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Abstract: Neural networks and genetic algorithms are the two sophisticated machine learning techniques presently attracting attention
from scientists, engineers, and statisticians, among others. They have gained popularity in recent years. This paper presents a state of
the art review of the research conducted on the optimizationof neural networks through genetic algorithm searches. Optimization is
aimed toward deviating from the limitations attributed to neural networks in order to solve complex and challenging problems. We
provide an analysis and synthesis of the research publishedin this area according to the application domain, neural network design
issues using genetic algorithms, types of neural networks and optimal values of genetic algorithm operators (population size, crossover
rate and mutation rate). This study may provide a proper guide for novice as well as expert researchers in the design of evolutionary
neural networks helping them choose suitable values of genetic algorithm operators for applications in a specific problem domain.
Further research direction, which has not received much attention from scholars, is unveiled.
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1 Introduction

Numerous computational intelligence (CI) techniques
have emerged motivated by real biological systems,
namely, artificial neural networks (NNs), evolutional
computation, simulated annealing and swarm intelligence,
which were enthused by biological nervous systems,
natural selection, the principle of thermodynamics and
insect behavior, respectively. Despite the limitations
associated with each of these mentioned techniques, they
are robust and have been applied in solving real life
problems in the areas of science, technology, business and
commerce. Hybridization of two or more of these
techniques eliminates such constraints and leads to a
better solution. As a result of hybridization, many
efficient intelligent systems are currently being designed

[1]. Recent studies that hybridized CI techniques in the
search for optimal or near optimal solutions include, but
are not limited to: genetic algorithm (GA), particle swarm
optimization and ant colony optimization hybridization in
[2]; fuzzy logic and expert system integration in [3];
fusion of particle swarm optimization, chaotic and
Gaussian local search in [4];in [5] the combination of
NNs and fuzzy logic;in [6] the hybridization ofGA and
particle swarm optimization;in [7] the combination ofa
fuzzy inference mechanism, ontologies and fuzzy markup
language; and in[8] the hybridization ofa support vector
machine (SVM) and particle swarm
optimization.However, NNs and GA are considered the
most reliable and promising CI techniques. Recently, NNs
have proven to be a powerful and appropriate practical
tool for modeling highly complex and nonlinear systems
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[9][10][11][12][13]. The GA and NNs are the two CI
techniques presently receiving attention [14][15] from
computer scientists and engineers. This attention is
attributed to recent advancements in understanding the
nature and dynamic behavior of these techniques.
Furthermore, it is realized that hybridization of these
techniques can be applied to solve complex and
challenging problems [14]. They are also viewed as
sophisticated tools for machine learning [16].The vast
majority of literature applying NNs was found to heavily
rely on the back-propagation gradient method algorithms
[17] developed by [18] and popularized in the artificial
intelligence research community by [19].GAis
evolutionary algorithm that could be applied (1) for the
selection of feature subsets as input variables for
back-propagation NNs, (2) to simplify the topology of
back-propagation NNs and (3) to minimize the time taken
for learning [20]. Some major limitations attributed to
NNs and GA are explained as follows.The NNs are highly
sensitive to parameters [21][22] which can have a great
influence on the NNs performance. Optimized NNsare
mostly determined by labor intensive trial and error
techniques which include destructive and constructive NN
design [21][22][23].These techniques only search for a
limited class of models and a significant amount of
computational time is, thus, required [24]. NNs are highly
liable to over-fitting and different types of NN which are
trained and tested on the same dataset can yield different
results. These irregularities are responsible for
undermining the robustness of the NN [25].GA
performance is affected by the following: population size,
parent selection, crossover rate, mutation rate, and the
number of generations [15].The selection of suitable GA
parameter values is through cumbersome trial and error
which takes a long time [26] since there is no specific
systematic framework for choosing the optimal values of
these parameters [27].Similar to the selection of GA
parameter values, the design of an NN is specific to the
problem domain [15]. The most valuable way to
determine the initial GA parameters is to refer to the
literature with a description of a similar problem and to
adopt the parameter values of that problem [28][29].An
opportunity for NN optimization is provided through the
GA by taking advantage of their (NN and GA) strengths
and eliminating their limitations [30]. Experimental
evidence in the literature suggests that the optimization of
NNs by GA converges to a superior optimum solution
[31][32] in less computational time
[23],[31],[32],[33],[34],[35],[36],[37],[38],[39] than
conventional NNs [37]. Therefore, optimizing NNs using
GA is ideal because the shortcomings attributed to NN
design will then be eliminated by making it more
effective than using NNs on their own.This review paper
focuses on three specific objectives. First, to provide a
proper guide, to novice as well as expert researchers in
this area, in choosing appropriate NN design issues using
GA and the optimal values of the GA parameters that are
suitable for application in a specific domain. Second, to

provide readers, who maybe expert researchers in this
area,with the depth and breadth of the state of the art
issues in NN optimization using GA. Third, to unveil
research on NN optimization by using GA searches,which
has received little attention from other researchers. These
stated objectives were the major factors that motivated
this article.

In this paper, we reviewed NN optimization through
GA focusing on weights, topology, and subset selection
of features and training, as they are the major factors that
significantly determine NN performance [40][41]. Only
population size, mutation and crossover probability were
considered, because these are the most critical GA
parameters that determine its effectiveness according to
[42][43]. Any GA optimized NN selected in this review
was automatically considered together with the
application domain. Encoding techniques have not been
included in this review because they were excellently
researched in [44][45][46]. Engineering applications have
been given little attention as they were well covered in a
review conducted by [14].The basic theory of NNs and
GA, the types of NNs optimized by GA and the GA
parameters covered in this paper were briefly introduced
in the paper to be self-explanatory. This review is
comprehensive but in no way exhaustive due to the
speedy development and growth in the literature in this
area of research.

The rest of this paper is organized as follows: Section
2 presents a basic theory of Genetic algorithm; Section 3
discusses the basic theory of NNs and a brief introduction
of the types of NN covered in this review; Section 4
presents application domains; Section 5 presents a review
of the state of the art research in applying GA searches to
optimize NNs. Section 6 provides conclusions and
suggestions for further research.

2 Genetic Algorithm

In this section, we present a rudimentary of genetic
algorithm

2.1 Genetic algorithm

The idea of GA (formerly called genetic plans) was
conceived by [47], as a method of searching centered on
the principle of natural selection and natural genetics
[48][29][49][50]. Darwins theory was their inspiration, as
they carefully learned the principle of evolution and
applied the knowledge acquired to develop algorithms
based on the selection process of biological genetic
systems [51]. The concept of GA was derived from
evolutionary biology and survival of the fittest
[52].Several parameters require the setting of values when
implementing GA, but the most critical parameters are
population size, mutation probability and crossover
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Fig. 1: Representation of allele, gene, chromosome, genotype
and phenotype adapted from [53]

probability, and their interrelations [43]. These critical
parameters are explained as follows:

2.1.1 Gene, Chromosome, Allele, Phenotype and
Genotype

Basic instructions for building GAform a gene (bit strings
of arbitrary length). A sequence of genes is called a
chromosome. Possible solution to a problem may be
described by genes without really being the answer to the
problem. The smallest unit in chromosomes is called an
allele represented by a single symbol or binary bit. A
phenotype gives an external description of the individual
whereasa genotype is deposited information in a
chromosome [53] as presented in Figure 1. Where F1, F2,
F3, F4. . .Fn and G1, G2, G3, G4 . . .Gn are factors and
genes, respectively.

2.1.2 Population size

Individuals in a group form a population, as shown in
Table 1. The fitness of each individual in the population is
evaluated. Individuals with higher fitness produce more
offspring than those with lower fitness. Individuals and
certain information about the search space are defined by
phenotype parameters.

The initial population and population size(pop size)
are the two major population features in GA. The

Table 1: Population
Individuals Encoded

Population

Chromosome 1 1 1 1 0 0 0 1 0
Chromosome 2 0 1 1 1 1 0 1 1
Chromosome 3 1 0 1 0 1 0 1 0
Chromosome 4 1 1 0 0 1 1 0 0

Fig. 2: Crossover (single point) [43]

population size is usually determined by the nature of the
problem and is initially generated randomly, referred to as
population initialization [53].

2.1.3 Crossover

This is a randomly pointed locus in an encoded bit string
and the exact number of bits before and after the pointed
locus are fragmented and exchanged between the
chromosomes of the parents. The offspring are formed by
combining fragments of the parents’ bit strings [28][54]
as depicted in Figure 2. For all offspring to be a product
of crossover, the crossover probability(pc) must be 100%
but if the probability is 0%, the chromosome of the
present offspring will be the exact replica of the old
generation.

The reason for crossovers is the reproduction of better
chromosomes containing the good parts of the old
chromosomes as depicted in Figure 2. Survival of some
segment of the old population into the next generation is
allowed by the selection process in crossovers. Other
crossover algorithms include: two point, multi-point,
uniform, three parent, and crossover with reduced
surrogate, among others. Single point crossover is
considered superior because it does not destroy the
building blocks while additional points reduce the GAs
performance [53].
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Fig. 3: Mutation (single point) [43]

2.1.4 Mutation

This is the creation of offspring from a single parent by
inverting one or more randomly selected bits in the
chromosomes of the parent as shown in Figure 3.
Mutation can be achieved on any bit with a small
probability, for instance 0.001 [28]. Strings resulting from
the crossover are mutated in order to avoid a local
minimum. Genetic materials that may be lost in the
process of crossover and the distortion of genetic
information are fixed through mutation. Mutation
probability (pm) is responsible for determining how
frequent will be the section of chromosome subjected to
mutation. Thus, the decision to mutate a section of the
chromosome depends on thepm.

If mutation is not applied, the offspring are generated
immediately from crossover without any part of the
chromosomes being tempered. A 100% probability of
mutation means the entire chromosome will be changed
but if the probability is 0%, it indicates none of the
chromosome parts will be distorted. Mutation prevents
GA from being trapped in the local maximum [53].
Figure 3 shows mutation for a binary representation.

2.2 Genetic Algorithm Operations

When a problem is given as an input, the fundamental
idea of GA is that the pool of genetics specifically
contains the population with a potential solution or better
solution to the problem. GA use the principle of genetics
and evolution to recurrently modify a population of
artificial structures through the use of operators, including
initialization, selection, crossover and mutation, in order
to obtain an optimum solution. Normally, GA start with a
randomly generated initial population represented by
chromosomes. Solutions derived from one population are
taken and used to form the next generation population.
This is carried out with the expectation that solutions in a
new population are better than those in the old population.
The solution used to generate the next solution is selected
based on its fitness value; solutions with a higher fitness
value have higher chances of being selected for

reproduction, while solutions with lower fitness values
have a lower chance of being selected for reproduction.
This evolution process is repeated several times until a set
criterion for termination is satisfied. For instance, the
criterion could be the number in the population or the
satisfaction of the improvement of the best solutions [55].

2.3 Genetic AlgorithmMathematical Model

Several GA mathematical models are proposed in the
literature, for instance [28][56][57][58][59] and, more
recently, [60]. A mathematical model was given by [61]
for simplicity and is presented as follows:

Assumingk variables f (x1, ...,xk) : ℜk → ℜ is to be
optimized, eachxi takes values from the domain

Di = [ai,bi]⊆ ℜ and f (x1, ...,xk)> 0∀xi ⊆ Di.

The objective is to optimize a function (f) with some
required precision, six decimal places are chosen.
Therefore, eachDi will be in the form(bi − ai) ·106

. Let
mi be the least integer value such that
(bi − ai) ·106 ≤ 2mi −1.

The required precision is to havexi encoded as a binary
string ofmi; that is the number of bits in the binary string.
The computation ofxi is given by

xi = ai +decimal(1001, ...,0012) ·
bi−ai
2mi−1

interprets each string. Each chromosome is represented
with a binary string of lengthm bits,where

m = ∑k
i=1 mi,

and eachmi maps into a value from the range of
[ai,b j]. The initial population is set topop size. For each
chromosome evaluate the fitnesseval(vi) where
i = 1,2,3, ...pop size. The total fitness of the population
is given by

F = ∑pop size
i=1 eval(vi)

The probability of selection is given bypi =
eval(vi)

F
for each chromosomev1,v2,v3popsize. The cumulative
probability (qi) is given by qi = ∑i

j=1 p j for every
chromosome v1,v2...pop size where v1 and v2 are
chromosomes. A random float numberr is generated
from [0, ...,1] every time a process is selected to be in a
new population. A particular chromosome is selected for
crossover if r < pc, where pc is the probability of
crossover. For each pair of chromosomes, the integer
number point (pos) from[1, ...,m − 1] is generated.The
chromosomes (b1b2...bposbpos+1...bm) and
(c1c2...cposcpos+1...cm) that is, individuals in a
population, are replaced by their offspring
(b1b2...bposcpos+1...cm) and(c1c2...cposbpos+1...bm), after
crossover. The mutation probabilitypm, produces
estimated bits of mutationpm.m.popsize. A random
number (r) is generated from[0, ...,1] and mutation
occurs if r < pm.Thus, at this stage a new population is
ready for the next generation. The GA have been used for
process optimization [13][62][63][64][65][66][67]
robotics [68], image processing [69], pattern recognition
[70][71], and e-commerce websites [72], among others.
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Fig. 4: Feed forward neural network (FFNN) or multi-layer
perceptron (MLP)

3 Neural Networks

The effort to mathematically represent information
processing as a biological system was responsible for
originating the NN [73]. An NN is a system that
processes information similar to the biological brain and
is a general mathematical representation of human
reasoning built on the following assumptions:

–Information is processed in the neurons
–Signals are communicated among neurons through
established links

–Every connection among the neurons is associated
with a weight;the transmitted signalsamong neurons
are multiplied by the weights

–Every neuron in the network applies an activation
function to its input signals so as to regulate its output
signal [74].

In NNs, the processing elements, called neurons, units
or nodes, are assembled and interconnected in layers (see
Figure 4), neurons in the network perform functions
similar to biological neurons. The processing ability of
the network is stored in the network weights acquired
through the process of learning from repeatedly exposing
the network to historical data [75]. Although the NN is
said to emulate the brain, NN processing is not quite how
the biological brain really works [76][77].

Neurons are arranged into input, hidden and output
layers; the number of neurons in the input layer
determines the number of input variables, whereas the
number of output neurons determines the forecast
horizon. The hidden layer is situated between the input
and output layers responsible for extracting special
attributes in the historical data. Apart from the input-layer
neurons that externally receive inputs, each neuron in the
hidden and output layer obtains information from
numerous other neurons. The weights determine the
strengths of the interconnections between two neurons.
Every input from the neuron in the hidden and output
layers is multiplied by the weight, the inputs from other
neuronsare summed and the transfer function applied to
this sum. The results of the computation serve as inputs to
other neurons and the optimum value of the weight is
obtained through training [78]. In practice, computation
resources deserve serious attention during NN training so
as to realize the optimum model fromthe processing of

sample data in a relatively small computational time [79].
The NN described in this section is referred to as the
FFNN or the MLP. Many learning algorithms exist in the
literature, such as the most commonly used
back-propagation algorithm, while others include the
conjugate scale gradient, conjugate gradient method, and
back-propagation through time [80], among others.
Different types of NN are proposed in the literature
depending on the research objectives. The generalized
regression NN (GRNN) differs from the back-propagation
NN (BPNN) by not requiring the learning rate and
momentum during training [81] and is immune from
being trapped in the local minima [82]. The complex
nature of the time delay NN (TDNN) is higher than that
of the BPNN because activations in the TDNN are
managed by storing the delays and the back-propagation
error signals for every unit and time delay [83]. Time
delay values in the TDNN are fixed throughout the period
of training whereas in the adaptive TDNN (ATDNN),
these values are adaptive during training. Other types of
NN are briefly introduced as follows:

3.1 Support Vector Machine

A Support vector machine (SVM) is a new technique of
artificial NN. It was initially proposed in [84] and it is
capable of solving problems in classification, regression
analysis and forecasting. Training SVMs is equivalent to
the linear constrained quadratic programming problem,
which translates to the exceptional and global optimum.
SVMs are immune to local minima; unlike the case of
other NN training, the optimum solution to a problem
depends on the support vectors which are a subset of the
training exemplars [85].

3.2 Modular Neural Network

The modular neural network (MNN) was pioneered in
[86]. Committee machines are a class of artificial NN
architecture that uses the idea of divide and conquer. In
this technique, larger problems are partitioned into
smaller manageable units, easily solved, and the solutions
obtained from various units are recombined in order to
have a complete solution to the problem.

Therefore, a committee machine is a group of learning
machines (referred to as experts) in which the results are
integrated to yield an optimum solution, better than the
solutions of the individual experts. The learning speed of
a modular network is superior to the other classes of NN
[87].

3.3 Radial Basis Function Network

The radial basis function network (RBFN) is a class of
NN with a form of local learning and is also a competent
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alternative to the MLP. The regular structure of the RBFN
comprises the input, hidden and output layers [88]. The
major differences between the RBFN and the MLP are
that, the RBFN is composed of a single hidden layer with
a radial basis function. The input variables of the RBFN
are all transmitted to each neuron in the hidden layer [89]
without being computed with initial random values of
weights unlike the MLP [90].

3.4 Elman Neural Network

Jordans network was modified by [91] to include context
units, and the model was augmented with an input layer.
However, these units only interact with the hidden layer,
not the external layer. Previous values of Jordans NN
output are fed back into hidden units whereas the hidden
neuron output is fed back to itself in the Elman NN
(ENN) [92]. The network architecture of the ENN
consists of three layers of neurons, the internal and
external input neurons of the input layer. The internal
input neurons are also referred to as the context units or
memory. The internal input neurons receive input from
their hidden nodes. The hidden neurons accept their
inputs from external and internal neurons. Previous
outputs of the hidden neurons are stored in the neurons of
the context units [91]. The architecture of this type of NN
is referred to as a recurrent NN (RNN).

3.5 Probabilistic Neural Network

The probabilistic NN (PNN) was first pioneered in [93].
The network has the capability of interpreting the network
structure in the form of a probability density function and
its performance is better than other classifiers [94]. In
contrast to other types of NN, PNNs are only applicable
in solving classification problems and the majority of
their training techniques are easy to use [95].

3.6 Functional Link Neural Network

The functional link neural network (FLNN) was first
proposed by [96].The FLNN is a higher order NN without
hidden layers (linear in nature). Despite the linearity, itis
capable of capturing non-linear relationships when fed
with suitable and adequate sets of input polynomials
[97].When the input patterns are fed into the FLNN, the
single layer expands the input vectors. Then, the sum of
the weights is fed into the single neuron in the output
layer. Subsequently, optimization of the weights takes
place during the back-propagation training process [98].
An iterative learning process is not required in a PNN
[99].

3.7 Group Method of Handling Data

In a group method of data handling (GMDH) model of
the NN, each neuron in the separate layers is connected
through a quadratic polynomial and, subsequently,
produces another set of neurons in the next layer. This
representation can be applied by mapping inputs to
outputs during modeling [100]. There is another class of
GMDH called the polynomial NN (PoNN). Unlike the
GMDH, the PoNN does not generate complex
polynomials for a relatively simple system that does not
require such complexity. It can create versatile structures,
even with less than three independent variables.
Generally, the PoNN is more flexible than the GMDH
[101][102].

3.8 Fuzzy Neural Network

The fuzzy neural network (FNN), proposed by [103], is a
hybrid of fuzzy logic and NN which constitutes a special
structure for realizing the fuzzy inference system. Every
membership function contains one or two sigmoid
activation functions for each inference rule. Where choice
is highly subjective, the rule determination and
membership of the FNN are chosen by experts due to the
lack of a general framework for deciding these
parameters. In the FNN structure, there are five levels.
Nodes in level 1 are connected with the input component
directly in order to transfer the input vectors onto level 2.
Each node at level 2 represents the fuzzy set. Reasoning
rules are nodes at level 3 which are used for the fuzzy
AND operation. Functions are normalized at level 4 and
the last level constitutes the output nodes.A brief
explanation of various types of NN is provided in this
section but details of the FFNN can be found in [73],
PoNN/GMDH in [101][102], MNN in [ 86], RBFN in
[90], ENN in [92], PNN in [93], FLNN in [98] and FNN
in [103].The NNs are computational models applicable in
solving several types of problem including, but not
limited to, function approximation [104], prediction
[71][105][106], process optimization [66], robotics [68],
mobile agents [107] and medicine [108][109].

4 Application Domain

A hybrid of the NN and GA has been successfully applied
in several domains for the purpose of solving problems
with various degrees of complexity. The application
domains in this review are not restricted at the initial
stage. So any GA optimized NN selected for this review
is automatically considered with the corresponding
application domain as shown in Tables 2-5.
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Table 2: A summary of NN topology optimization through a GA search

Reference Domain NN Designing Issues Type of NN PopSize-Pc-Pm Result

[168] Microarray classification GA used to search for optimal topology FFNN 300 - 0.5 - 0.1 GANN performs better than BM
[115] Hand palm recognition GA used to search for optimal topology MLP 30 - 0.9 - 0.001 GANN achieved accuracy of 96%
[119] French franc forecast GA used to search for optimal topology FFNN 50 - 0.6 - 0.0033 GANN performs better than SAIC
[117] Breast cancer classification GA used to search for optimal topology MLP NR - 0.6 - 0.05 GANN achieved accuracy of 62%
[120] Microarray classification or data analysis GA used to search for optimal topology FFNN NR - 0.4 NR GANN performs better than gene ontology
[138] Pressure ulcer prediction GA used to generate rules set from SVM SVM 200 - 0.2 - 0.02 GASVM achieved accuracy of 99.4%
[169] Seismic signals classification GA used to search for optimal topology MLP 50 - 0.9 - 0.01 GAMLP achieved accuracy of 93.5%
[118] Grammatical inference classification GA used to search foroptimal topology RNN 80 - 0.9 - 0.1 GARNN achieved accuracy of100%
[195] Cotton yarn quality classification GA used to search for optimal topology MLP 10 - 0.34 - 0.002 GAMLP achieved accuracy of100%
[145] Radar quality prediction GA used to search for optimal topology ENN NR NR - NR GAENN performs better than conventional ENN
[100] Pile unit resistance prediction GA used to search for optimal topology GMHD 15 - 0.7 - 0.07 GAGMHD performs better than CPT
[24] Spatial interaction data modeling GA used to search for optimal topology FFNN 40 - 0.6 - 0.001 GANN performs better than conventional NN
[122] Nitrite oxidization rate prediction GA used to search for optimal topology BPNN 48 - 0.7- 0.05 GABPNN achieved accuracyof 95%
[121] Density of nanofluids prediction GA used to search for optimal topology BPNN 100 - 0.9 - 0.002 GABPNN performs better thanconventional

RBFN
[142] Cost allocation process GA used to search for optimal topology BPNN NR - 0.7 - 0.1 GABPNN performs better than conventional NN
[123] Cost of building construction estimation GA used to searchfor optimal topology BPNN 100 - 0.9 - 0.01 GANN performs better than conventional BPNN
[124] Stock market prediction GA used to search for optimal number of time

delays and topology
TDNN 50 - 0.5- 0.25 GATDNN performs better than TDNN and RNN

[125] Stock market prediction GA used to search for optimal number of time
delays and topology

ATDNN 50 - 0.5 - 0.25 GAATNN performs better than ATNN and TDNN

[126] Hydroponic system fault detection GA used to search for optimal topology FFNN 20 - 0.9 - 0.08 GANN performs better than conventional NN
[127] Stability numbers of rubble breakwater

prediction
GA used to search for optimal topology FNN 20 - 0.6 - 0.02 GAFNNachieved 11.68% MAPE

[128] Production value of mechanical industry
prediction

GA used to search for optimal topology FFNN 50 - NR - NR GANN performs better than SARIMA

[152] Helicopter design parameters prediction GA used to searchfor optimal topology FFNN 100 - 0.6 - 0.001 GANN performs better than conventional BPNN
[129] Function approximation GA applied to eliminate redundantneurons FNN 20 - NR - NR GAFNN achieved RMSE of 0.0231
[130] Voice recognition GA used to search for optimal topology FFNN NR NR - NR GAFFNN achieved accuracy of 96%
[154] Coal and gas outburst intensity forecast GA used to search for optimal topology BPNN 60 - NR - NR GABPNN achieved MSE of 0.012
[155] Cervical cancer classification GA used to search for optimal topology MNN 64 - 0.7 - 0.01 GANN achieved 90% accuracy
[139] Classification across multiple datasets GA used to search for rules from trained NN FFNN 10 - 0.25 - 0.001 GANN performs better than NB, B, C4.5 and

RBFN
[131] Crude oil price prediction GA used to search for optimal topology FFNN 50 - 0.9 - 0.01 GAFFNN achieved MSE of 0.9
[174] Mackey-Glass time series prediction GA is used to search for g NN topology and

selection of polynomial order
GMHD
& PoNN

150 - 0.65 - 0.1 GANN performs better than FNN, RNN and PNN

[165] Retail credit risk assessment GA used to search for optimaltopology FFNN 30 - 0.5 - NR GANN achieved accuracy of 82.30%
[159] Epilepsy disease prediction GA used to search for optimal topology BPNN NR - NR - NR GAMLP performs better than conventional NN
[132] Fault detection GA used to search for SVM radial basis

function kernel parameter (width)
SVM 10 NR - NR GASVM achieved 100% accuracy

[161] Life cycle assessment approximation GA used to search for optimal topology FFNN 100 - NR - NR GANN performs better than conventional NN
[133] Lactation curve parameters prediction GA used to search for optimal topology BPNN NR NR - NR GANN performs better than conventional NN
[125] DIA security price trend prediction GA used to search for optimal ensemble

topology
RBFN
& ENN

20 - NR - 0.05 GANN achieved 75.2% accuracy

[134] Saturates of sour vacuum of gas oil
prediction

GA used to search for optimal topology BPNN 20 - 0.9 - 0.01 GANNperforms better than conventional NN

[40] Iris, Thyroid and Escherichia coli disease
classification

GA used to find optimal centers and widths RBFN
& GRNN

NR - NR - NR GARBFN performs better than conventional
RBFN

[37] Aircraft recognition GA used to find topology MLP 12 - 0.46 - 0.05 GAMLP performs better than conventional MLP
[116] Function approximation GA used to optimize centers, widths and

connection weights
RBFN 60 - 0.5 - 0.02 GARBFN achieved MSE of 0.002444

[23] pH neutralization process GA used to search for topology FFNN 20 - 0.8 - 0.08 GANN performs better than conventional NN
[135] Amino acid in feed ingredients GA used to search for topology GRNN NR - NR - NR GAGRNN performs better than GRNN and LR
[136] Bottle filling plant fault detection GA used to search for topology BPNN 30 - 0.75 - 0.1 GANN performs better than conventional NN
[38] Cherry fruit image processing GA used to search for topology BPNN NR - NR - NR GANN performs better than conventional NN
[137] Element content in coal GA used to search for topology BPNN 40 NR - NR GABPNN achieve average prediction error of 0.3%
[34] Coal mining GA used to search for topology BPNN NR - NR - NR GABPNN performs better than BPNN and GA

Not reported (NR),Genetically optimized NN (GANN), Genetically optimized SVM (GASVM), Genetically optimized MLPN (GAMLP), Genetically optimized RNN
(GARNN), Genetically optimized ENN (GAENN), Genetically optimized GMHD (GAGMHD), Genetically optimized BPNN (GABPNN), Genetically optimized TDNN

(GATDNN), Genetically optimized ATDNN (GAATDNN), Genetically optimized FNN (GAFNN), Genetically optimized GRNN (GAGRNN),Schwarz and akaike
information criteria (SAIC), Cone penetration test (CPT),Mean absolute percentage error (MAPE), Seasonal autoregression integrated moving average (SARIMA), Nave
Bayesian (NB), Bagging (B), Linear regression (LR), Biological methods (BM), Mean square error (MSE), Root mean squareerror (RMSE), Particle swarm optimization

(PSO).

5 Neural Networks Optimization

The GA is evolutionary algorithm that works well with
NNs in searching for the best model and approximating
parameters to enhance their effectiveness
[110][111][112][113]. There are several ways in which
GA could be used in the design of the optimum NN
suitable for application in a specific problem domain. GA
can be used to optimize weights, for topology, to select
features, for training and to enhance interpretation. The
subsequent, sections present several studies of models
based on different methods of NN optimization through
GA depending on the research objectives.

5.1 Topology Optimization

The problem in NN design is deciding the optimum
configurations to solve a problem in a specific domain.
The choice of NN topology is considered a very
important aspect since inefficient NN topology will cause
the NN to fall into a local minima (local minima is a poor
weight that pretends to be the best, through which
back-propagation training algorithms can be deceived
from reaching the optimal solution). The problem of
deciding suitable architectural configurations and
optimum NN weights is a complex task in the area of NN
design [114]. Parameter settings and the NN architecture
affect the effectiveness of the BPNN as mentionedearlier.
The optimum number of layers and neurons in the hidden
layers are expected to be determined by the NN designer,
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Table 3: A summary of NN weights optimization through a GA search

Reference Domain NN Designing Issues NN Type PosSize-Pc-Pm Result

[143] Asphaltene precipitation prediction GA used for finding initial weights FFNN NR-NR-NR GAPSOANN performs better than scaling model
[144] Bratu problem GA used for searching optimal weights FFNN 200-0.75-0.2 GANN achieved 100% accuracy
[145] Radar quality prediction GA used for finding optimal weights ENN NR-NR-NR GAENN performs better than conventional ENN
[20] Plasma hardening parameters prediction

and optimization
GA used for finding Initial weights and
thresholds

BPNN 10 - 0.92 - 0.08 GABPN achieved 1.12% error

[147] Platelet transfusion requirements
prediction

GA used for finding optimal weights and
biases

FFNN 100 - 0.8- 0.1 GANN performs better than conventional NN

[149] Soils saturation prediction GA used finding optimal weights BPNN 50 - 0.9 - 0.02 GABPN performs better than conventionalNN
[142] Stock price index prediction GA used for finding optimal connections

weights
FFNN 100 - NR NR GANN performs better than BPLT and GALT

[141] Pattern recall analysis GA used for finding optimal weights HNN NR NR - 0.5 GAHNN performs better than HLR
[148] Patch selection GA used for optimum weights and biases FFNN 2000 - 0.5 - 0.1 GANN performs better than individual-based

models
[150] Sales forecast GA used for generating initial weights FNN 50 - 0.2 - 0.8 GAFNN performs better than NN and ARMA
[151] Multispectral image classification GA used for optimizingconnections weights MLP 100 - 0.8 - 0.07 GANN performs betterthan conventional BPMLP
[152] Helicopter design parameters prediction GA used for optimizing connections weights FFNN 100 - 0.6 - 0.001 GANN performs better than conventional BPNN
[153] Gol-e-Gohar Iron ore grade prediction GA used for optimizing initial weights MLP 50 - 0.8 - 0.01 GAMLP outperforms conventional MLP
[154] Coal and gas outburst intensity forecast GA used for findingoptimal weights BPNN 60 - NR NR GANN achieved MSE of 0.012
[155] Cervical cancer classification GA used for finding optimal weights MLP 64 - 0.7 - 0.01 GANN achieved 90% Accuracy
[173] Crude oil price prediction GA used for optimizing connections weights BPNN NR - NR NR GANN performs better than conventional NN
[156] Rainfall forecasting GA used for optimizing connections weights BPNN NR - 0.96 - 0.012 GANN performs better than conventional NN
[157] Customer churn in wireless services GA used for optimizingconnections weights MLP 50 - 0.3 - 0.1 GANN outperforms Z score
[158] Heat exchanger design optimization GA used for optimizingweights BPNN NR NR NR GABPN performs better than traditionalGA
[159] Epilepsy disease prediction GA used for finding optimal weights BPNN NR - NR NR GAMLP performs better than Conventional NN
[160] Rainfall-runoff forecasting GA used for finding optimal weights and

biases
BPNN 100 - 0.9 - 0.1 GABPN performs better than conventional BPN

[161] Life cycle assessment approximation GA used for finding connections weights FFNN 100 - NR NR GABPN performs better than conventional BPN
[179] Banknote recognition GA used for searching weights BPNN NRNR NR GABPNN achieved 97% accuracy
[162] Effects of preparation conditions on

pervaporation performance prediction
GA used for finding connections weights and
biases

BPNN NR - NR NR GABPN performs better than RSM

[32] Machine process optimization GA used for finding weights BPNN 225 - 0.9 - 0.01 GANN performs better than conventional NN
[37] Aircraft recognition GA used for optimizing initial weights MLP 12 - 0.46 - 0.05 GAMLP performs better than Conventional MLP
[163] Quality evaluation GA used for finding fuzzy weights FNN 50 -0.7 - 0.005 GAFNN performs better than AC and FA
[38] Cherry fruits image processing GA used for finding weights BPNN NR - NR NR GANN achieved 73% accuracy
[183] Breast cancer classification GA used for finding weights BPNN 40 - 0.2 - 0.05 GAMLP achieved 98% accuracy
[201] Stock market prediction GA used for selecting features FFNN NR NR NR GANN better than fuzzy and LTM

Average correlation coefficient (ACC), Autoregression moving average (ARMA), Response surface methodology (RSM), Alpha-cuts
(AC), Fuzzy arithmetic (FA), GA and PSO optimized NN (GAPSONN), Back propagation multilayer perceptron (BPMLP).

Table 4: A summary of research in which GA were used for feature subsets selection

Reference Domain NN Designing Issues Type of NN PopSize-Pc-Pm Result

[168] Microarray classification GA used for selecting features FFNN 300 - 0.5 - 0.1 GANN performs better than BM
[166] Palm oil emission control GA used for selecting features FFNN 100 - 0.87 - 0.43 GANN achieved r = 0.998
[115] Hand palm recognition GA used for selecting features MLP 30- 0.9 - 0.001 GAMLP achieved 96% accuracy
[195] Cotton yarn quality classification GA used for selecting features MLP 10 - 0.34 - 0.002 GAMLP achieved 100% accuracy
[167] Cognitive brain function classification GA used for selecting features MLP 30 - NR - 0.1 GAMLP achieved 90% accuracy
[26] Structural reliability problem GA used for selecting features MLP 50 - 0.8 - 0.01 UDM-GANN performs better than GANN
[169] Siesmic signals classification GA used for selecting features MLP 50 - 0.9 - 0.01 GAMLP achieved 93.5% accuracy
[170] Assessment of data captured by sensor GA used for selectingfeatures MLP 50 - 0.9 - 0.05 GAMLP achieved RRMSE of 3.6%, 5.9%and

7.5% in 3 diff. cases
[98] Multiple dataset classification GA used for selecting features FLNN

& RBFN
50 - 0.7 - 0.02 GAFLNN performs better than FLNN and RBFN

[171] Stock price index prediction GA used for selecting features FFNN 100 - NR - NR GANN performs better than BPLT and GALT
[142] Cost allocation process GA used for selecting features BPNN NR - 0.7 - 0.1 GANN performs better than conventional NN
[124] Stock market prediction GA used for selecting features TDNN 50 - 0.5 - 0.25 GATDNN performs better than TDNN and RNN
[81] Milk powder processing variables

prediction
GA used for selecting features GRNN 300 - 0.9 - 0.01 GAGRNN achieved 64.6 RMSE

[99] Vesicoureteral reflux classification GA used for selectingfeatures PNN 20 - 0.9 - 0.05 GAPNN achieved 96.3% accuracy
[172] Process optimization GA used for selecting features FFNN NR NR - NR GANN performs better than RSM
[173] Crude oil price prediction GA used for selecting features BPNN NR - NR - NR GANN performs better than conventional NN
[156] Rainfall forecasting GA used for selecting features BPNN NR - 0.96 - 0.012 GANN performs better than conventional NN
[174] Mackey - Glass time series prediction GA used for selectingfeatures GMHD

& PoNN
150 - 0.65 - 0.1 GANN performs better than FNN, RNN and PoNN

[165] Retail credit risk assessment GA used for selecting features FFNN 30 - 0.9 - NR GANN achieved 82.30% accuracy
[175] Fermentation process prediction GA used for selecting features LNM

& RBFN
NR - NR - NR GANN performs better than conventional RBFN

[176] Fermentation parameters optimization GA used for selecting features FFNN 24 - 0.9 - 0.01 GANN achieved R2 of 0.999
[132] Fault detection GA used for selecting features SVM 10 NR - NR GASVM achieved 100% accuracy
[161] Life cycle assessment approximation GA used for selectingfeatures FFNN 100 NR NR GANN performs better than conventional NN
[177] Yarn tenacity prediction GA used for selecting features BPNN 100 - 1 - 0.001 GABPNN performs better than manual machine
[178] Gait patterns recognition GA used for selecting features BPNN 200 - 0.8-0.001 GANN performs better than conventional NN
[42] Bonding strength prediction GA used for selecting features BPNN 50 - 0.5 - 0.01 GABPNN achieved 99.99% accuracy
[124] Alzheimer disease classification GA used for selecting features BPNN 200 - 0.95-0.05 GANN achieved 81.9% accuracy
[179] Banknote recognition GA used for selecting features BPNN NR NR - NR GANN 97% accuracy
[25] DIA security price trend prediction GA used for selecting features RBF

& ENN
20 - NR - 0.05 GANN achieved 75.2% Accuracy

[180] Tensile strength prediction GA used for selecting features BPNN 20 - 0.8 - 0.01 GABPNN achieved R2 of 0.9946
[181] Electroencephalogram signals

classification
GA used for selecting features MLP NR - NR - NR GAMLP achieved MSE of 0.8, 0.86 and 0.84 in 3

diff. cases
[182] Aqueous solubility GA used for selecting features SVM 50 - 0.5 - 0.3 GASVM performs better than GARBFN
[183] Breast cancer classification GA used for selecting features BPNN 40 - 0.2 - 0.05 GAMLP achieved 98% accuracy
[201] Stock market prediction GA used for selecting features FFNN NR NR NR GANN better than fuzzy and LTM

Uniform design method genetically optimized NN (UDM-GANN), Different (diff.), Relative root mean square error (RRMSE), Back-propagation linear transformation
(BPLT), Genetic algorithms linear transformation (GALT),Coefficient of determination (R2), Regression (r), Genetically optimized PNN (GAPNN), Linear neural model

(LNM).
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Table 5: A summary of research that trains an NN using a GA instead of gradient descent algorithms

Reference Domain NN Designing Issues Type of NN PopSize-Pc-Pm Result

[184] Quality evaluation and teaching GA used for training BPNN 50 - 0.9 - 0.01 GABPN performs better than conventional BPNN
[195] Cotton yarn quality classification GA used for training MLP 10 - 0.34 - 0.002 GANN achieved 100% accuracy
[117] Breast cancer classification GA used for training MLP NR - 0.6 - 0.05 GANN achieved 62% accuracy
[200] Optimization problem GA used for training MLP 50 - 0.9 - 0.25 GANN performs better than conventional GA
[199] Fuzzy grammatical inference GA used for training RNN 50 - 0.8 - 0.01 GARNN performs better than RTRLA
[169] Siesmic signals classification GA used for training MLP 50 -0.9 - 0.01 GANN achieved 93.5% accuracy
[196] Camshaft grinding optimization GA used for training ENN 100 - 0.7 - 0.03 GAENN performs better than conventional ENN
[197] MR and CT classification GA used for training FFNN 16 - 0.02 - NR GANN performs better than conventional MLP
[198] Wavelength selection GA used for training FFNN 20 - NR - NR GANN performs better than PLSR
[188] Customer brand share prediction GA used for training FFNN 20 - NR - NR GANN outperforms BPNN and ML
[194] Intraocular pressure prediction GA used for training FFNN 50 1 - 0.01 GANN performs better than GAT
[193] Bipedal balancing control GA used for training GRNN 200 - 0.5- 0.05 GAGRNN provides bipedal balancing control
[148] Patch selection GA used for training FFNN 2000 - 0.5 - 0.1 GANN performs better than individual-based

models
[192] Plasma process prediction GA used for training BPNN 200 - 0.9- 0.01 GABPN performs better than conventional BPNN
[190] Scanning electron microscope prediction GA used for training GRNN 100 - 0.95 - 0.05 GAGRNN performs better than RM
[189] Speech recognition GA used for training NFN 50 - 0.8- 0.05 GANFN performs better than traditional NFN
[151] Multispectral image classification GA used for training MLP 100 - 0.8 - 0.07 GANN performs better than conventional BPNN
[153] Gol-e-Gohar Iron ore grade prediction GA used for training MLP 50 - 0.8 - 0.01 GAMLP outperforms conventional MLP
[187] Chaotic time series data GA used for training BPNN 20 - NR - NR GANN performs better than conventional BPNN
[191] Foods freezing and thawing times GA used for training MLP 11- 0.5 - 0.005 GANN achieved 9.49% AARE
[34] Coal mining GA used for training BPNN NR - NR- NR GABPN performs better than conventional BPNN

and GA
[33] Sonar image processing GA used for training FFNN 50 NR - 0.1 GANN performs better than conventional BPNN
[201] Stock market prediction GA used for training FFNN NR NR NR GANN better than fuzzy and LTM

Real

time recurrent learning algorithms (RTRLA), Partial leastsquare regression (PLSR), Multinomial logit (ML), Goldmann applanation tonometer (GAT), Average absolute

relative error (AARE), Regression models (RM), Linear transformation model (LTM), Genetically optimized ENN (GAENN), Neural fuzzy network (NFN) Genetically

optimized NFN (GANFN).

whereas there is no clear theory for choosing the
appropriate parameter setting. GA have been widely used
in different problem domains for automatic NN-topology
design, in order to deviate from problems attributed to its
design, so as to improve its performance and reliability.

The NN topology, as defined in [115], constitutes the
learning rate, number of epochs, momentum, number of
hidden layers, number of neurons; (input neurons and
output neurons), error rate, partition ratio of training,
validation and testing data sets. In the case of RBFN,
finding the center and width in the hidden layer and the
connection weights from the hidden to the output layer
determines the RBFN topology [116]. Other settings
based on the types of NN are shown in the NN design
issues columns in Tables 25.

There are several published works for GA optimized
NN topology in various domains. For example, Barrioset
al.[117] optimized NN topology and trained the network
using a GA and subsequently built a classifier for breast
cancer classification. Similarly, Delgado and
Pegalajar[118] optimized the topology of the RNN based
on a GA search and built a model for grammatical
inference classification. In addition, Arifovic and
Gencay[119] used a GA to select the optimum topology
of an FFNN and developed a model for the prediction of
the French franc daily spot rate. GA is usedto select
relevant feature subsets then optimized the NN topology
to create a model of the NN for hand palm recognition
[115]. Also, Bevilacquaet al. [120] classified cases of
genes by applying an FFNN model in which the topology
was optimized using a GA. In [121],a GA was employed
to optimize the topology of the BPNN and used as a
model for predicting the density of nanofluids. GA is used
to optimize the topology of GMDH and used it

successfully as a model for the prediction of pile unit
shaft resistance[100].

The GA is applied to optimize the topology of an NN
and applied it to model the spatial interaction data[24].
GA is used to obtain the optimum configuration of the
NN topology. Then, he successfully used his model to
predict the rate of nitride oxidization [122]. Kimet al.
[123] used a GA to obtain the optimum topology of the
BPNN and developed a model for estimating the cost of
building construction. Kimet al.[124] optimized subsets
of features, number of time delays and TDNN topology
based on a GA search. A TDNN model was built to detect
a temporal pattern in stock markets. Kim and Shin [125]
repeated a similar study using an ATDNN and a GA was
used to optimize the number of time delays and the
ATDNN topology. The result obtained with the ATDNN
model was superior to that of the TDNN in the earlier
study conducted in [124]. A fault detection system was
designed using an NN in which its topology was
optimized based on a GA search. The system had
effectively detected malfunctions in a hydroponic system
[126]. In [127], FNN topology was optimized using a GA
in order to construct a prediction model. The model was
then effectively applied to predict the stability number of
rubble breakwaters. In another study, the optimal NN
topology was obtained through a GA search to build a
model. The model was subsequently, used to predict the
production value of the mechanical industry in Taiwan
[128]. In a separate study, an NN initial architectural
structure was generated by the K-nearest-neighbor
technique at the first stage of the model building process.
Then, a GA was applied to recognize and eliminate
redundant neurons in the structure in order to keep the
root mean square error closer to the required threshold. At
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the third stage, the model was used in approximating two
nonlinear functions namely, a nonlinear sinc function and
nonlinear dynamic system identification [129]. Melin and
Castillo [130] proposed a hybrid model combining an
NN, a GA and fuzzy logic. A GA was used to optimize
the NN topology and build a model for voicerecognition.
The model was able to correctly identify Spanish words.

GA is applied to searchfor the optimal NN topology
and developed a model. The model was then applied to
predict the price of crude oil[131]. In another study, an
SVM radial basis function kernel parameter (width) was
optimized using a GA as well as for selection of a subset of
input features. At the second stage, the SVM classifier was
built and deployed to detect machine conditions (faulty or
normal) [132].

In [133] GA with pruning algorithms was used to
determine the optimum NN topology. The technique was
employed to build a model for predicting lactation curve
parameters, considered useful for the approximation of
milk production in sheep. Wanget al.[134] developed an
NN model for predicting the saturates of the sour vacuum
of gas oil. A model, through which its topology was
optimized by a GA search,was built. In [40],a GA was
used to optimize the centers and widths during the design
of the RBFN and GRNN classifiers. The effectiveness of
the proposal was tested on three widely known databases
namely, Iris, Thyroid and Escherichia coli disease, in
which high classification accuracy was achieved.
However, Billings and Zheng [116] applied GA to
optimize centers, widths and connection weights of an
RBFN from the hidden layer to the output layer and built
a model for function approximation. Single and multiple
objective functions were successfully used on the model
to demonstrate the efficiency of the proposal.

In another study, a GA was proposed to automatically
configure the topology of an NN and established a model
for estimating the pH values in a pH neutralization
process [23]. In addition, a GRNN topology was
optimized using a GA to build a predictor which was then
applied to predict the amino acid levels in feed
ingredients [135]. In [136], a BPNN topology was
automatically configured to construct a model for
diagnosing faults in a bottle filling plant. The model was
successfully deployed to diagnose faults in the bottle
filling plant. The research presented in [137] optimized
the topology of a BPNN using a GA which was then
employed to build a model for detecting the element
contents (carbon, hydrogen and oxygen) in coal.

Xiao and Tian[34] used a GA to optimize the
topology of an NN as well as the training of the NN to
construct a model. The model was used to predict the
dangers of spontaneous combustion in coal layers during
mining.In [138],a GA was used to generate rules from the
SVM to construct rule sets in order to enhance its
interpretability capability. The proposed technique was
applied to the popular Iris, BCW, Heart, and Hill-Valley
data sets to extract rules and build a classifier with
explanatory capability. Mohamed[139] used a GA to

extract approximate rules from Monks, breast cancer and
lenses databases through a trained NN so as to enhance
the interpretability of the NN. Table 2 presents a summary
of the NN topology optimization through GA together
with the corresponding application domains, types of NN
and the optimal values of the GA parameters.

5.2 Weights Optimization

GA are considered to be among the most reliable and
promising global search algorithms for searching NN
weights, whereas local search algorithms, such as
gradient descent, are not suitable [140] because of the
possibility of being stuck in local minima. According to
Harphamet al.[46], when a GA is applied in searching
for the optimal or near optimal weights, the probability of
being trapped in local minima is removed but there is no
assurance of convergence to the global minimum.It was
mentioned that an NN can modify itself to perform a
desired task if the optimal weights are established[141].

Several scholars used a GA to realize these optimal
weights. In [20],a GA was used to optimize the initial
weights and thresholds to builda model of NN predictor
for predicting optimum parameters in the plasma
hardening process. Kim and Han [142] applied a GA to
select subsets of input features as NN-independent
variables. Then, in the second stage,a GA was used to
optimize the connection weights. Last, a model for
predicting the stock price index was developed and
successfully used to predict the stock price index. Also, in
[143] NN initial weights were selected based on a GA
search to build a model. The model was then applied to
predict asphaltene precipitation. In addition, a GA was
used to optimize weights and establishthe FFNN model
for solving the Bratu problem Solid fuel ignition models
in thermal combustion theory yield a nonlinear elliptic
eigenvalue problem of partial differential equations,
namely the Bratu problem [144]. Dinget al. [145] used a
GA to find the optimal ENN weights and topology and
built a model. The standard UCI (a machine learning
repository) data set was used by the authors to
successfully apply the model to predict the quality of
radar. Fenget al. [146] used GA to optimize the weights
and biases of the BPNN and to establish a prediction
model. Then, the model was applied to forecast ozone
concentration.

In [147],a GA is used to optimize the weights and
biases of the NN and developed a model for the
prediction of platelet transfusion requirements. In [148],a
GA was used to search for the optimal NN weights and
biases as well as in training to build a model. Then, the
model was successfully applied to solve patch selection
problems (game involving predators, prey and a
complicated vertical movement situation for a fish,
namely planktivorous) with satisfactory precision. The
weights of NN was optimized by a GA for the modeling
of unsaturated soils. Then, the model was used to
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effectively predict the degree of soil saturation [149].
Similarly, a model for storing and recalling patterns in a
Hopfield NN (HNN) was developed based on GA
optimized weights. Subsequently, the model was able to
effectively store and recall patterns in an HNN model
[141]. The modeling methodology in [150] used a GA to
generate initial weights for an NN. In the second stage, a
hybrid sales forecast system was developed based on the
NN, fuzzy logic and GA. Then, the system was efficiently
applied to predict sales.

In [151] GA is used to optimize the connection
weights and training of an NN to construct a classifier.
The classifier was subsequently applied in the
classification of multispectral images.Xin-laiet al. [152]
optimized connection weights and the NN topology by a
GA and established a model for estimating the optimal
helicopter design parameters. Mahmoudabadiet al. [153]
optimized the initial weights of the MLP and trained it
with a GA to develop the model to classify the estimated
grade of Gol-e-Gohar iron ore in southern Iran.

Studies in [154] used a GA in finding the optimal
weights and topology of an NN to construct an intelligent
predictor. The, predictor was used to predict coal and gas
outburst intensity. In [155], a classifier for detecting
cervical cancer was constructed using MLP, rough set
theory, ID3 algorithms and a GA. The GA was used to
search for the optimal weights and topology of the MLP
to build a hybrid model for the detection and
classification of cervical cancer. Similarly, [156]
employed a GA in their study to optimize the connection
weights and selection of subsets of input features to
construct an NN model. Furthermore, the model was
implemented to forecast rainfall. In [157],a GA was used
to optimize the NN connection weights to construct a
classifier for the prediction of customer churn in wireless
services subscriptions.

Peng and Ling [158] applied a GA to optimize NN
weights. Then, the technique was deploy to implement a
model for the optimization of the minimum weights and
the total annual cost in the design of an optimal heat
exchanger. Similarly, a classifier for predicting epilepsy
was designed based on the hybridization of an NN and a
GA. The GA was used to optimize the NN weights and
topology to build the classifier. Finally, the classifier
achieved a prediction accuracy of 96.5% when tested with
a sample dataset [159]. In a related study, BPNN
connection weights and biases were optimized using a
GA to model a rainfallrunoff relationship. The model was
then applied to effectively forecast runoff [160]. In
addition, a model for approximating the life cycle
assessment of a product was developed in stages. In the
first stage, a GA was used to select feature subsets in
order to use only relevant features. A GA was also used to
optimize the NN topology as well as the connection
weights. Finally, the technique was implemented to
approximate the life cycle of a product (e.g.a computer
system) based on its attributes and environmental impact

drivers, such as winter smog, summer smog, and ozone
layer depletion, among others [161].

In [162], weights and biases were optimized by a GA
to build an NN predictor. The predictor was applied to
predict the effects of preparation conditions on
pervaporation performances of membranes. In [32],a GA
was used to optimize NN weights for the construction of a
process model. The constructed model was successfully
used to select the optimal parameters for the turning
process (setting up the machine, force, power, and
customer demand) in manufacturing, for instance,
computer integrated manufacturing.

Abbas and Aqel[37] implemented a GA to optimize
the NN initial weights and configure a suitable topology
to build a model for detecting and classifying types of
aircraft and their direction. In another study, fuzzy
weights of FNN were optimized using a GA to construct
a model for evaluating the quality of aluminum heaters in
a manufacturing process [163]. Lastly,Guyer and Yang
[38] proposed a GA to evolve NN weights and topology
in order to develop a classifier to detect defects incherries.
Table 3 presents a brief summary of the weight
optimizations through a GA search together with the
corresponding application domains, optimal GA
parameter values and types of NN applied in separate
studies.

5.3 Genetic algorithm selection of subset
features as NN independent variables

Selecting a suitable and the most relevant set of input
features is a significant issue during the process of
modeling an NN and other classifiers [164]. The selection
of subset features is aimed toward limiting the feature set
by eliminating irrelevant inputs so as to enhance the
performance of the NN and drastically reduce CPU time
[14]. There are several techniques for reducing the
dimensions of the input space including correlation, gini
index, and principal components analysis. As pointed out
in [165], a GA is statistically better than these mentioned
methods in terms of feature selection accuracy.

The GA is applied by Ahmadet al. [166] to select the
relevant features of palm oil pollutants as input for an NN
predictor. The predictor was used to control emissions in
palm oil mills. Boehmet al.[167] used a GA to select a
subset of input features and to build an NN classifier for
identification of cognitive brain function. In [168],a GA
was used in the first phase to select genes from a
microarray dataset. In the second phase, a GA was
applied to optimize the NN topology to build a classifier
for the classification of genes. Similarly, in [26],a GA was
applied to select the training dataset for the modeling of
an NN. The model was then used to estimate the failure
probability of complicated structures, for example,a
geometrically nonlinear truss. The studies conducted
Curilem et al.[169], MLP topology, training and feature
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selection were integrated into a single learning process
based on a GA to search for the optimum MLP classifier
for the classification of seismic signals. Dieterleet
al.[170] used a GA to select a subset of input features for
an NN predictor and used the predictor to analyze data
measured by a sensor. In [98], a GA was used in a
classification problem to select subsets of features from
11 datasets for use in an algorithm competition. The
competing algorithms include hybrid FLNN, RBFN and
FLNN. All the algorithms were given equal opportunities
to use feature subsets selected by the GA. It was found
that the hybrid FLNN was statistically better than the
other algorithms.

In a separate study, Kim and Han[171] proposed a two
phase technique for the design of a cost allocation model
based on the hybridization of an NN and a GA. In the first
phase, a GA was applied to select subsets of input
features. In the second phase, a GA was used to optimize
the NN topology and build a model for cost allocation. In
[81], a GA was used to select a subset of input features to
construct a GRNN model. Then, the model was
successfully applied to predict the responses of lactose
crystallinity, free fat content and average particle size of
dried milk product.Mantzariset al. [99] used a GA to
select a subset of input features to build a PNN classifier.
Hence, the classifier was applied to effectively classify
vesicoureteral reflux.Nagata and Hoong[172] optimized
the NN input space based on a GA search and an efficient
model was built for the optimization of the fermentation
process. Tehrani and Khodayar[173] used a GA to select
subsets of input features and optimization of connection
weights to construct an NN prediction model. The
predictor was used to predict crude oil prices. In [174], a
GA was used to select subsets of input features, select
polynomial order and optimize the topology of a hybrid
GMHD-PoNN and build a model. The model was
simulated with the popular Mackey-Glass time series to
predict future values of the Mackey-Glass time series. A
study conducted in [165] also used a GA to select subsets
of input features and optimized the NN topology to
construct a model. The technique was deployed to build
an NN classifier for predicting borrower ability to repay a
loan on time.

Potocnik and Grabec [175] used a GA to select
subsets of input features to build an RBFN model for the
fermentation process. The model was then, used to
predict future product concentration and fermentation
efficiency. Prakashamet al. [176] applied a GA to reduce
input dimensions and build an NN predictor. The
predictor was employed to predict the optimal
biohydrogen yield. Setteet al. [177] used a GA to select
feature subsets for the NN model. The model was
successfully applied to predict yarn tenacity.

In [178], a GA was used to select the input feature
subsets about a patient as input to an NN classifier
system. The inputs were used by the classifier to predict
gait patterns of individual patients. Similarly, Su and
Chiang[42] applied a GA to select subsets of input

features for modeling a BPNN. The most relevant wire
bonding parameters generated by the GA were used by
the NN model to predict optimal bonding strength.
Takedaet al.[179] used a GA to optimize NN weights and
select subsets of input features to construct an NN
banknote recognition system. Consequently, the system
was deployed to recognize ten different banknotes
(Japanese yen, US dollars, German marks, Belgian
francs, Korean won, Australian dollars, British pounds,
Italian lira, Spanish pesetas, and French francs). It was
found that over 97% recognition accuracy was achieved.

In [25] an ensemble of RBFN and BPNN topologies,
as well as a selection of subsets of input features, was
optimized using a GA to construct a classifier. The
classifier was applied to predict the daily trend variation
of a DIA (a security traded on the Dow Jones Industrial
Average) closing price. In [180], input parameters to an
NN model were optimized by a GA. The optimal
parameters were used to build an NN model for the
prediction of tensile strength for use in aluminum laser
welding automation. In [181], a GA was used to select
subsets of input features applied to develop an NN
classifier. The classifier was then used to select a channel
and classify electroencephalogram signals. In [182], a GA
was used to select subsets of input features. The subsets
were used by an SVM model to predict aqueous solubility
(logSw) and its stability was robust. Karakset al. [183]
built a BPNN classifier based on subsets of input features,
selected using a GA and genetically optimized weights.
The classifier was used to predict axillary lymph nodes so
as to determine patients breast cancer status. Table 4
presents a summary of the research in which a GA was
used to reduce the dimension space for modeling an NN.
Corresponding application domains, optimal GA
parameter values and types of NN are also presented in
Table 4.

5.4 Training NNs with GA

Back propagation algorithms are widely used learning
algorithms but still suffer from application problems,
including difficulty in determining the optimum number
of neurons, a slow rate of convergence, and the possibility
of being stuck in local minima [116,?]. The back
propagation training algorithms perform well with simple
problems but, as the complexity of the problem increases,
their performances reduce drastically. Furthermore,
discontinuous neuron transfer functions cannot be
handled by back propagation algorithms due to their
differentiability [33]. Evolutionary programming
techniques, including GA, have been proposed to
overcome these problems [?].

The pioneering work that combined NNs and GA was
the research conducted byMontana and Davis [33].The
authors applied a GA in training and established a model
of FFNN classification for sonar images. This approach
was used in order to deviate from problems associated
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with back propagation algorithms and it was successful
with superior results in a short computational time. In a
similar study, Sexton and Gupta[187] used a GA to train
an NN on five chaotic time series problems for the
purpose of comparing the efficiency of GA training with
back propagation (Norm-Cum-Delta algorithms) training.
The results suggested that GA training was more efficient,
easy to use and more effective than that of the
Norm-Cum-Delta algorithms. In another study, [188]
used a GA to train an NN instead of using the gradient
descent algorithms to build a model for the prediction of
customer brand share. Leunget al. [189] constructed a
classifier for speech recognition by using a GA to train an
FNN. The classifier was then applied to recognize
Cantonese-command speech.

The GA is used to train a GRNN and established the
model of a GRNN for the prediction of scanning electron
microscopy [190]. Goni et al.[191] applied a GA to
search for the optimal or near optimal initial training
parameters of an NN to enhance its generalization ability.
Next, an NN model was developed to predict food
freezing and thawing times.Kim and Bae [192] applied a
GA to optimize the BPNN training parameters and then
built a model of a BPNN for the prediction of plasma
etches. Ghorbaniet al. [193] used a GA to train an NN
and construct a model for the bipedal balancing control
applicable in scanning robotics. In [194],a GA was used
to generate training data. The NN model was applied to
predict intraocular pressure. Amin[195] used a GA to
train and find the optimum topology of the NN and build
a model for the classification of cotton yarn quality. In
[196],a GA was applied in training an NN to build a
model for the optimization of parameters in the numerical
control of camshaft (a key component of an automobile
engine) grinding. Dokur[197] proposed a GA to train an
NN and used the model to classify magnetic resonance
and computer graphics images. Feiet al. [198] applied a
GA to train and construct an NN model for the selection
of wavelengths. Blancoet al. [199] trained an RNN using
a GA and built a fuzzy grammatical inference model.
Subsequently, the model was applied to construct fuzzy
grammar. Behzadianet al.[200] used a GA to train an NN
and build a model for determining the best possible
position for installing pressure loggers (the purpose of
pressure loggers is to collect data for calibrating a
hydraulic model) in a water distribution system.Table 5
presents a summary of the research where GA were used
as training algorithms with the corresponding application
domain, optimal GA parameter values and types of NN
applied in the studies. In a study conducted byKim and
Boo[201] GA,fuzzy and linear transformation models
were applied to select feature subsets to serve as inputs to
NN. Furthermore, GA was employed to optimize the
weights of NN through training to build a predictor. The
predictor was deployed to predict the pattern of stock
market.

6 Conclusions and Future Research

We have presented a review of the state of the art view of
the depth and breadth of NN optimization through GA
searches. Other significant conclusions made from the
review are summarized as follows.A GANN can
successfully diverge from the limitations attributed to
NNs and converge to optimum solutions (see column 6 in
Tables 25) in a relatively lower CPU time, when properly
designed.Optimal values of GA parameters used in
various studies, together with the corresponding
application domain, NN design issues using GA, type of
NN applied in the studies and results obtained, are
reported in Tables 25. The vast majority of the literature
provided a complete combination of population size,
crossover probability and mutation probability to
implement GA and to converge to the best solution.
However, a few studies completely ignored reporting the
values, whereas others reported one or two of the values.
The NR as shown in Tables25 indicates that GA
parameter values were not reported in the literature
selected for this review.

The dominant technique used by the authors in the
literature to decide the values of strategic parameters,
namely population size, crossover probability and
mutation probability, was through the laborious efforts of
trial and error. Others adopted the values from previous
literature, not necessarily used in the same problem
domain. This could probably be the reason for the
inconsistencies in the population sizes, crossover
probabilities and mutation probabilities. Despite the
successes recorded by GANN in solving problems in
various domains, the choice of values for critical GA
operators is still far from ideal to be regarded as a general
framework through which these values can be realized.
However, the optimal combination of these values is a
prerequisite for the successful implementation of GA.

As mentioned earlier, the most proper way to choose
values of GA parameters is to consult previous studies
with a similar problem description and adopt these values.
Therefore, this article may provide a proper guide to
novice as well as expert researchers in choosing optimal
values of GA operators based on the problem description.
Subsequently, researchers can circumvent or reduce the
present practice of laborious, time consuming trial and
error techniques in order to obtain suitable values for
these parameters.

Most of the former works in the application of GA to
optimize NNs heavily depend on the FFNN architecture
as indicated in Tables 25 despite the existence of other
categories of NN in the literature. This is probably
because the FFNNs are better than other existing NNs in
terms of pattern recognition, as pointed out in [202].

The aim and motivation of this paper is to act as a
guide for future researchers in this area. These researchers
can adopt a particular type of NN together with the
indicated GA operator values based on the relevant
application domain.
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Notwithstanding the ability of GA to extract rules
from the NN and enhance its interpretability, it is evident
that research in that direction has not been given adequate
attention in the literature. Very few reports on the
application of GA to extract rules from NNs have been
encountered in the course of this review. More research is,
therefore, required in this area of interpretability in order
to finally eliminate the ”black box” nature of the NN.
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