
Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) 537

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100215

A Performance-based Approach to Automatic
Redeployment of Enterprise Software Applications

Habib Seifzadeh1,∗, Hassan Abolhassani2 and Mohsen Sadighi Moshkenani3

1 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Computer Engineering Department, Sharif University of Technology, Tehran, Iran
3 School of Science and Engineering, Sharif University of Technology, International Campus, Kish Island, Iran

Received: 12 Aug. 2014, Revised: 7 Jul. 2015, Accepted: 16 Aug. 2015
Published online: 1 Mar. 2016

Abstract: Update of software usually equates disruption to a program’s execution. However, such disruptions in the execution of
applications that provide round-the-clock services is notdesirable. Examples of such applications include multi-tier enterprise systems
with which users may interact via distinct presentation tiers at the same time. Existing software updating systems do not operate in the
enterprise applications, or they need most of the redeployment tasks to be performed manually. In this paper, we presenta framework
capable of Automatically Redeploying Enterprise SoftwareApplications (ARESA). This system combines the idea of incremental and
integral updates to preserve the consistency of applications and to minimize disruption times during redeployments atthe same time. It
also utilizes the update bringing forward techniques in order to enhance the system’s predictability. ARESA has been used in updating
a desktop costingapplication, acustom webprogram, andJoomlacontent management system. The experimental results show that in
applications with real-life complexities, ‘speed’ and ‘size’ overheads incurred by ARESA are less than 19% and 1%, respectively.

Keywords: Software Maintenance, Dynamic Software Updating, Enterpirse Software Systems, Availability

1 Introduction

Traditional redeployment1 of multi-tier enterprise
software systems requires all the tiers to be stopped and
replaced with their new versions so that the execution
could be continued. This process is labour-intensive for
the programmers and it also causes long disruptions for
the end-users. Today, most highly available applications
such as industrial web sites, project and content
management systems, transactional banking and
embedded control applications suffer from these
unpleasant disruption times.

Dynamic Software Updating (DSU) systems are used
to update software applications at run-time in order to
reduce disruptions experienced by the end-users [1–8].
Existing dynamic updating systems are usually only able
to update particular tiers of the applications, and

1We mainly use the terms ‘redeployment’ and ‘update’ for
the whole process of updating an enterprise application and
upgrading a special component respectively, although theymay
even be used interchangeably.

therefore, are not suitable for redeploying enterprise
software systems [2, 5, 7, 9–11]. Besides, some
researchers have claimed dynamic updating systems are
not capable of simultaneously updating distinct front-ends
in the presentation tier [7,12,13].

On the other hand, there are facilities in the software
maintenance literature simplifying redeployment of the
enterprise applications [14–16]. However, most parts of
the redeployment tasks must be performed manually in
these facilities [14–16]. Therefore, they do not resolve the
issue of long execution interruptions in the enterprise
systems. Based on this literature, an updating system able
to automatically update all tiers of a multi-tier enterprise
application in order to minimize the redeployment
disruption time has remained an elusive
endeavor [2,5,7,9,13].

The current study is an attempt to automate the
redeployment of multi-tier enterprise software systems
which may include distinct front-ends in the presentation
tier. To do so, ARESA provides a novel update model that
combines integral updates, which replace the whole
application at run-time, with incremental updates that

∗ Corresponding author e-mail:seifzadeh@iaun.ac.ir

c© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100215

538 H. Seifzadeh et al.: A performance-based approach to...

replace only modified parts. This is to ensure consistency
while reducing the end-users’ short disruptions. Another
unique feature of ARESA is its update timing approach
which is a cross between the programmer-specified and
the update bringing forward techniques, and this makes it
more predictable [13]. Section4 describes the approaches
used in ARESA precisely.

With respect to the implementation, ARESA has been
developed as web services in order to simplify its
distribution and extension. It currently supports updating
of applications written in Java, Microsoft C# and PHP
programming languages alongside MySQL and Microsoft
SQL Server database management systems. In addition,
the following by-products have been obtained during
development of ARESA: (1) DBComparator which
reports differences of two databases facilitating
generation of the database patches, (2) DSUInjector
which injects automatic updating facilities to the source
code of a front-end to make it dynamically updatable, and
(3) DBFiller that populates a database with desired
number of temporary records for performance testing of
our proof of concept framework.

ARESA has been evaluated on: (1) HABC, a costing
application developed in Microsoft C# 2008 and
Microsoft SQL server 2005 which performs heavy
costing calculations, (2) a custom web application
developed in PHP 5.3 and MySQL1 5.5 that fetches and
displays large amount of information from the database,
and (3) Joomla2, a popularContent Management System
(CMS) deployed on Apache3 2.2 and MySQL 5.5.
Performance barely degrades with ARESA deployed, at
most 15% in popular web-based applications such as
Joomla, and no more than 19% in startup of real-life
desktop programs4. Also, experiments show ARESA does
not impose more than 1% overhead on the size of
conventional applications.

The remaining sections of this paper are organized as
follows: Section 2 reviews the software updating
literature and describes the goals of ARESA in detail.
Section 3 includes the description of applications for
which ARESA has been designed and the assumptions
made in this paper. In Section4, the leveraged approaches
used in this paper are described. In Section5, we present
ARESA’s architecture and its implementation details as
well as the process of patch generation and application.
Sections6 and 7 provide correctness and practicability
proof of ARESA, respectively. The paper concludes with
Section8, providing a summary of the work and areas of
future or further work.

Main contributions of ARESA in comparison with the
currently available software updating systems are:

1http://www.mysql.com
2http://www.joomla.org
3http://www.apache.org
4Application clients, programs or front-ends are used

interchangeably throughout this paper.

–ARESA automates redeployment of the enterprise
software systems composed of multiple tiers which
may have distinct front-ends in the presentation tier,

–ARESA provides a novel update model and an update
timing technique to achieve short disruptions,
predictability and consistency at the same time,

–ARESA supports state transformation of all tiers
during the redeployment, such as in case of database
or web front-end upgrades.

2 Background and related work

As described in Section1, the main goal of ARESA is to
reduce disruption times during the redeployment of the
multi-tier enterprise software applications. In this section,
we first introduce the multi-tier enterprise applications.
Then, the studies conducted on the maintenance of such
systems are reviewed and discussed. Finally, the exact
definition of the problem ARESA has been designed to
tackle is given.

Multi-tier enterprise software applications are systems
which are usually composed of three distinct tiers. The
presentation tier is used to get inputs from the end-users
and send outputs to them. This tier contains one or
possibly more front-ends (e.g., web, desktop, mobile) to
present the users with results in different formats. The
application or logic tier encompasses business workflows
and the data tier includes a database as well as
components through which the other tiers can
communicate with the database. Upgrading such an
application requires components of all tiers to be replaced
with their new versions.

One way to update the enterprise software
applications is to use redeployment facilities provided by
the enterprise execution platforms [14–16]. Although
these facilities enjoy the advantage of consistent
redeployment which is due to the atomic performance of
redeployments, they have rarely been devised for certain
execution platforms such as PHP. Furthermore, these
facilities mainly do not automate the whole process of the
redeployment, and therefore, they must be integrated with
other manual tasks in order for the redeployment to
become complete [14–16]. This is not in line with our
short disruption time objective.

Another method of updating an enterprise software
application is to leverage dynamic software updating
systems [1, 13]. These systems are able to update
programs at run-time without the end-user’s intervention.
Most of the dynamic updating systems also transfer the
state of previous programs during the upgrades so the
end-users do not have to re-submit their uncompleted
tasks after upgrades [1, 2, 4, 6, 17–19]. This causes the
update disruption experienced by the end-users to be even
more shortened.

To our knowledge, the concept of dynamic software
updating has emerged from the early research studies on
the software maintenance such as Fabry, and

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 539

DYMOS [20, 21]. Those systems are mostly able to
dynamically update desktop applications written by
special-purpose programming languages developed at
those times. Other early DSU systems dynamically
update components of the operating systems [22].
Because of the importance of availability in the operating
systems, the researchers have been conducting studies
focusing on the dynamic updating of the operating
systems ever since [23–27].

There are other dynamic updating systems able to
dynamically update embedded and real-time
applications [8, 28–31], desktop
applications [4, 17, 32–35], server
programs [1,2,18,36–40], and components of distributed
systems [19, 41–43]. The above on-line updating systems
are only able to update codes in the application logic tier
at run-time. The other group of dynamic updating systems
deal with upgrading the data tier [9, 44, 45]. To this end,
they upgrade databases without propagating data
modifications to the other tiers of the application.
Although these systems manage to update the databases
at run-time, they fail to upgrade the application logic tier
or front-ends of the presentation tier.

As the body of research on the dynamic software
updating suggests, the currently available DSU systems
mainly focus on a particular tier of the application. Due to
the complexities in dynamic updating of multiple
components of an application, such systems are not well
suited for updating multi-tier enterprise software systems.
This issue has been identified in several
studies [2,5,7,12,13], and it seems it has remained to be
unresolved so far [10,11,46]. The issue has become even
more noticeable in the enterprise applications consisting
of web front-ends, because this type of front-ends have
received less attention by the DSU systems compared to
their desktop equivalents while they usually have more
stringent availability requirements.

Moreover, one of the important problems the DSU
systems are dealing with is that they either do not
guarantee the consistency completely because of the
variety of component versions in the memory [4, 47–49],
or in order to preserve consistency they wait too long for
the appropriate update time and this makes them
unpredictable [1,6,25,34,36,37,50]. Although, a number
of studies focusing on simultaneous achieving of both
consistency and predictability have been conducted, they
do not specifically turn to the enterprise software
systems [51,52].

Considering the above shortcomings in the existing
software updating systems, our purpose in this study is to
develop an updating system with characteristics listed
below: (1) our system should be able to update the entire
tiers of the enterprise applications automatically (even
those containing distinct front-ends in the presentation
tier), (2) it should redeploy applications within short and
predictable time frames, (3) it must not violate programs’
consistency because of the updating, and (4) it has to
transfer the state of all tiers to the new versions. It should

be noted that the consistency will be our main priority in
case we fail to keep a balance amongst the above
objectives.

3 Assumptions

Designing ARESA, we have made two assumptions
explained hereafter:

–Data-centric applications.First, we suppose different
front-ends of the same enterprise application
communicate only via the global database; no direct
messages pass back and forth between them. Since
ARESA employs the incremental updates under
special circumstances, there may be front-ends of
different versions in the memory at the same time.
This assumption conservatively forces front-ends of
distinct versions not to interact with each other
directly. To our knowledge, most enterprise
applications, especially those using
Model-View-Controller (MVC) architecture, make
similar assumptions. For example, email servers use a
single database while their different mail clients such
as web mails orInternet Message Access Protocol
(IMAP) applications access emails only through that
database. The other example is banking systems in
which all web and mobile applications connect only
to a database to perform accounting transactions.
Moreover, the above assumption does not restrict
ARESA to updating of large number of software
applications which have a single user interface
alongside their databases. Examples of these systems
include CMSs, web project management and
collaboration systems.

–Software requirements.Since ARESA components
have been implemented as Java web services, each
machine containing a component of the ARESA must
have a Java web container installed and running.
Fortunately, due to the multi-platform availability of
Java, this requirement does not violate the ARESA
generality. This web container can be as small as a
Tomcat server1 occupying a few megabytes of
storage, although we exploit the larger weblogic
server2 for our evaluations.

4 ARESA approaches

In this section, we present approaches employed by
ARESA in order to fulfill the aims mentioned in
Section2. The ARESA update model has been described
in the first two subsections; in the first subsection, it is
assumed that only programs of the presentation tier have
been modified while in the second subsection, the

1http://tomcat.apache.org/
2http://www.oracle.com/technetwork/middleware/weblogic/index.html

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

540 H. Seifzadeh et al.: A performance-based approach to...

assumption is that the data tier has been changed. In the
third and fourth subsections, the timing and the state
transformation techniques used in ARESA are described,
respectively. Justification for each methodology is
provided along with a discussion of alternative
approaches in each case.

4.1 Updating application clients

There are two significant approaches to update programs
in the presentation tier in the literature [13]: (1) an
incremental model in which only updated components are
replaced in the memory [1,2,4,17,18,27,35,37], and (2)
an integral model that replaces the whole programs
irrespective of their updated components [36, 40]. The
first method prevents unnecessary replacements during
the upgrade, resulting in short disruption times [13].
However, this technique interposes an extra level of
access indirection between each two components in the
program which leads to more overhead on the
performance of the programs [13]. Because of the variety
of tiers and components in the enterprise software
systems, any imposed overhead amongst components
may cause significant overall performance degradations.
In addition, replacing only modified parts of the
application causes components of different versions to
co-exist in the memory which may result in consistency
violations [13].

The second model, on the other hand, does not require
consistency preservation mechanisms because it replaces
the whole application at run-time [13]. The other benefit
of this approach is that it supports most kinds of changes
in the source codes of the front-ends [13]. Nevertheless,
this approach causes long update durations owing to the
unnecessary module replacements in the memory.
Replacing all tiers of the application and their
components for small changes in a front-end leads to
many unnecessary replacements and is not justifiable in
the enterprise systems.

To satisfy our both short disruption time and
consistency goals, ARESA combines the two update
models described above. It replaces the entire modified
front-end while allowing other front-ends and other tiers
to continue execution. For instance, consider a banking
application with two front-ends, a web-based and a
desktop in its presentation tier, and a new version be
available for the web front-end to fix a bug in one of its
HTML files. ARESA replaces the whole web front-end
while it allows the desktop program to continue its
execution.

Based on this approach, there is no need to use access
indirections within front-ends because the whole modified
front-end is renewed. Furthermore, we have a short
disruption time because only the modified front-end is
redeployed. Of note, this approach causes unnecessary
replacements only in the modified front-end which is
negligible compared to the overheads on frequent access

indirections which have far more negative impact. With
regard to the consistency, it is maintained inside the
modified front-end because all parts of it are replaced
atomically. The consistency is also ensured between the
front-ends since the application is data-centric and there
is no direct communication amongst front-ends.

4.2 Updating data tier

Based on our empirical study of (1) HABC, (2) Joomla,
and (3) Open Conference Systems(OCS)1, database
updates are needed in 45% to 75% of applications
upgrades. Additionally, a conducted survey indicates that
nearly 60% of organizations around the world may have
changed their databases in the years 2010 and 2011 [53].
Therefore, supporting the automatic data upgrade during
redeployments seems to be essential to reach our short
disruption time goal in more than fifty percent of
upgrades. To update databases, we are provided with two
alternatives: (1) leveraging an extra level of access
indirection between the database and other tiers of
application in order to prevent database updates from
being propagated [9], and (2) redeploying the entire
application in the case of database changes.

The first model has a major negative impact on the
application’s performance since all database queries
should be passed through a query rewriting engine.
Nevertheless, unlike updating front-ends which does not
necessarily result in updating databases (e.g., fixing a bug
in a function, improving front-end performance, changing
user interface, etc.), we believe that database updates
must be reflected in all programs of the presentation tier.
For example, if a column is added to a database table, all
front-ends should also be updated to utilize the added
column in the database, or else the added column will be
meaningless or may cause inconsistencies. Therefore,
ARESA employs the latter approach to update the
databases. Based on this approach, ARESA pauses all
front-ends, updates database, and then updates the
front-ends with the proper states loaded. In other words,
we sacrifice short disruption time for performance and
consistency in the case of data tier upgrades.

4.3 Redeployment timing

Choosing an appropriate time of update is a challenging
issue in the dynamic updating systems. Several
researchers have come to believe that the update timing is
an undecidable problem [1, 2, 6, 38, 54–56]. There are
numerous approaches to find the appropriate time of
upgrade in the literature. Some systems apply updates
immediately, either by replacing the active
functions [26, 38, 40], or by continuing the execution of

1A web-based conference management application,
http://pkp.sfu.ca/ocs/

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 541

old functions and invoking their new versions
afterwards [4,32,47]. The former technique is difficult to
implement while the latter may jeopardize the
applications’ consistency, because it causes components
of different versions to invoke each other during the
upgrades [13].

The other on-line updating systems defer the upgrade
until a specific criterion is satisfied. This criterion can be
programmer-specified [1, 2, 6, 35], fulfilled when no
modified function is active [25, 27, 34, 36, 37], a
timeout [8, 57], or quiescence (i.e., no modified function
participates in any active transaction of the
program) [23, 51]. Systems which use the
‘programmer-specified’ technique usually suggest
programmers choose the end of main infinite loop as the
program’s update point.

According to the update timing undecidability [54],
the ‘timeout’ and ‘no-updated-function-is-active’
methods do not completely guarantee the consistency of
the programs [13]. The other two methods,
‘programmer-specified’ and ‘quiescence’ suffer from
unpredictability, because it is not exactly known when the
execution reaches the point specified by the programmer
or all modified functions finish the execution in the active
transactions. The situation worsens in the multi-threaded
and distributed applications, because all threads or
programs of such applications must converge to the
specified points until the update can be
applied [38, 52, 58]. Since the enterprise applications are
composed of multiple running components, the problem
of update point convergence also exists in these systems.

To reduce the aforementioned timing problems,
ARESA integrates the programmer time determination
with two other update bringing forward mechanisms: (1)
timeout and (2) access denial [13]. Determining the
appropriate update time by the programmer helps
ARESA to be consistent in diverse enterprise systems.
For example, in a highly available costing application
with multiple front-ends, only the programmer can
ascertain whether a specific front-end is busy with
complex costing calculations and should not be
interrupted or it is sitting idle making this a perfect time
for dynamic updating. On the other hand, ARESA
reduces the chance of deadlocks by safely discarding a
program not reached its update point in the specific time
frame. It also makes the web front-ends reject any
incoming requests during the upgrades to ensure that the
current threads of execution finally converge to the
specified update points. Concerning the desktop
front-ends, it is the programmer’s responsibility to modify
the program in a way that it does not accept new requests
while being upgraded in the current version of ARESA.

4.4 State transformation

Without a state transformation mechanism, a software
updating system becomes a stop/start service which does

not have considerable advantages over off-line updates.
There are two main techniques to transfer the state from
old to new version of the application [13]: (1)
re-execution [59, 60], and programmer-specified state
transformers [1, 2, 6, 33]. According to the first approach,
the execution is rolled back to the nearest point in the old
version that is equivalent to a point in the new version,
and then the new version is executed from there to the
point corresponding to the point in the old version where
the execution was interrupted. In the second approach, the
programmer provides functions called state transformers
to be executed during the upgrade in order to transfer the
state from old to new version.

The first technique not only needs the source codes to
be annotated by the check-points, it also requires the
system to analyze the codes in order to discover
similarities and differences among them [59, 61]. These
are not trivial tasks, and therefore, the first mechanism
has been leveraged by a few systems in the dynamic
updating literature. The second technique is simpler to
implement. It also enables the dynamic updating system
to transform the state of every front-end by invoking the
provided methods while programmers can populate them
with the content of their choosing. However, it requires
programmers to provide more components in order to
prepare patches for the automatic redeployments.

Because of simplicity and practicability, ARESA uses
the programmer-specified approach. To present this
technique can be used in the enterprise applications, we
categorize windows or pages of front-ends into three
classes and describe how the state of each is transferred
by this mechanism: (1)form windows with which the
end-users enter data, (2)calculationpages which enables
the end-users to view the progress of their submitted
calculation, and (3) report pages which show the
program’s data in different formats. These three classes
are common between desktop and web front-ends.

In the form pages, it is important to the end-users that
upgrades do not destroy their filled data. In this case, the
two functions getState and setState are used to get data
from and set them to the graphical components of
front-ends, respectively. In desktop programs,Graphical
User Interface(GUI) data are gathered and filled by the
components’ provided functions and in the web
applications, this happens by the Javascript functions
which access HTML elements.

The calculation pages do not require the state
transformation during upgrade because the programmers
usually do not permit applying updates when this type of
pages are viewed. The last class of windows, report ones,
contain a database query executed at the page’s load and
display the information stored in the database based on
the executed query. The report pages also do not have any
user-provided data. Since databases or report queries may
be changed by the upgrades, the state of report pages
must be renewed to reflect these changes. This can be
achieved by re-opening the opened pages automatically in

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

542 H. Seifzadeh et al.: A performance-based approach to...

order to execute their modified database queries; no other
state transformation action is required.

In addition to the pages’ states, programs of the
presentation tier probably have other invisible states
which must be transferred from their old to the new
versions. These include global variables in the desktop
programs or sub-variables of thesessionandapplication
variables in the web front-ends. The two functions
getState and setState are also able to transfer these values
after they transfer the state of the pages. If a
transformation is also needed, it can be performed in
either the getState or the setState based on the
programmer’s needs, although the latter is more probable.

4.5 Environment

Today, service oriented architecture and other distributed
communication protocols have led to the emergence of
enterprise applications comprising of components written
in different programming languages [62]. Therefore, an
automatic redeployment system designated for the
enterprise applications needs to support most
programming languages, or else it probably fail to
redeploy the whole application. To this aim, ARESA has
been implemented as Java web services. Owing to the
portability advantage of Java, the components of ARESA
can be installed on different platforms and also be
invoked by every programming language able to use the
web services. Moreover, this implementation environment
enables ARESA to apply updates remotely, eliminating
the need for physical presence of programmers or
technicians in target organizations.

5 ARESA architecture

Detailed description of the overall architecture of ARESA
as well as its patch model is presented in this section.
Runtime components and their interactions is also
presented.

Redeployment of an enterprise application consists of
(1) patch generation, and (2) patch application. As part of
the patch generation phase, the programmer constructs
and places the patch in a patch repository. In applying the
patch, the programmer sends the patch URL to the
ARESA runtime environment. Upon receiving a patch
URL, the ARESA engine notifies all registered
front-ends, saves the execution state of each front-end that
has been paused timely, patches the application’s database
(ensuring no front-end connected), and finally refreshes
the front-ends with their correct state.

Front-ends which have not reached their update points
in the specified time frame must be renewed manually by
using the providedbootstrapprogram. This program also
registers the client machine with the ARESA runtime
environment for future dynamic updates. With the

configuration described above, the programmer is simply
required to send the URLs of the patches to ARESA
runtime environment in supported organizations. All
remaining redeployment steps are automated without any
interaction required on the part of the users or the
programmer.

5.1 Patch generation

An enterprise patch in ARESA includes three components:
(1) an updatable desktop front-end, (2) an updatable web
program, and (3) a db patch. As upgrading front-ends does
not necessarily requires updating the database, the first two
components are essential while the third is optional (refer
to Subsection4.2of Section4 for more information).

Fig. 1 illustrates the process of patch generation in
ARESA. When a new requirement comes in, the
programmer modifies source code of the front-ends and
uses the provided DSUInjector tool to make them
updatable. The updatable code is able to receive the
notification of future updates and store its state for later
retrieval by subsequent versions of the code. The
programmer completes the updatable template code
generated by DSUInjector. The more well-structured a
front-end is, the more complete the code generated by
DSUInjector; hence requiring less manual tweaking of
the code by the programmer. Structure of updatable code
and the parts may need the programmer’s attention are
described for desktop and web applications in the
following two subsections, respectively. Since web pages
usually do not require compiling, web front-end
component of the enterprise patch is ready for
deployment at this stage of the process. However, desktop
program component must be compiled before it can be
embedded in the enterprise patch.

Final step of the process is to provide a SQL script in
order to update the enterprise database automatically.
There are various database differencing tools available
(e.g., mysqldiff1, OpenDBDiff2, SQL Workbench/J3,
tablediff4, and DBComparator). Although these tools
assist programmers in preparation of database patches,
none can fully automate the process. For example, none is
able to detect renaming or moving a field in a database.
Therefore, in this version of ARESA, the programmer has
to compose the SQL scripts of db patches with the help of
the aforementioned tools. The enterprise patch is now
complete.

5.1.1 Updatable desktop client

The structure of the updatable desktop applications and
their differences with the conventional equivalents are

1http://www.mysqldiff.org/
2http://opendbiff.codeplex.com/
3http://www.sql-workbench.net/
4http://msdn.microsoft.com/en-us/library/ms162843.aspx

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 543

desktop program codeviweb program filesvi database SQL scriptvi scriptvi−1

programmer

DSU injectingDSU injecting DB comparing

updatable desktop codeupdatable Web files DB differences

programmer

augmented updatable desktopaugmented updatable Web DB patch

compiling

updatable desktop

enterprise patch

Figure 1: Patch preparation process performed by the programmer

described in this section. This section concludes by a
discussion on overheads this model imposes on the space
requirement and the execution time of front-ends.

Making a desktop front-end updatable in ARESA
requires the following four modifications to be applied to
the program’s source code. Of note, the first two
modifications are made by DSUInjector automatically
while the third and fourth should be applied manually at
this time.

–The first modification is to add an instruction to the
program’s startup routine to create an updater thread.
The thread starts by checking whether a previous state
has been stored in ARESA runtime environment and
if so, loads the state. It then binds to a known port1 in
order to receive the notification of future updates,
waits until the execution reaches the nearest update
point specified by the programmer, sends the current
state to ARESA for subsequent retrieval by the next
version of the program, and finally terminates the
program in order for the remaining automatic
redeployment tasks to be completed.

–The second modification relates to setters and getters
of the program’s state. ARESA expects the
implementation of two abstract methods,getStateand
setState, in DSUInjector at the time of dynamic
updating injection. DSUInjector then embeds these
two methods into the updatable program in order to be
used by the updater thread for state transformation.

–The third modification is to change hard-coded
database connection strings and enable retrieval of
such a connection from ARESA. Since developers or

1ARESA uses thesocket programmingto communicate with
the desktop programs.

even conventional best practices such as Hibernate2

use singleton design pattern [63] for database
connection, we make sure only one point is altered in
the programs. If it is not the case, the connection
string can be requested from ARESA at the
application’s start-up and be passed to every requiring
command during the execution. As an alternative, the
connection string can remain hard-coded provided
that the programmer sets the name of database’s
updated version in the connection strings of the new
program.

–The last modification is the update points specified by
the programmer throughout the original source code.
The more update points the programmer specifies, the
shorter disruption the end-user might experience
during the redeployment.

A sample redeploying code for Java applications is
provided in Fig. 2. In this example, the two abstract
methods, setState and getState, are implemented by
DSUHandler class. Updater class includes the updater
startup thread as well as the DBHandler which contains a
method returning the latest database connection string as
required. Furthermore, two lines of code have been added
to the beginning of the main method in order to create the
updater thread and pass an instance of DSUHandler to it.
The original main code follows without any changes
except for the programmer-specified update points.

As seen in this example, the space overhead incurred
by ARESA does not exceed several tens of lines, noting
the state setters and getters are provided by the
programmer and can be of any length. This is a modest
space overhead especially for large front-ends. The time
overhead can occur in two places: (1) the updater thread

2http://www.hibernate.org

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

544 H. Seifzadeh et al.: A performance-based approach to...

1 public interface DSURequester {
2 public void setState(State s);
3 public State getState();
4 }
5
6 public class DSUHandler implements
7 DSURequester {
8 ...//Filled by the programmer
9 }

10
11 public class DBHandler {
12 ARESAClientUpdateService s = new ...;
13 public String getConnString() {
14 return s.getDBConnString();
15 }
16 }
17
18 public class Main {
19 public static void main(...) {
20 DSUHandler h = new DSUHandler();
21 Updater updater = new Updater(h);
22 ... //The original main
23 //Update point specified by programmer
24 if(updater.updateAvailable) {
25 updater.update();
26 }
27 ...
28 }
29 }

(a) additions to the original source code

1 public class Updater implements
2 Runnable {
3 DSURequester r;
4 ARESAClientUpdateService s = new ...;
5 boolean updateAvailable = false;
6 ...
7 public Updater(DSURequester r) {
8 ...
9 r.setState(s.getState());

10 this.r = r;
11 new Thread(this).start();
12 }
13 public void update() {
14 s.setState(r.getState());
15 System.exit(0);
16 }
17 public void run() {
18 ...
19 for(;;) {
20 Socket sock = server.accept();
21 String req = readFrom(sock);
22 if (req.equals(UPDATE)) {
23 updateAvailable = true;
24 } else if ... {
25 ...
26 }
27 }
28 }
29 }

(b) the updater thread

Figure 2: The source code of an updatable desktop application

execution, and (2) obtaining the new database connection
string from ARESA. Once the updater thread is bound to
its port, it is merely blocked by the OS awaiting an
incoming update notification with minimal time overhead.
Assuming the host program utilizes singleton pattern to
connect to the database, the majority of the time overhead
occur at the program’s startup. Overheads of ARESA in
several specific applications are discussed in Section7.

5.1.2 Updatable web client

Despise similarities of the web and the desktop programs,
the distributed nature of the web programs makes them
more difficult to be automatically updated. Multiple users
connected to a single application cause the application’s
state to be split into two parts of the server side and the
client side. This means reaching an agreement on the
correct update time or transferring state of the application
is not a trivial task. In the following, we explain
modifications required to make web front-ends updatable
and this brings us to addressing the issues of upgrading

these types of programs and the approaches taken by
ARESA to tackle them.

In order to make a web front-end updatable, four
modifications are required to be applied to the source
code. The first and second are performed automatically by
DSUInjector and the last two have to be applied manually
in the current version of ARESA:

–The first modification is to incorporate a web page
called updater1 into the web program. Requests to this
page belong to two main categories, (1) those coming
from the front-end’s pages, and (2) others sent by
ARESA engine2. With regard to the former category,
this page keeps track of opened pages in the users’
browsers, notifies them of new updates, saves state of
the opened pages, and sends the stored states back to
their new version. With respect to the second
category, the updater gets update notification from the
ARESA engine, removes web pages that generate

1This page has been implemented in PHP and is being
developed in other web programming languages.

2ARESA utilizes the HTTP requests to interact with the web
front-ends.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 545

output in order to refuse any new requests during the
upgrade, sends the acknowledgment back to ARESA
when all pages save their states meaning they are
ready for update, receives the resume message from
the ARESA engine and asks pages to redirect to the
new versions. It is noteworthy that only one instance
of the updater is added to each web front-end.

–The second modification relates to the dynamic
updating script1 added to each output web page (i.e., a
page that generate output for the end-users) to enable
it to interact with the updater and perform automatic
updating tasks of the page. The script generates a
unique random number at the page’s start-up and
sends it to the updater in order to uniquely identify the
opened instance of the page to the updater. At update
times, the script disables HTML elements included in
the page to make them not to accept any further
requests and sends their states along with the
generated id to the updater. After the update, the script
retrieves the page’s old state via the unique id passed
through the new URL and loads it to the components.
The mentioned script is usually injected into a few
pages of the web front-ends, because the web
front-ends (e.g., Joomla, SquirrelMail2, and OCS)
typically leveragefacadedesign pattern [63] to emit
output. For example, as seen in Section7, only two
pages of over 5,000 web pages generate output in
Joomla.

–The third modification is to adjust the database
connection string of the program by techniques
similar to those described in the previous subsection.

–The last modification is to specify blocks of codes
inside which the dynamic updates must not be applied
due to the possibility of consistency violations. This is
accomplished by incrementing a predefined counter at
the beginning of the block and decrementing that
counter at the end. If a block of code is not
surrounded by this specification, ARESA
automatically replaces the front-end irrespective of
whether the code is executing or not.

Implementing ARESA, we faced five minor issues that
will be discussed in the following where the approaches to
direct them are also presented. The first issue is how to
embed the dynamic updating script into the output pages.
To this end, two methods can be employed: (1) an HTML
frameset is used to encapsulate the original page in one
frame and its dynamic updating code in another, or (2) an
HTML script tag may be used to include the DSU code at
the start of the original page. The former method is more
modular while the latter is more efficient. In addition, the
HTTP parameters sent to the frameset should be redirected
to the original page in the former technique. A comparison
of the above two methods is found in Section7.

1The script has been implemented in Javascript, and
therefore, can be incorporated into almost every web program.

2A web-mail client application, http://www.squirrelmail.org/

The second issue is on notifying web pages about
events occurred on the server such as notifying them of
the availability of updates. This can be accomplished
using different techniques (e.g., Pushlets [64],
Comet [65], Ajax [66], Jaxcent3). In ARESA, we use
long responsetechnique to achieve this effect. In this
technique, every web page sends aregisterrequest to the
updater at the start-up, and the server sends back a
predefined character such as null character once a second
as a response. When the updater stops sending the
character, the web page interprets this as a new update
having become available.

The third issue is about choosing a method through
which independent threads of the updater know each
other’s state. For instance, the threads sending the null
character to their registered pages should be informed
about the other thread that receives the update notification
form the ARESA runtime environment. To address this
issue, thefile systemsapproach has been used, in which a
thread waiting for a special event checks the existence of
a related file in the application’s directory repeatedly.
When an event occurs in a thread, it touches the related
file in the application’s directory and other interested
threads are informed of that event.

The fourth issue is how to keep the list of opened
pages held by the updater up-to-date. The reason for this
is that if the list is not up-to-date, the updater may wait
forever for a non-existent web page. To prevent this
deadlock, the updater removes a web page from the list if
it cannot send the null character to it, assuming the page
has been unloaded.

The last issue is that the updater has to keep a list of the
output pages in order to ask them to decline new incoming
requests during the upgrade. To do so, a configuration file
containing the required information is placed in the web
front-end component of the enterprise patch and sent to
the ARESA runtime engine at the redeployment times.

Fig. 3 shows an updatable web page along with the
required DSU script and updater. Of note, we assume in
this example that the page does not need to connect to
database for brevity. Noting this, the page simply has
been modified to include the script and a hidden HTML
div element activated by the script at the update arrivals.
The div’s task is to inform the users about the update and
ask them to wait awhile until the page is renewed. The
page’s original code follows with the exception of the
programmer-specified blocks whose execution and the
dynamic updating are mutually exclusive.

With respect to the space overhead, the updater has
the least impact since there is a single instance of it added
to the front-end. The second modification imposes a
greater overhead on the size but it is also negligible,
because it is added to only the output pages. As
emphasized before, it is common amongst web
programmers to create a few output web pages in which
other configuration pages have been included. Existence

3http://www.jaxcent.com/

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

546 H. Seifzadeh et al.: A performance-based approach to...

index.php:

1 <script ... src="index.js"/>
2 <div id="DSU" style="display:none">
3 Upgrading the page...
4 </div>...
5 <?php
6 $_SERVER[’count’]++;
7 ...//The original main
8 $_SERVER[’count’]--;
9 ?>

updater:

1 function ready() {
2 if($_SERVER[’count’]==0 && empty($pages))
3 return true;
4 else return false;
5 }
6 if($_GET[’register’]) {
7 append($pages, $_GET[’pageid’]);
8 while(!file_exists($update)){
9 echo(chr(0));

10 sleep(1);
11 }
12 } else if($_GET[’getstate’]) {
13 $lines=file($states);
14 $line=find($lines,$_GET[’pageId’]);
15 echo $line;
16 unset($lines[$line_num]);
17 } else if($_GET[’update_notif’]) {
18 touch($update);
19 replace_output_pages();
20 if(ready()) send_ready_to_aresa();
21 } else if($_GET[’setstate’]) {
22 append($states,$_GET[’pageid’],
23 $_GET[’state’]);
24 if(ready()) send_ready_to_aresa();
25 wait_for_start_file();
26 ... echo new_url();
27 } else if($_GET[’start’]) {
28 unlink($update);
29 touch($start);
30 }...

(a) Updatable web page, state transformer

index.js:

1 ...
2 <!-- Utilities -->
3 function transformer(op,async,...) {
4 xmlHttpReq.open(TRANS_ADDR+"?"+
5 +op+"&pageId="+pageId, ...);
6 ...
7 }
8 function waitForUpdate() {
9 transformer("register", true,

10 "updateCallBack");
11 }
12 function updateCallBack() {
13 ...
14 document.getElementById("DSU")
15 .style.display="block";
16 //Disable all HTML objects
17 sendState();
18 }
19 function sendState() {
20 ...
21 <!-- Gather state -->
22 transformer("setstate", true,
23 "sendStateCallBack", state);
24 }
25 function sendStateCallBack() {
26 window.top.location.replace(
27 xmlhttpForState.responseText);
28 }
29 function getState() {
30 transformer("getstate", false);
31 ...<!-- Inject state -->
32 }
33 ...
34 <!-- Extract pageId from URL -->
35 if(pageId==undefined) {
36 pageId = Math.random()...;
37 } else {
38 getState();
39 }
40 waitForUpdate();
41 ...

(b) Javascript part of updatable web page

Figure 3: The source code of an updatable web application

of files like config.inc.phpin most PHP applications is an
evidence for this fact.

Regarding the time overhead, the added code to the
output page along with its DSU script occupy more
bandwidth loading them into the end-user’s browser. In
addition and similar to the desktop applications, getting
the latest database connection string from ARESA
runtime environment lengthens processing of dynamic
web pages. Transmission of null characters between
server and clients is another bandwidth overhead our
approach incur. Of note, the null characters transmission

also requires that the connection is opened during visit of
the page. The updater, on the other hand, does not indeed
incur overhead on the time or the bandwidth, because it
resides in server and is not executed unless a request
comes.

5.2 Patch application

The ARESA runtime environment is divided into three
parts: (1) acoordinator, managing upgrade of front-ends

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 547

with their global database transformation, (2) aClient
Update Service(CUS), responsible for updating a single
desktop or web front-end and its local state, (3) and a
DataBase Update Service(DBUS), updating the
enterprise database. Fig.4 illustrates these three parts and
their relationships. In the next three subsections, we
describe details and also approaches used in the
coordinator, CUSs, and DBUS, respectively.

5.2.1 Coordinator

As described in Section4, ARESA must strike a balance
between preventing version inconsistencies as well as
minimizing service disruptions based on whether the need
for update of the global database. Coordinator is
responsible for keeping this balance in ARESA. To
support both cases, the coordinator goes through two
distinct composite states: (1) ‘software-and-db-updating’
in which the coordinator obeys the inconsistency
prevention rules, and (2) ‘software-updating’ in which the
rules are relaxed in order to minimize service disruptions
during redeployment.

Fig. 5 includes a UML statechart illustrating the
coordinator’s states and transitions amongst them. In both
states, ‘software-and-db-updating’ and
‘software-updating’, the coordinator downloads the latest
patches from the programmer’s patch repository and
notifies CUSs of the recent update instructing them to
download the related component. After these steps and in
the ‘software-and-db-updating’ state, the coordinator
waits until all clients respond and then queries for
interruption of their executions. The coordinator then
steps into the ‘waiting-for-pause-ack’ sub-state and
lingers until all acknowledge. Upon acknowledgment, the
coordinator requests automatic patching of the database
from DBUS and obtains the latest connection string from
it. Finally, it asks CUSs to start the new programs.

In the ‘software-updating’ state on the other hand, the
coordinator transitions to the ‘sending-renew’ sub-state
immediately after sending the update notification message
to the client applications and having received first
acknowledgment from any one of them. In this state, the
coordinator sends pause or start messages individually to
a CUS that responds to the previous command
irrespective of other clients’ status. Contrary to our belief,
this latter case was harder to implement, because the
coordinator has less synchronization points to test the
overall system and allowable statuses of each individual
CUS. For example, it may be possible in the
‘software-updating’ state that a CUS starts the updated
front-end while another is still downloading it.

Timeouts are used in the coordinator’s states
whenever a deadlock may occur in the system. For
instance, in the ‘waiting-for-ack’ state in which the
coordinator must wait for all clients to download the
latest patches, it may transition to the next
‘sending-pause’ state regardless of any clients which have

not acknowledged reaching a timeout. It is worth noting
that clients which do not satisfy criteria determined in one
state are excluded from the remaining redeployment
process to avoid the aforementioned problems relating to
consistency violations. In addition to the above tasks
which are performed when an update is being applied, the
coordinator has other duties fulfilled in its normal state.
These include sending address of the latest version to the
new clients or ones failed in applying the last update,
registering CUSs of these new clients for future contacts,
returning the latest database connection string to every
legitimate requester, stating if a client is the latest version
or not, etc.

It should be noted that the coordinator keeps the
required information such as a list of updatable front-ends
and the latest database connection string in a file which its
contents is renewed accordingly when an automatic
redeployment is performed or a new front-end is
registered to the ARESA system.

5.2.2 DataBase update service

DBUS automatically updates the global database of the
enterprise application when no program in the system
uses that database. To do so, DBUS closes all opened
connections to the database and instructs the DBMS not
to accept any incoming connections while the patch is
being applied. Specifically, it sets the maximum number
of allowed connections to one. DBUS then executes a
SQL script provided by the programmer and sent by the
coordinator to patch the database. After db patching,
DBUS sets the maximum number of allowed connections
to the previous value. It also renames the old database in
order to invalidate its connection string and no program
can read from or write to that database. The DBUS finally
gives the control back to the coordinator and sends also
the newly generated connection string to it.

DBUS supports MySQL and Microsoft SQL server
now. However, the aim has been to minimize changes to
DBUS when other database management systems are
incorporated into it. By contrast to the coordinator, DBUS
does not require a configuration file in order to be
deployed or executed.

5.2.3 Client update service

Client Update Service, or CUS for short, is responsible
for updating a single application client in the system. The
client can be either desktop or web-based. The major task
of CUS is to transfer the state of the front-end from old to
new version. As described in Section4, this is performed
by the programmer-specified state transformation
approach.

At the update arrival, CUS first downloads the new
version from the coordinator’s file management system
and places it in a specified location. The downloaded

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

548 H. Seifzadeh et al.: A performance-based approach to...

coordinator
service

ARESA runtime

local

filesystem

DBUS

CUSs applications

DB

en
te

rp
ri

se
ap

pl
ic

at
io

n

enterprise
patch

read/
write

db patch

app.patch

apply patch

state tran., apply patch
pause/start, . . .

Figure 4: Patch application process in ARESA

software-and-db-updatingsoftware-and-db-updating

software-updatingsoftware-updating

downloadingdownloading sending-notification*sending-notification* waiting-for-ackwaiting-for-ack

sending-pausesending-pause waiting-for-pause-ackwaiting-for-pause-ack db updatingdb updating sending startsending start

downloadingdownloading sending-notificationsending-notification

waiting-for-ackwaiting-for-ack sending-renewsending-renew

software and db patches

1 2

3

4 5 6 7

software patch

1

2

8

7

*: white states are transient

1: downloading of new patches finished
2: all clients get update notification
3: all clients download the new version/timeout
4: all clients get pause message

5: all clients pause/timeout
6: db updating is finished
7: all clients start the new version
8: first client finishes downloading of the new version

Figure 5: Coordinator’s states illustrated by statechart

program is usually an executable file for the desktop
front-ends (e.g., exe, jar) and a zip file containing pages
for the web front-ends (e.g., html, jsp, php). The CUS
then declares arrival of the update notification and lingers
until the coordinator instructs to pause the front-end
under its control.

Once the program receives the pause message and
reaches the nearest update point, it sends the transformed
state to CUS, asking it to store that state and then
terminates. CUS in turn announces the interruption of the
corresponding front-end to the coordinator and waits for
its start message. When this message arrives, CUS starts
the front-end’s new version by executing a provided shell
script. This script takes different approaches to start the
desktop or the web front-ends. It creates an operating
system process to run the former while it unzips the
downloaded file in the application’s root directory to
renew the latter. Finally, CUS gives the stored state back
to the application’s new version upon request.

Other duties of CUS performed in the normal state
include (1) asking the coordinator if its front-end is
registered and updated, (2) requesting the front-end’s
latest version if is obsolete, (3) determining if an
automatic redeployment is in progress, and (4) delivering
the latest database connection string from the coordinator
to the corresponding client application.

6 Formal proof

In this section, we aim to prove formally that the
ARESA’s update model and timing approaches do not
violate systems’ consistency. To this end, we first provide
a formal definition of constraints that must be true in
order for an enterprise application to be consistent, and
then, we show formally that the mentioned constraints
always hold true in the applications that employ ARESA
for the automatic redeployments.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 549

Definition 61(Front-end Fi,k). Let Fi,k denotes the version
i of front-end F which uses the global database version k.
Fi stands for a front-end F version i which may
communicate with an unknown version of the global
database. In addition, Fi,× denotes that the front-end Fi
does not and also must not use any version of the global
database.

Definition 62(Database Dk). Dk represents the version k
of the global database. It is noted that there is only one
version of the global database at a time in the system.

Definition 63(Dependency). Let indicates
dependency between two front-ends, say Fi G j means
that Fi depends on Gj . Dependency between two
front-ends may be message passing or web service call.

Definition 64(Update7→). Let Fi 7→ Fi+1 denotes that the
front-end F version i is updated to version i+1.

Definition 65(Consistency△). An enterprise system with
a set of front-ends and a global database is consistent at
a specific time if and only if the following two conditions
hold true:

1.∀Fi ,G j : Fi G j ⇒ i = j.
2.∃!Dk ⇒∀Fi,l : (l =×)∨ (l = k∧ i ≥ l).

In short, the former statement controls consistency
among front-ends while the latter does so between
front-ends and the enterprise database. The first statement
places this constraint that the version of two dependent
clients must be the same. For example, it should not be
possible for a client of version 1 to send a message to
another client of version 2. The reason for this is that the
programs’ semantics may be changed during upgrades.
The second statement forces front-ends to either not use
the database or use its latest version if they need to. For
instance, if the latest version of the global database is 2,
then front-ends requiring to access the global database
must also use the database version 2. Of note, the notation
∃!Dk means there is only one (and obviously the latest)
version of database at any time in the system.

The other constraint imposed by this statement is that
the versions of programs in the presentation tier should be
higher than the version of database they use. For instance,
versions of front-ends requiring to access the enterprise
database must not be older than the version 2 in the above
example. This ensures establishment of the
aforementioned constraint on the system that if the
enterprise database is updated, all front-ends must also be
updated, although the converse might not be always true
(the reason of this constraint is described in Sections3
and4).

Theorem 61ARESA update model and redeployment
timing do not cause consistency violations during and
after redeployments.

Proof.Here, we show that the two specified statements in
the Definition65 always hold true in ARESA. The first
statement is valid all the time due to this consideration that
enterprise application is data-centric in ARESA (refer to
Section3 for more information). In other words, there is
noFi andG j in the application such thati = j andFi G j .

In order to prove the second condition in ARESA, we
assume all possible states of the enterprise application
and then check fulfillment of the condition in each state.
Two coarse-grained states are assumed for the enterprise
applications: (1) during the redeployment and (2) after the
redeployment. In the former state, the application remains
consistent because no front-end uses the database at that
time (all db connections are closed and maximum number
of connections is set to one). Specifically, for allFi,l ,
l =× during applying the update patches.

The latter state, say after the redeployment, is divided
into four distinct states based on whether the global
database and the front-end have been successfully
updated or not. First, (2a1) suppose that the databaseDk
has been updated and the old front-endFi,l converged to
the specified update point in the proper time frame,
meaning it also has been successfully updated. Formally
speaking,Dk 7→ Dk+1 ∧ Fi,l 7→ Fi+1,l+1. We must show
△{Dk+1,Fi+1,l+1} in this case. Since the system has been
consistent before redeployment, we have:
△{Dk,Fi,l} ⇒ k = l ∧ i ≥ l ⇒ k+ 1 = l + 1∧ i + 1 ≥
l +1⇒△{Dk+1,Fi+1,l+1}.

Second, (2a2) consider a state in which the database
Dk has not been modified but the front-endFi,l has been
paused timely and upgraded successfully. Therefore, we
haveFi,l 7→ Fi+1,l . According to this fact that the system
has been consistent before the redeployment, we conclude:
△{Dk,Fi,l}⇒ k= l ∧ i ≥ l ⇒ i +1≥ l ⇒△{Dk,Fi+1,l}.

Third, (2b1) we study a state in which the databaseDk
has been updated but the front-endFi,l has failed to update
due to reaching its time-out. Specifically, what happed in
the system is:Dk 7→ Dk+1. Since ARESA renames the old
database after upgrading it, no front-end includingFi,l is
able to use it after the update, meaning thatl becomes×
for this kind of front-end. Therefore, the system becomes
a set of{Dk+1,Fi,×} which in turn is consistent according
to the second statement of Definition65.

In the fourth state, (2b2) the databaseDk has not been
changed and the front-endFi,l has failed to update
because it has not converged to the update point in the
predefined interval. Since the system has been consistent
before the redeployment, we have△{Dk,Fi,l}. On the
other hand, neither the database nor the front-end has
been modified during the redeployment, and therefore, the
system remains{Dk,Fi,l} after the redeployment which is
consistent. The proof is now complete.

7 Experiment

Dynamic software updating systems devised to date have
been evaluated by different types of benchmarks; from

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

550 H. Seifzadeh et al.: A performance-based approach to...

desktop applications [4, 17, 33–35], to servers such as
Apache, vsftpd1, and PostgreSQL2 [1,2,6,18,57]. Smith,
et al. have classified the benchmarks used by the DSU
systems in order to standardize the evaluation carried out
in this area of research [67]. However, since these
benchmarks focus on the application logic tier of the
programs, they cannot evaluate the database or the web
features of ARESA. Therefore, we have chosen three
other benchmarks each of which can evaluate a specific
part of ARESA. In this section, the experiences gained
from applying ARESA to these benchmarks as well as the
justification of choosing each one are described. When we
performed our empirical studies, two evaluation metrics,
time and space overheads, were more important to us, and
therefore, values of only these two are shown for each
study in the second subsection.

The first application, HABC (Hasib Activity Based
Costing), is a cost calculator implemented in Microsoft
C# 2008 and SQL server 2005. Six consecutive loops
surrounded by two other nested loops calculate costs in
HABC. Its database contains 90 tables and the front-end
has been composed of 56 C# classes. In the upgrade
chosen to be performed automatically in this paper, three
database changes have occurred: (1) a table responsible
for saving and then reporting some fine-grained cost
information has been added, (2) in the product table, the
type of user-entered code has been converted fromint to
nchar to support special characters such as ‘-’ in the
products’ codes, and (3) in the users table, a column
named ‘activeyear’ has been added to enable each user to
work with a desired financial year regardless of other
users’ active year.

HABC is distributed across two kinds of machines:
(1) server which contains the database and one copy of it
exists in target organizations, and (2) client that includes
the HABC’s executable and there are usually up to five
copies of it deployed and running. Since HABC has been
installed on several organizations in which multiple
end-users work simultaneously, automatic and remote
updating of it saves time. This along with dynamic
updating of a C# application that accomplishes heavy
calculations for the first time in the literature have
encouraged us to choose HABC as one of our case
studies.

Joomla, our second case study, is an open source
content management system written in PHP and works
mostly with MySQL. It has composed of 50 database
tables and over 5,000 PHP files. Dynamically updating of
Joomla, we evaluate web features of ARESA in a popular
real-life environment. We chose to upgrade Joomla
version 2.5.4 to 2.5.5 in order to update both the front-end
and the database, and therefore, evaluate more parts of
ARESA. In this test, the time overhead incurred by
ARESA before and after the update has been measured.

1http://vsftpd.beasts.org/
2http://www.postgresql.org/

The last benchmark is a custom web application
which has a single PHP and one MySQL table containing
personal information of a community such as students of
a class. The PHP page displays the information stored in
the table through an HTML table tag. The upgrade patch
renames column ‘id’ of the application’s table to
‘studentid’ and also adds a column called ‘address’ to it.
We measured the page’s load time of both the
conventional and the updatable versions of this
application when different number of records are stored in
the application’s table. This helps us to find how different
database loads affect the ARESA time overhead upon the
web applications. In the following two subsections, the
leveraged methods by which we have performed our tests
and the results we obtained from them are described,
respectively.

7.0.4 Method

In order to evaluate ARESA in automatic updating of
HABC, we have used one physical and two virtual
machines with the following specifications: (1) the first
physical machine has a Core i3 CPU with the speed of 2.4
GHz and 4 gigabytes of RAM. Its operating system is
Fedora 17 on which Java version 1.6.022 and Oracle
weblogic 11g are installed. The coordinator has been
deployed in this machine. (2) The second machine is
installed on Virtualbox version 4.1.18 with one 2.4 GHz
CPU and 1 gigabytes of RAM. Its operating system is
Microsoft Windows 7 with SQL server 2005 and the
HABC database installed on it. It also includes Oracle
weblogic 11g on which the DBUS is installed and
running. (3) The last virtual machine with the same
hardware specification as the previous one executes
Microsoft Windows 2003 server, Oracle weblogic 11g,
and CUS deployed in it. This machine is responsible for
running the HABC front-ends.

After running HABC, we have created a sample
product with two production phases to be able to calculate
the cost of at least one product. In addition, we
interpolated a profiling code into the six parts of both the
conventional and the updatable versions of HABC to
compare the time consumed for the program’s startup and
loading five different pages of the application. We
executed the conventional and the updatable versions of
HABC alternatingly for a total of 10 cycles (i.e., 20
executions), measured the startup and pages loading
times, and then, averaged all results to achieve more
reliable numerals. In addition to the time, the space
overhead of ARESA has been evaluated. The results are
shown in the next subsection.

In order to make Joomla automatically updatable, one
requires to know how the application generates results
and where its database connection string is stored.
Regarding the first question, we have found that only two
PHP files, index.php and administrator/index.php
generate the application’s results. In other words, the

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 551

end-users invoke one of these pages and pass parameters
of the information they looking for and the pages send
back the generated results after including other pages.
With respect to the second question, the database
connection string is stored in a configuration file named
configuration.phpwhich is created at the setup time.

Therefore, making this application updatable merely
requires injection of dynamic updating code into the
index.php and administrator/index.php files and altering
the updater to set the connection string of the patched
database in the configuration.php file. As seen, Joomla’s
good design specification has minimized code
modifications required by ARESA and consequently its
overheads. We have made Joomla version 2.5.4 updatable
by configuring DSUInjector to perform the above
modifications to this version.

Similar to the HABC test scenario, we used three
machines to evaluate ARESA’s practicability and the time
and size overheads it incurs in the Joomla upgrade. The
first machine executing the coordinator is the same as its
corresponding in the previous test case. The second and
third machines are virtual, each of which has a single 2.4
GHz CPU, 1 gigabytes of RAM, and executes Fedora 16
as the operating system. The second computer includes
MySQL server version 5.5, Oracle weblogic 11g, and a
copy of DBUS installed and running. This machine plays
the role of database server for the installation. The third
computer includes Apache server 2.2, PHP version 5.3,
Oracle weblogic 11g, and a copy of CUS installed on it.
Both the conventional and the updatable versions of
Joomla application are deployed in the Apache server of
this computer.

After the installation has been completed, we used
Apache JMeter1 to measure and compare the response
time of the conventional and the updatable front-ends to
load their index.php pages in different users loads. To this
end, we set JMeter to send 10, 50, 100, 150, and 200
requests to the both versions with the ramp-up time of 2
seconds for all of these requests. To be more accurate, we
performed the tests alternatingly for a total of 10 times
and then average the results, except for the test of 200
requests which has been executed three times. We have
repeated the tests after both versions were updated to
check if updates affect the performance of ARESA. The
results are illustrated in the next subsection.

With regard to the last test scenario, we used the
frameset technique described in Subsection5.1 of
Section5 to make the custom web application updatable.
Due to HTML framesets overhead, this results in
evaluating the maximum degradation of performance and
space ARESA may impose. In addition, the updatable
index.php was configured to obtain the database
connection string from CUS to cause the worst possible
database connection time. The deployment structure and
machines specifications in this scenario are the same as

1http://jmeter.apache.org

ones used for evaluating ARESA in the Joomla upgrade,
and therefore, they are not described here.

In order to appraise the effect of different database
loads on the performance degradation of ARESA, we
requested both the updatable and non-updatable versions
of the custom web application to display 10, 1000, 5000,
10000, and 20000 random records stored in their
databases and then measured the response times of each
request. Of note, since the index page of the updatable
version is a frameset containing two other frames, we
created three requests to be submitted to the updatable
version instead of each request in the conventional one.
Then, the sum of response times obtained from these
executions has been considered as the response time of
one request in the updatable version. These tests have
been performed alternatingly and under the loads of 10,
100, 250, and 500 users. We used Apache JMeter to
perform each test 10 times. Average time overhead results
along with the space degradation of ARESA are
illustrated in the next subsection.

7.0.5 Results

Table1 shows the results of performance tests on HABC.
As this table indicates, interpolating the dynamic
updating features increases the startup time of HABC
from 5.6 to 6.9 seconds. On the other hand, the form
loading and calculation times remain nearly unchanged.
One time the updatable code took longer and once again
the conventional program took more time to execute.
Based on this information, we conclude that ARESA
increases the time overhead of this desktop application by
19% and only at the startup time.

We observed in the evaluations performed on Joomla
that the time complexity functions of both the updatable
and the conventional versions grow similarly, either
before or after the upgrade. The maximum difference
happened after the update with the 200 users load in
which the average response time of the conventional
Joomla was 1498.1 seconds while the corresponding time
in the updatable version was 1750.5 seconds. This means
that the average time overhead incurred by ARESA on
real-life web applications is 15%. Fig.6 illustrates the
evaluation results performed on Joomla in two charts.
Functions of dashed and solid lines show the response
times of the conventional and the updatable front-ends,
respectively.

The most significant time overhead imposed by
ARESA occurred in the custom web application at high
database loads. As Fig.7 indicates, this happened when
250 or 500 users simultaneously request the program’s
main page to fetch and display 5000 records from the
database. In the first case (250 users), the response times
of the updatable and the non-updatable versions were
85.157 and 48.699 seconds, respectively. This means that
ARESA increases the response time of the page by 43%
in this circumstance. In the second case (500 users), the

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

552 H. Seifzadeh et al.: A performance-based approach to...

Table 1: Performance comparison of updatable and conventional executables of HABC

Startup elapsed times:
sys. 1 2 3 4 5 6 7 8 9 10 average
upd. 6279 7050 6949 6892 6399 6819 6209 10737 6168 6279 6978.1

norm. 6299 5628 5197 5598 5537 5387 5808 6349 5507 5527 5683.7

Page loading elapsed time in updatable HABC:
no. material equivalent units cost allocation cost calculating cost
1 4001 230 200 150 520
2 360 240 210 190 751
3 370 270 210 160 490
4 721 490 280 250 630
5 781 370 340 210 690

average 526 320 248 192 616

Page loading elapsed time in conventional HABC:
no. material equivalent units cost allocation cost calculating cost
1 600 250 250 230 530
2 400 240 200 200 460
3 390 270 230 180 450
4 440 230 180 210 530
5 660 300 450 220 580

average 498 258 262 208 510

1Times are in milliseconds.

10 50 100 150 200

500

1,000s

1,500s

2,000s

(a) before redeployment
10 50 100 150 200

500

1,000s

1,500s

2,000s

(b) after redeployment

Figure 6: Performance comparison of conventional and updatable versions of Joomla

response times of the updatable and the non-updatable
pages were 62.366 and 35.549 seconds, respectively. As
in the first case scenario, ARESA degrades performance
by 43%.

It is however noted that since the custom web
application is very small and also we used inefficient
dynamic updating techniques in this scenario, ARESA
had significance impact on the program’s size and
performance. A real-life application ought to spend a lot
of time in business logic layer, and therefore, the impact
of ARESA significantly decreases as the size and
complexity of the application approaches those of
real-life applications. As another point, the response time

of the custom web application was decreased when the
number of users grew from 250 to 500. The reason is that
an average of 20 percent of requests failed in the 500
users workload.

We measured and summarized sizes of both the
updatable and non-updatable test cases in Table2. This
table indicates that ARESA somewhat imposes the space
overhead on the commercial and real-life applications less
than 1%. However, this overhead increased to more than 3
times for the custom web application which contains only
one web page made updatable by the space-occupying
frameset technique.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 553

101,000 5,000 10,000 20,0000

100s

200s

300s

400s

500s

600s

(a) 10 users

101,000 5,000 10,000 20,0000

100s

200s

300s

400s

500s

600s

(b) 100 users

101,000 5,000 10,000 20,0000

100s

200s

300s

400s

500s

600s

(c) 250 users

101,000 5,000 10,000 20,0000

100s

200s

300s

400s

500s

600s

(d) 500 users

Figure 7: Performance comparison of conventional and updatable versions of custom web application

Table 2: Size comparison of updatable and conventional applications

system
HABC Joomla custom web

conventional updatable conventional updatable conventional updatable
source 32,292,5361 32,299,211 18,920,034 18,931,621 4,737 13,645
binary 9,962,496 9,965,568 N/A N/A N/A N/A

1Sizes are in bytes.

8 Conclusion and future work

This paper presented a framework, called ARESA, to
automatically redeploy data-centric enterprise systems.
ARESA provides a novel update model as well as a
unique update timing technique in order to preserve the
consistency of applications undergoing the automatic
redeployments while the end-users just experience short
and predictable disruptions. Practicability and correctness
of this approach is proved both formally and empirically.
We used ARESA to dynamically update programs written
in web and desktop programming languages, some
reported for the first time in the software updating
literature. The experimental results suggest ARESA
provides at most 19% performance penalty in
dynamically updating of applications with real-life

complexities. We plan to extend ARESA in the future,
particularly in the following important areas:

–Omitting the data-centric constraint: ARESA
automatically redeploys enterprise applications in
which front-ends communicate with each other
through a central database. We are planning to extend
ARESA to support a wider range of applications.

–DB comparison: two further features in
DBComparator can make automatic redeployment of
enterprise applications simpler. First, DBComparator
must support renaming and moving of database
elements such as tables and columns. Second, it
should generate SQL patches in addition to only
report the differences. We are working on adding
these functionalities in addition to supporting other
database management systems.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

554 H. Seifzadeh et al.: A performance-based approach to...

–Dynamic Updating injection: Currently, DSUInjector
requires the programmer’s intervention in two stages:
(1) determining how a new database connection string
should be set in the updated web and desktop
front-ends, and (2) specifying which web files
dynamic updating code should be injected to. We plan
to omit the human intervention required in these two
stages of the dynamic updating injection.

–Dealing with timeouts: defining appropriate timeout
after which automatic redeployments are performed
irrespective of the running programs has proved to be
a challenge in ARESA. Short timeouts could make
more front-ends hitting the limit, and therefore, be
excluded from the rest of the redeployment process.
Long timeouts may cause some front-ends to wait
unnecessarily for other processes to terminate before
an update can be applied. We plan to perform an
empirical study determining appropriate timeouts for
several categories of software applications.

References

[1] M W Hicks, J T Moore, and S Nettles. Dynamic software
updating. InSIGPLAN Not., pages 13–23, New York, NY,
USA, 2001. University of Pennsylvania, ACM.

[2] I G Neamtiu. Practical dynamic software updating. PhD
thesis, University of Maryland, College Park, 2008.

[3] Andrew Baumann, Jonathan Appavoo, Robert W
Wisniewski, Dilma Da Silva, Orran Krieger, and G Heiser.
Reboots are for hardware: Challenges and solutions to
updating an operating system on the fly. In2007 USENIX
Annual Technical Conference on Proceedings of the
USENIX Annual Technical Conference, ATC’07, pages
1–14, Berkeley, CA, USA, 2007. USENIX Association.

[4] Allan Raundahl Gregersen, Michael Rasmussen, and
BoNø rregaard Jø rgensen. State of the Art of Dynamic
Software Updating in Java. In José Cordeiro and Marten
van Sinderen, editors,Software Technologies, volume 457
of Communications in Computer and Information Science,
pages 99–113. Springer Berlin Heidelberg, 2014.

[5] D.-Y. Lin and I Neamtiu. Collateral evolution of
applications and databases. InProceedings of the joint
international and annual ERCIM workshops on Principles
of software evolution (IWPSE) and software evolution
(Evol) workshops, IWPSE-Evol ’09, pages 31–40, New
York, NY, USA, 2009. ACM.

[6] S Subramanian, M Hicks, and K S McKinley. Dynamic
software updates: A VM-centric approach.SIGPLAN Not.,
44(6):1–12, 2009.

[7] Pamela Bhattacharya and I Neamtiu. Dynamic updates for
web and cloud applications. InProceedings of the 2010
Workshop on Analysis and Programming Languages for
Web Applications and Cloud Applications, APLWACA ’10,
pages 21–25, New York, NY, USA, 2010. ACM.

[8] M Wahler, S Richter, S Kumar, and M Oriol. Non-disruptive
Large-scale Component Updates for Real-Time Controllers.
In Proceedings of the 3rd International Workshop on Hot
Topics in Software Upgrades, HotSWUp ’11, Hannover -
Germany, April 2011. IEEE Computer Society.

[9] C A Curino, H J Moon, and C Zaniolo. Graceful database
schema evolution: The PRISM workbench.Proc. VLDB
Endow., 1(1):761–772, August 2008.

[10] S Guo, H Li, C Ding, and H Ren. Study on Large-
Scale Embedded Databases Evolution. In W Du, editor,
Informatics and Management Science II, volume 205 of
Lecture Notes in Electrical Engineering, pages 153–158.
Springer London, 2013.

[11] Mario Pukall, C Kästner, W Cazzola, S Götz, Alexander
Grebhahn, R Schröter, Gunter Saake, K Christian,
G Sebastian, and Reimar Schr. JavAdaptorFlexible runtime
updates of Java applications. Software: Practice and
Experience, 43(2):153–185, 2013.

[12] Tudor Dumitras, P Narasimhan, and Eli Tilevich. To
upgrade or not to upgrade: Impact of online upgrades
across multiple administrative domains.SIGPLAN Not.,
45(10):865–876, October 2010.

[13] H Seifzadeh, H Abolhassani, and M S Moshkenani. A
survey of dynamic software updating.Journal of Software:
Evolution and Process, 25(5):535–568, 2012.

[14] Microsoft. How To Deploy an ASP Application to Another
Server by Using Internet Information Server, 2014.

[15] Oracle. Enterprise Manager Lifecycle Management
Administrator’s Guide, 2014.

[16] B Noyes. Smart Client Deployment with ClickOnce:
Deploying Windows Forms Applications with ClickOnce.
Pearson Education, 2006.

[17] S Malabarba, R Pandey, J Gragg, E Barr, and J F
Barnes. Runtime Support for Type-Safe Dynamic Java
Classes. InProceedings of the 14th European Conference
on Object-Oriented Programming, ECOOP ’00, pages 337–
361, London, UK, 2000. Springer-Verlag.

[18] H Chen, J Yu, R Chen, B Zang, and P.-C. Yew. POLUS:
A POwerful Live Updating System. InProceedings of
the 29th international conference on Software Engineering,
ICSE ’07, pages 271–281, Washington, DC, USA, 2007.
IEEE Computer Society.

[19] Y Vandewoude.Dynamically updating component-oriented
systems. PhD thesis, Informatics Section, Department of
Computer Science, Faculty of Engineering, K.U.Leuven,
Leuven, Belgium, 2007.

[20] R S Fabry. How to design a system in which modules
can be changed on the fly. InProceedings of the 2nd
international conference on Software engineering, ICSE
’76, pages 470–476, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[21] Insup Lee. Dymos: A dynamic modification system. PhD
thesis, The University of Wisconsin - Madison, 1983.

[22] Multicians. MultiCS Dynamic Linkage Features, 2009.
[23] J Appavoo, K Hui, C A N Soules, R W Wisniewski, D M D

Silva, O Krieger, M A Auslander, D J Edelsohn, B Gamsa,
G R Ganger, P McKenney, M Ostrowski, B Rosenburg,
M Stumm, and J Xenidis. Enabling autonomic behavior in
systems software with hot swapping.IBM Syst. J., 42(1):60–
76, 2003.

[24] S Potter and J Nieh. AutoPod: Unscheduled System Updates
with Zero Data Loss. InSecond International Conference on
Autonomic Computing, pages 367–368, 2005.

[25] A Baumann. Dynamic update for operating systems.
PhD thesis, Computer Science & Engineering, Faculty of
Engineering, UNSW, 2007.

c© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) /www.naturalspublishing.com/Journals.asp 555

[26] K Makris and K D Ryu. Dynamic and adaptive updates of
non-quiescent subsystems in commodity operating system
kernels. InProceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 327–340, New York, NY, USA, 2007. ACM.

[27] J Arnold and M F Kaashoek. Ksplice: Automatic rebootless
kernel updates. InProceedings of the 4th ACM European
conference on Computer systems, EuroSys ’09, pages 187–
198, New York, NY, USA, 2009. ACM.

[28] J Montgomery. A Model for Updating Real-Time
Applications.Real-Time Syst., 27(2):169–189, 2004.

[29] G Gracioli and A A Fröhlich. An operating system
infrastructure for remote code update in deeply embedded
systems. InProceedings of the 1st International Workshop
on Hot Topics in Software Upgrades, HotSWUp ’08, pages
31–35, New York, NY, USA, 2008. ACM.

[30] Habib Seifzadeh, Ali Asghar Pourhaji Kazem, Mehdi
Kargahi, and Ali Movaghar. A Method for Dynamic
Software Updating in Real-Time Systems. InProceedings
of the 2009 Eigth IEEE/ACIS International Conference on
Computer and Information Science, ICIS ’09, pages 34–38,
Washington, DC, USA, 2009. IEEE Computer Society.

[31] A C Noubissi, J Iguchi-Cartigny, and J.-L. Lanet. Hot
Updates for Java Based Smart Cards. InProceedings of
the 3rd International Workshop on Hot Topics in Software
Upgrades, HotSWUp ’11, Hannover - Germany, April 2011.
IEEE Computer Society.

[32] M Dmitriev. Safe Class and Data Evolution in Large and
Long-Lived Java Applications. PhD thesis, Department of
Computing Science, University of Glasgow, 2001.

[33] A Orso, A Rao, and M Harrold. A Technique for Dynamic
Updating of Java Software. InSoftware Maintenance, IEEE
International Conference on, page 649, Los Alamitos, CA,
USA, 2002. IEEE Computer Society.

[34] R P Bialek.Dynamic Updates of Existing Java Applications.
PhD thesis, Faculty of Science, University of Copenhagen,
2006.

[35] G Bierman, M Parkinson, and J Noble. UpgradeJ:
Incremental Typechecking for Class Upgrades. In
Proceedings of the 22nd European conference on Object-
Oriented Programming, ECOOP ’08, pages 235–259,
Berlin, Heidelberg, 2008. Springer-Verlag.

[36] Deepak Gupta and Pankaj Jalote. On line software version
change using state transfer between processes.Softw. Pract.
Exper., 23(9):949–964, September 1993.

[37] G Altekar, I Bagrak, P Burstein, and A Schultz. OPUS:
Online patches and updates for security. InProceedings
of the 14th conference on USENIX Security Symposium,
SSYM’05, page 19, Berkeley, CA, USA, 2005. USENIX
Association.

[38] K Makris and R A Bazzi. Immediate Multi-Threaded
Dynamic Software Updates Using Stack Reconstruction. In
Proceedings of 2009 USENIX Annual Technical Conference,
2009.

[39] Luı́s Pina and Michael Hicks. Rubah: Efficient, General-
purpose Dynamic Software Updating for Java. InPresented
as part of the 5th Workshop on Hot Topics in Software
Upgrades, San Jose, CA, 2013. USENIX.

[40] Christopher M Hayden, Edward K Smith, Michail Denchev,
Michael Hicks, and Jeffrey S Foster. Kitsune: Efficient,
General-purpose Dynamic Software Updating for C. In

Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, pages 249–264, New York, NY,
USA, 2012. ACM.

[41] S Ajmani, B Liskov, and L Shrira. Modular Software
Upgrades for Distributed Systems. InObject-Oriented
Programming, volume 4067 ofLNCS ECOOP 2006, pages
452–476, 2006.

[42] S van der Burg, E Dolstra, and M de Jonge. Atomic
upgrading of distributed systems. InProceedings of the
1st International Workshop on Hot Topics in Software
Upgrades, HotSWUp ’08, pages 1–5, New York, NY, USA,
2008. ACM.

[43] V P La Manna. Dynamic software update for
component-based distributed systems. InProceedings of
the 16th international workshop on Component-oriented
programming, WCOP ’11, pages 1–8, New York, NY, USA,
2011. ACM.

[44] C Boyapati, B Liskov, L Shrira, C.-H. Moh, and
S Richman. Lazy modular upgrades in persistent object
stores.SIGPLAN Not., 38(11):403–417, 2003.

[45] B Liskov, A Adya, M Castro, S Ghemawat, R Gruber,
U Maheshwari, A C Myers, M Day, and L Shrira. Safe
and efficient sharing of persistent objects in Thor. In
Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, SIGMOD ’96, pages
318–329, New York, NY, USA, 1996. ACM.

[46] Cristiano Giuffrida. Safe and Automatic Live Update.
phdthesis, VU University Amsterdam, 2014.

[47] G Hjálmtýsson and Robert Gray. Dynamic C++ classes:
A lightweight mechanism to update code in a running
program. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’98, page 6,
Berkeley, CA, USA, 1998. USENIX Association.

[48] M Dmitriev. Towards flexible and safe technology for
runtime evolution of java language applications. In
Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association with
OOPSLA 2001 International Conference, 2001.

[49] Habib Seifzadeh, Mostafa Kermani, and Mohsen Sadighi.
Dynamic Maintenance of Software Systems at Runtime.
In ARES ’08: Proceedings of the 2008 Third International
Conference on Availability, Reliability and Security, pages
859–865, Washington, DC, USA, March 2008. IEEE
Computer Society.

[50] M Jalili, S Parsa, and H Seifzadeh. A Hybrid Model
in Dynamic Software Updating for C. In D.́Slkezak
and T.-h. Kim and A. Kiumi and T. Jiang and J.
Verner and S. Abrahão, editor,Advances in Software
Engineering, volume 59 ofCommunications in Computer
and Information Science, pages 151–159. Springer Berlin
Heidelberg, 2009.

[51] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and
Theo D’Hondt. Tranquility: A Low Disruptive Alternative
to Quiescence for Ensuring Safe Dynamic Updates.IEEE
Trans. Softw. Eng., 33(12):856–868, 2007.

[52] Iulian Neamtiu and Michael Hicks. Safe and timely updates
to multi-threaded programs.SIGPLAN Not., 44(6):13–24,
2009.

[53] ITIC. Database Competition Heats Up. http://itic-
corp.com/, 2010.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

556 H. Seifzadeh et al.: A performance-based approach to...

[54] D Gupta, P Jalote, and G Barua. A Formal Framework for
On-line Software Version Change.IEEE Trans. Softw. Eng.,
22(2):120–131, 1996.

[55] G Bierman, M Hicks, P Sewell, and G Stoyle. Formalizing
Dynamic Software Updating. InOn-line Proceedings of the
Second International Workshop on Unanticipated Software
Evolution (USE), 2003.

[56] K Makris. Whole-program dynamic software updating. PhD
thesis, Arizona State University, 2009.

[57] J Stanek, S Kothari, T N Nguyen, and C Cruz-Neira. Online
Software Maintenance for Mission-Critical Systems. In
Proceedings of the 22nd IEEE International Conference
on Software Maintenance, ICSM ’06, pages 93–103,
Washington, DC, USA, 2006. IEEE Computer Society.

[58] C Giuffrida and A S Tanenbaum. Cooperative update: A
new model for dependable live update. InProceedings of
the 2nd International Workshop on Hot Topics in Software
Upgrades, HotSWUp ’09, pages 1–6, New York, NY, USA,
2009. ACM.

[59] M Hashimoto. A Method of Safety Analysis for Runtime
Code Update. InAdvances in Computer Science - ASIAN
2006. Secure Software and Related Issues, pages 60–74,
2007.

[60] J Buisson and F Dagnat. ReCaml: Execution state as the
cornerstone of reconfigurations. InProceedings of the 15th
ACM SIGPLAN international conference on Functional
programming, ICFP ’10, pages 27–38, New York, NY, USA,
September 2010. ACM.

[61] J Buisson and F Dagnat. Introspecting continuations inorder
to update active code. InHotSWUp ’08: Proceedings of
the 1st International Workshop on Hot Topics in Software
Upgrades, pages 1–5, New York, NY, USA, 2008. ACM.

[62] Kishore Channabasavaiah, Kerrie Holley, and Edward
Tuggle. Migrating to a service-oriented architecture.IBM
DeveloperWorks, 16, 2003.

[63] E Gamma, R Helm, R E Johnson, and J Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[64] Just Van Den Broecke. Pushlets: Send events from Servlets
to DHTML client browsers.JavaWorld, 2000.

[65] P McCarthy and D Crane.Comet and Reverse Ajax: The
Next-Generation Ajax 2.0. Apress, New York, NY, USA,
2008.

[66] J J Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/, 2005.

[67] E K Smith, M Hicks, and J S Foster. Towards Standardized
Benchmarks for Dynamic Software Updating Systems. In
Proceedings of the 4th International Workshop on Hot
Topics in Software Upgrades, HotSWUp ’12, Zurich -
Switzerland, June 2012. IEEE Computer Society.

Habib Seifzadeh
received his Ph.D. in
Software Engineering from
Islamic Azad University,
Science and Research Branch
in 2013. His areas of research
include software engineering,
programming languages, and
algorithms. Besides over ten
years of academic experience,

Habib also has extensive practical experience gained by
being involved in several big and small projects on
enterprise applications. He is now an assistant professor
with the computer engineering faculty of Islamic Azad
University, Najafabad Branch.

Hassan Abolhassani
received his Ph.D. from
Saitama University of
Japan with a thesis on
Automatic Software
Design focusing on Learning
from Human Designers. His
areas of academic research
include software automation,
semantic Web researches,

knowledge-based software design, and design patterns.
He worked as Senior Technologist providing software
based solutions for top-level clients in Japan when he was
with Xist-Interactive (Razorfish Japan), until the end of
September 2004, when he joined Sharif University of
Technology as an assistant professor. He is now an
associate professor with the computer engineering
department of Sharif University of Technology.

Mohsen Sadighi
Moshkenani received
his B.S. in Mathematics
and Statistics from Shiraz
University, Shiraz, Iran,
in 1973, and his M.S.
in Computer Engineering
from Sharif University
of Technology, Tehran,
Iran, in 1977, and his Ph.D. in

Computer Engineering from Indian Institute of Science
(IISc) Bangalore, India, in 1991. He has over three
decades of professional experience in well known
universities of Iran: Shahid Beheshti University, Isfahan
University of Technology, and Sharif University of
Technology-International Campus at Kish Island. His
research interests are knowledge engineering, semantic
Web, software engineering and education. Dr. Sadighi
Moshkenani is a member of ACM and Informatics
Society of Iran.

c© 2016 NSP
Natural Sciences Publishing Cor.

	Introduction
	Background and related work
	Assumptions
	ARESA approaches
	ARESA architecture
	Formal proof
	Experiment
	Conclusion and future work

