_0 := \lim_{n \to \infty} S_p(x_n, x_n, x_n) = \inf_{n \geq 0} S_p(x_n, x_n, x_n) \geq 0,
\]
and
\[
M_0 := \frac{2}{1-k} S_p(x_0, x_0, x_1) + S_p(x_0, x_0, x_0).
\]

Next, we need to show that \(S_p(x_0, x_0, x_n) \leq M_0\), for any \(n \geq 0\). If \(n = 0\); the case is trivial. For \(n = 1\) and using the fact that \(k \in (0, 1)\) we deduce that
\[
S_p(x_0, x_0, x_1) \leq \frac{2}{1-k} S_p(x_0, x_0, x_1) \leq M_0.
\]
So, we may assume that is true for all \(n \leq n_0 - 1\) and prove it for \(n = n_0 \geq 2\).
Also, by induction assumption, we have
\[S_p(x_0, x_{n_0}, x_{n_0-1}) \leq \frac{2\varepsilon}{1-k} S_p(x_0, x_1, x_1) + S_p(x_0, x_0, x_0). \]
So, we have
\[
S_p(x_0, x_0, x_{n_0}) \leq 2S_p(x_0, x_0, x_1) + \max \left\{ \frac{2\varepsilon}{1-k} S_p(x_0, x_1, x_1) + kS_p(x_2, x_2, x_0), S_p(x_0, x_0, x_0) \right\} \\
\leq 2S_p(x_0, x_0, x_1) + \frac{2\varepsilon}{1-k} S_p(x_0, x_0, x_1) + S_p(x_0, x_0, x_0) = 2 \frac{\varepsilon}{1-k} S_p(x_0, x_0, x_1) + S_p(x_0, x_0, x_0) = M_0.
\]

Hence, by induction we conclude that \(S_p(x_0, x_0, x_m) \leq M_0 \). Next, we need to show that
\[
\lim_{n,m} S_p(x_n, x_n, x_m) = r_0.
\]
For all \(n,m \) we have \(S_p(x_n, x_n, x_m) \geq S_p(x_n, x_n, x_n) \geq r_0 \). Let \(\varepsilon > 0 \) find a natural number \(n_0 \) such that \(S_p(x_0, x_0, x_0) < r_0 + \varepsilon \) and \(2M_k \varepsilon < r_0 + \varepsilon \). Now for any \(n,m \geq n_0 \), since \(T \) is \(R_k \)-admissible and using the fact that \(\alpha(x_n, x_{n+1}) \geq 1 \) we deduce that \(\alpha(x_n, x_m) \geq 1 \). Hence,
\[
S_p(x_n, x_n, x_n) \leq \alpha(x_n, x_n) S_p(x_n, x_n, x_n) \\
\leq \max \left\{ \alpha(x_n, x_{n-1}, x_{n-1}) S_p(x_{n-1}, x_{n-1}, x_{n-1}), S_p(x_{n-1}, x_{n-1}, x_{n-1}) \right\} \\
\leq \max \left\{ k \alpha(x_{n-1}, x_{n-2}, x_{n-2}) S_p(x_{n-2}, x_{n-2}, x_{n-2}), S_p(x_{n-2}, x_{n-2}, x_{n-2}) \right\} \\
\leq \cdots \leq \max \left\{ k^n \alpha(x_{n-n_0}, x_{n-n_0}, x_{n-n_0}) S_p(x_{n-n_0}, x_{n-n_0}, x_{n-n_0}) \right\} \\
\leq r_0 + \varepsilon.
\]

Hence,
\[
\lim_{n,m} S_p(x_n, x_n, x_m) = r_0.
\]
Since \((X, p) \) is a complete partial \(S \)-metric space; there exists \(x \in X \) such that
\[
r_0 = S_p(x, x, x) = \lim_{n} S_p(x, x, x_n) = \lim_{n} S_p(x_n, x_n, x, x) \quad (n, m) \to \infty.
\]
Next, we show that \(S_p(x, x, x) = S_p(x, x, T x) \). For each natural number \(n \) we have
\[
S_p(x, x, x) = \sum_{i=0}^{n} S_p(x, x, x_i) \leq 2S_p(x, x, x_0) + S_p(x, x, x_n) + S_p(T x, T x, x_0).
\]
Using the property that \(T \) is \(\alpha \)-contractive we deduce that there exists a subsequence of natural numbers \(\{n_i\} \) such that
\[
S_p(T x, T x, x_{n_i}) \leq \alpha(x_{n_i-1}, x_{n_i}) S_p(T x, T x, x_{n_i}) \\
\leq \max \left\{ k S_p(x, x, x_{n_i-1}), S_p(x, x, x_{n_i}), S_p(x_{n_i-1}, x_{n_i-1}, x_{n_i-1}) \right\}.
\]
So, for \(l \geq 1 \), we have either \(S_p(T x, T x, x_{n_i}) \leq k S_p(x, x, x_{n_i-1}) \) or less than or equal \(S_p(x, x, x) \) or less than or equal \(S_p(x_{n_i-1}, x_{n_i-1}, x_{n_i-1}) \).
In all of these cases, if we take the limit as \(l \) goes toward \(\infty \) we get \(S_p(x, x, T x) \leq S_p(x, x, x) \). But, we know by the property \((ii) \) of the partial \(S \)-metric space definition that \(S_p(x, x, x) \leq S_p(x, x, T x) \). Therefore,
\[
S_p(x, x, x) = S_p(x, x, T x).
\]

Now, we show that \(X_S^\alpha(\alpha) \) is nonempty. For each natural number \(l \) pick \(x_l \in X \) with \(\alpha(x_l, x_l) \geq 1 \) and \(S_p(x_l, x_l, x_l) < \rho_{S_p}^\alpha + \frac{1}{n_0} \) and show that
\[
\lim_{n,m} S_p(x_n, x_n, x_m) = \rho_{S_p}^\alpha.
\]
Let \(\varepsilon > 0 \) put \(n_0 := \left(\frac{1}{\rho_{S_p}^\alpha} \right) + 1 \) if \(l \geq n_0 \) then we have:
\[
\rho_{S_p}^\alpha \leq S_p(x_l, x_l, T x_l) \leq S_p(x_l, x_l, T x_l) \leq r_l \leq S_p(x_l, x_l, T x_l) \leq \rho_{S_p}^\alpha + \frac{1}{n_0} < \rho_{S_p}^\alpha(\alpha) + \frac{1}{n_0}. \]
Hence, we deduce that:
\[
U_l := S_p(x_l, x_l, T x_l) - S_p(T x_l, T x_l, T x_l) < \frac{\varepsilon}{3},
\]
for \(l \geq n_0 \). Also, if \(l \geq n_0 \), then \(S_p(x_l, x_l, T x_l) = r_l \leq S_p(x_l, x_l, x_l) < \rho_{S_p}^\alpha(\alpha) + \frac{1}{n_0} \).

We know that \(S_p(x_l, x_l, x_l) = S_p(x_l, x_l, T x_l) \) which implies:
\[
U_l := S_p(x_l, x_l, T x_l) - S_p(T x_l, T x_l, T x_l) < \frac{\varepsilon}{3},
\]
for \(l \geq n_0 \). Also, if \(l \geq n_0 \), then \(S_p(x_l, x_l, x_l) = r_l \leq S_p(x_l, x_l, x_l) < \rho_{S_p}^\alpha(\alpha) + \frac{1}{n_0} \).

Hence,
\[
\rho_{S_p}^\alpha(\alpha) \leq \rho_{S_p}^\alpha(\alpha) + \frac{\varepsilon}{3} < \rho_{S_p}^\alpha(\alpha) + \varepsilon.
\]
Thus,
\[
\lim_{n,m} S_p(x_n, x_n, x_m) = \rho_{S_p}^\alpha(\alpha).
\]
Since \((X, S_p) \) is complete there exists \(a \in X \) such that
\[
S_p(a, a, a) = \lim_{n} S_p(a, a, x_n) = \lim_{n} S_p(a, a, x_n) = \rho_{S_p}^\alpha(\alpha).
\]
Therefore, we conclude that \(a \in X_S^\alpha(\alpha) \) and thus \(X_S^\alpha(\alpha) \) is nonempty. Therefore, \(Z_S^\alpha(\alpha) \) is nonempty.

Now, let \(x_0 \in Z_S^\alpha(\alpha) \) be arbitrary. Then by the above argument we have
\[
\rho_{S_p}^\alpha(\alpha) \leq S_p(T x, T x, T x) \leq S_p(x, x, T x) = r_0 = \rho_{S_p}^\alpha(\alpha).
\]
Thus, \(T x = x \). Now, assume that \(T \) has two fixed points in \(Z_S^\alpha(\alpha) \) say \(u \) and \(v \). By our hypothesis, we know that \(\alpha(u, v) \geq 1 \). Thus,
\[
S_p(u, u, v) = S_p(T u, T u, T v) \leq \alpha(u, v) S_p(T u, T u, T v) \leq \max \left\{ k S_p(u, u, v), S_p(u, u, u), S_p(v, v, v) \right\}.
\]
Now, if \(S_p(u, u, v) \leq kS_p(u, u, v) \) we deduce that \(S_p(u, u, v) = 0 \) and in this case \(u = v \), or condition (ii) of the definition of the partial S-metric space we obtain \(S_p(u, u, u) = S_p(v, v, v) \) and in this case by condition (i) of the same definition we conclude that \(u = v \). Therefore, we obtain the uniqueness as desired.

As a consequence of the above result, the following corollary follows easily.

Corollary 1. Let \((X, S_p)\) be a 0-complete partial S-metric space, \(k \in [0, 1) \) and consider the map \(T : X \rightarrow X \) to be \(\alpha\)-admissible and \(R_{\alpha}\)-admissible, and there exists \(x_0 \in X \) such that \(\alpha(x_0, x_0) \geq 1 \), also for every \(x, y \in X \) we have \(\alpha(x, y)S_p(Tx, Tx, Ty) \leq kS_p(x, y, y) \). Then there exists \(x \in X \) such that \(T^\infty x = x \).

Proof. Using the same technique and notation in the proof of Theorem 1, we deduce that \(S_p(x_0, x_0, x_0) \leq \alpha(x_0, x_0)S_p(x_0, x_0, x_0) \leq k^2S_p(x_0, x_0, x_0) \).

This implies that \(S_p(x, x, x) = \lim_{n \to \infty} S_p(x, x, x) = \lim_{n \to \infty} S_p(x, x, x) = 0 \).

In closing, we change the contraction principle in Theorem 1, to show that there exist a unique fixed point in the whole space \(X \).

Theorem 2. Let \((X, S_p)\) be a complete partial S-metric space, \(k \in [0, 1) \) and assume that there exists \(x_0 \in X \) such that \(\alpha(x_0, x_0) \geq 1 \). Consider the map \(T : X \rightarrow X \) to be \(\alpha\)-admissible and \(R_{\alpha}\)-admissible. Assume that for every \(x, y \in X \) we have

\[
\alpha(x, y)S_p(Tx, Tx, Ty) \leq \max \{kS_p(x, y, y), \frac{S_p(x, x, x) + S_p(y, y, y)}{2}\},
\]

then there exists a unique \(u \in X \) such that \(Tu = u \).

Proof. Note that, for every \(x, y \in X \) we have:

\[
\alpha(x, y)S_p(Tx, Tx, Ty) \leq \max \{kS_p(x, x, x), \frac{S_p(x, x, x) + S_p(y, y, y)}{2}\},
\]

Thus, all the conditions of Theorem 1 are satisfied. Hence, there exists two fixed points \(u \), \(v \in X \) for \(T \) such that \(\alpha(u, v) \geq 1 \). Hence,

\[
S_p(u, u, v) = S_p(Tu, Tu, Tv) \leq \alpha(u, v)S_p(Tu, Tu, Tv) \leq \max \{kS_p(u, u, v), \frac{S_p(u, u, u) + S_p(v, v, v)}{2}\}.
\]

Thus, we either have \(S_p(u, u, v) \leq kS_p(u, u, v) \) which implies that \(S_p(u, u, u) = 0 \) and hence \(u = v \), or \(0 = 2S_p(u, u, v) - S_p(u, u, u) - S_p(v, v, v) \) which also implies that \(u = v \) as desired.

Example 3. Let \((X, S_p)\) be a partial S-metric space, where \(X = [0, 1] \cup [2, 3] \) and the partial S-metric space \(S_p : X^3 \rightarrow [0, +\infty) \) is defined by

\[
S_p(x, y, z) = \begin{cases}
\max \{x, y, z\} - z & \text{if } \{x, y, z\} \cap [2, 3] \neq \emptyset, \\
|x - y - z| & \text{if } \{x, y, z\} \subseteq [0, 1].
\end{cases}
\]

Define the functions \(T : X \rightarrow X \) and \(\alpha : X \times X \rightarrow [0, +\infty) \) as follows \(Tx = \frac{x + 1}{2} \) if \(0 \leq x \leq 1, T2 = 1, \) and \(Tx = \frac{x + 2}{2} \) if \(2 < x \leq 3 \).

It is easy to see that \(T \) is \(\alpha\)-admissible and \(R_{\alpha}\)-admissible. Note that, we can always pick our \(x, y, z \) such that \(\max \{x, y\} > z \). Also \(T \) is an increasing function. So, for every \(x \geq y \in X \) we have:

\[
S_p(Tx, Tx, Ty) \leq \alpha(x, y)S_p(Tx, Tx, Ty) \leq \frac{1}{2}S_p(x, y, y),
\]

and

\[
S_p(Tx, Tx, Ty) \leq \frac{1}{2}S_p(x, x, x) + \frac{1}{2}S_p(y, y, y),
\]

\[
\{x, y\} \cap [2, 3] \neq \emptyset.
\]

One can verify that the function \(T \) in this example satisfies the conditions of Theorem 2 and the unique fixed point will be 1.

3 Conclusion

In closing, the author would like to bring to the reader’s attention the possibility of obtaining the same result of Theorem 2.1 by changing the hypothesis where \(T \) is partially \(\alpha\)-contractive with the following contraction principle \(\alpha(x, y)S_p(Tx, Tx, Ty) \leq \psi(S_p(x, x, y)) \), where \(\psi \) is a self-function on \((0, +\infty) \).

References

