Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016) %N =¥\ 537

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100215

A Performance-based Approach to Automatic
Redeployment of Enterprise Software Applications

Habib Seifzadeh*, Hassan Abolhassahand Mohsen Sadighi Moshkenéni

1 Faculty of Computer Engineering, Najafabad Branch, Istafiziad University, Najafabad, Iran
2 Computer Engineering Department, Sharif University ofifedtogy, Tehran, Iran
3 School of Science and Engineering, Sharif University offifegogy, International Campus, Kish Island, Iran

Received: 12 Aug. 2014, Revised: 7 Jul. 2015, Accepted: 1§ 2015
Published online: 1 Mar. 2016

Abstract: Update of software usually equates disruption to a progsarécution. However, such disruptions in the execution of
applications that provide round-the-clock services isdestirable. Examples of such applications include muti¢nterprise systems
with which users may interact via distinct presentatiorsti the same time. Existing software updating systems tioperate in the
enterprise applications, or they need most of the redepoytasks to be performed manually. In this paper, we presémaimework
capable of Automatically Redeploying Enterprise Softwapglications (ARESA). This system combines the idea oféncental and
integral updates to preserve the consistency of applitegmd to minimize disruption times during redeploymentbeasame time. It
also utilizes the update bringing forward techniques ireotd enhance the system’s predictability. ARESA has beed imsupdating
adesktop costingpplication, acustom welprogram, andloomlacontent management system. The experimental results stadnt
applications with real-life complexities, ‘speed’ andzesi overheads incurred by ARESA are less than 19% and 1%gctegly.

Keywords: Software Maintenance, Dynamic Software Updating, Entegpboftware Systems, Availability

1 Introduction therefore, are not suitable for redeploying enterprise
software systems 2[5, 7, 9-11]. Besides, some
Traditional redeploymeft of multi-tier enterprise '€Searchers have claimed dynamic updating systems are
software systems requires all the tiers to be stopped anfot capable of simultaneously updating distinct frontsend
replaced with their new versions so that the executionn the presentation tie7[12,13]. o
could be continued. This process is labour-intensive for ~ On the other hand, there are facilities in the software
the programmers and it also causes long disruptions fofaintenance literature simplifying redeployment of the
the end-users. Today, most highly available applicationsnterprise applicationslf-16]. However, most parts of -
such as industrial web sites, project and contentthe redeployment tasks must be performed manually in
management systems, transactional banking andhese facilities 14-16]. Therefore, they do not resolve the
embedded control app”cations suffer from theselSSué of |0ng execut.lon. interruptions In the enterprise
unpleasant disruption times. systems. Based on this literature, an updating system able
Dynamic Software Updating (DSU) systems are used!© automatically update all tiers of a multi-tier enterpris
to update software applications at run-time in order to@pplication in order to minimize the redeployment
reduce disruptions experienced by the end-usg¢g][disruption time has remained an elusive
Existing dynamic updating systems are usually only ablendeavor,5,7,9,13].

to update particular tiers of the applications, and The current study is an attempt to automate the
redeployment of multi-tier enterprise software systems

lwe mainly use the terms ‘redeployment’ and ‘update’ for Which may include distinct front-ends in the presentation
the whole process of updating an enterprise application andier. To do so, ARESA provides a novel update model that
upgrading a special component respectively, althoughthey combines integral updates, which replace the whole
even be used interchangeably. application at run-time, with incremental updates that

* Corresponding author e-masleifzadeh@iaun.ac.ir

(© 2016 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/100215

538 NS 2 H. Seifzadeh et al.: A performance-based approach to...

replace only modified parts. This is to ensure consistency —ARESA automates redeployment of the enterprise
while reducing the end-users’ short disruptions. Another software systems composed of multiple tiers which
unique feature of ARESA is its update timing approach may have distinct front-ends in the presentation tier,
which is a cross between the programmer-specified and —ARESA provides a novel update model and an update
the update bringing forward techniques, and this makes it timing technique to achieve short disruptions,
more predictable]3]. Section4 describes the approaches predictability and consistency at the same time,

used in ARESA precisely. —-ARESA supports state transformation of all tiers

With respect to the implementation, ARESA has been during the redeployment, such as in case of database
developed as web services in order to simplify its Or web front-end upgrades.
distribution and extension. It currently supports updatin
of applications written in Java, Microsoft C# and PHP
programming languages alongside MySQL and Microsoft2 Background and related work
SQL Server database management systems. In addition,
the following by-products have been obtained duringAS described in Sectioh, the main goal of ARESA is to
development of ARESA: (1) DBComparator which reduce disruption times during the redeployment of the
reports differences of two databases facilitating multi-tier enterprise software applications. In this seut
generation of the database patches, (2) DSUInjectokve first introduce the multi-tier enterprise applications.
which injects automatic updating facilities to the source Then, the studies conducted on the maintenance of such
code of a front-end to make it dynamically updatable, andsystems are reviewed and discussed. Finally, the exact
(3) DBFiller that populates a database with desireddefinition of the problem ARESA has been designed to

number of temporary records for performance testing oftackle is given. _ o
our proof of concept framework. Multi-tier enterprise software applications are systems

ARESA has been evaluated on: (1) HABC, a costingWhiCh are usually composed of three distinct tiers. The
application developed in Microsoft C# 2’008 and Presentation tier is used to get inputs from the end-users

Microsoft SQL server 2005 which performs heavy and send outputs to them. This tier contains one or
costing calculations, (2) a custom web application possibly more front-ends (e.g., web, desktop, mobile) to

developed in PHP 5.3 and MyS®I5.5 that fetches and present the users with results in different formats. The
displays large amount of information from the database &Pplication or logic tier encompasses business workflows
and (3) Jooml3 a popularContent Management System and the data tier mcIudgs a database as well as
(CMS) deployed on ApacRe2.2 and MySQL 5.5. components through which the other tiers can
Performance barely degrades with ARESA deployed, atommunicate with the database. Upgrading such an
most 15% in popular web-based applications such ag?\pphcat!on requires components of all tiers to be replaced
Joomla, and no more than 19% in startup of real-life With their new versions. .

desktop programisAlso, experiments show ARESA does Oné way to update the enterprise software
not impose more than 1% overhead on the size of2pplications is to use redeployment facilities provided by
conventional applications. the enterprise execution platformd4f16]. Although

these facilities enjoy the advantage of consistent
?edeployment which is due to the atomic performance of
redeployments, they have rarely been devised for certain
execution platforms such as PHP. Furthermore, these
facilities mainly do not automate the whole process of the
F’edeployment, and therefore, they must be integrated with
other manual tasks in order for the redeployment to

The remaining sections of this paper are organized a
follows: Section 2 reviews the software updating
literature and describes the goals of ARESA in detail.
Section 3 includes the description of applications for
which ARESA has been designed and the assumption
made in this paper. In Sectighthe leveraged approaches
used in this paper are described. In Sectowe present - - X
ARESA's architecture and its implementation details asbrelcorgga complet_elp—lbﬁ]. T.hls is not in line with our
well as the process of patch generation and application? OX |sk:upt|on tr']mg 0 fject(;ve: . f
Sections6 and 7 provide correctness and practicability appligg;[ioir ir:etto OIeeraugpe Egly;lngar%?c esn(;?t:/egrsee jgdt;\{[?rg
e o Wi ystems 1, 13, These ysiems are abe o updte

P g y programs at run-time without the end-user’s intervention.

future or further work. : :
. L , , i Most of the dynamic updating systems also transfer the
Main contributions of ARESA in comparison with the giate of previous programs during the upgrades so the

currently available software updating systems are: end-users do not have to re-submit their uncompleted
tasks after upgraded,[2, 4, 6, 17-19]. This causes the
http:/iwww.mysgl.com update disruption experienced by the end-users to be even
2http:/iwww.joomla.org more shortened.
Shttp://www.apache.org To our knowledge, the concept of dynamic software
4Application clients, programs or front-ends are used updating has emerged from the early research studies on
interchangeably throughout this paper. the software maintenance such as Fabry, and
(@© 2016 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P

DYMOS [20, 21]. Those systems are mostly able to be noted that the consistency will be our main priority in
dynamically update desktop applications written by case we fail to keep a balance amongst the above
special-purpose programming languages developed aibjectives.

those times. Other early DSU systems dynamically

update components of the operating systenzg).|[

Because of the importance of availability in the operating3 Assumptions

systems, the researchers have been conducting studies

focusing on the dynamic updating of the operating Designing ARESA, we have made two assumptions

systems ever sinc@g-27. _ explained hereafter:
There are other dynamic updating systems able to

dynamically update embedded and real-time -—Data-centric applicationsFirst, we suppose different
applications 8, 28-31], desktop front-ends of the same enterprise application
applications 4, 17, 32-34], server communicate only via the global database; no direct

messages pass back and forth between them. Since
ARESA employs the incremental updates under
special circumstances, there may be front-ends of
different versions in the memory at the same time.
This assumption conservatively forces front-ends of

programs 1, 2, 18,36-40], and components of distributed
systems 19, 41-43]. The above on-line updating systems
are only able to update codes in the application logic tier
at run-time. The other group of dynamic updating systems
deal with upgrading the data tie9,[44, 45]. To this end,
they upgrade databases without propagating data distinct versions not to interact with each other
modifications to the other tiers of the application. directly. To our knowledge, most enterprise
Although these systems manage to update the databases applications, especially those using
at run-time, they fail to upgrade the application logic tier =~ Model-View-Controller (MVC) architecture, make
or front-ends of the presentation tier. similar assumptions. For example, email servers use a
As the body of research on the dynamic software single database while their different mail clients such
updating suggests, the currently available DSU systems as web mails ornternet Message Access Protocol

mainly focus on a particular tier of the application. Due to
the complexities in dynamic updating of multiple

components of an application, such systems are not well

suited for updating multi-tier enterprise software system

This issue has been identified in several
studies R,5,7,12,13], and it seems it has remained to be
unresolved so farl[0, 11, 46]. The issue has become even

(IMAP) applications access emails only through that
database. The other example is banking systems in
which all web and mobile applications connect only
to a database to perform accounting transactions.
Moreover, the above assumption does not restrict
ARESA to updating of large number of software
applications which have a single user interface

alongside their databases. Examples of these systems
include CMSs, web project management and
collaboration systems.

—Software requirementsSince ARESA components
have been implemented as Java web services, each
machine containing a component of the ARESA must
have a Java web container installed and running.
Fortunately, due to the multi-platform availability of
Java, this requirement does not violate the ARESA
generality. This web container can be as small as a
Tomcat servér occupying a few megabytes of
storage, although we exploit the larger weblogic
servef for our evaluations.

more noticeable in the enterprise applications consisting
of web front-ends, because this type of front-ends have
received less attention by the DSU systems compared to
their desktop equivalents while they usually have more
stringent availability requirements.

Moreover, one of the important problems the DSU
systems are dealing with is that they either do not
guarantee the consistency completely because of the
variety of component versions in the memody47-49],
or in order to preserve consistency they wait too long for
the appropriate update time and this makes them
unpredictableq, 6,25, 34, 36,37,50]. Although, a number
of studies focusing on simultaneous achieving of both
consistency and predictability have been conducted, they
do not specifically turn to the enterprise software
systems$1,52]. 4 ARESA approaches

Considering the above shortcomings in the existing
software updating systems, our purpose in this study is tQ, thjs section, we present approaches employed by
develop an updating system with characteristics listtdA\RESA in order to fulfill the aims mentioned in
below: (1) our system should be able to update the entirésection2, The ARESA update model has been described
tiers of the enterprise applications automatically (eveni, the first two subsections; in the first subsection, it is
those containing distinct front-ends in the presentationyssmed that only programs of the presentation tier have

tier), (2) it should redeploy applications within short and heen modified while in the second subsection, the
predictable time frames, (3) it must not violate programs’

consistency because of the updating, and (4) it has to
transfer the state of all tiers to the new versions. It should

Ihttp://tomcat.apache.org/
Zhttp://www.oracle.com/technetwork/middleware/weldigdex.html

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

540 NS 2 H. Seifzadeh et al.: A performance-based approach to...

assumption is that the data tier has been changed. In thiadirections which have far more negative impact. With
third and fourth subsections, the timing and the stateregard to the consistency, it is maintained inside the
transformation techniques used in ARESA are describedmodified front-end because all parts of it are replaced
respectively. Justification for each methodology is atomically. The consistency is also ensured between the
provided along with a discussion of alternative front-ends since the application is data-centric and there
approaches in each case. is no direct communication amongst front-ends.

4.1 Updating application clients 4.2 Updating data tier

There are two significant approaches to update programgased on our empirical study of (1) HABC, (2) Joomla,
in the presentation tier in the IiteraturdSl: (1) an and (3) Open Conference Sygterrt@CS)l' database
incremental model in which only updated components arqpdates are needed in 45% to 75% of applications
replaced in the memoryl[2,4,17,18,27,35,37], and (2) upgrades. Additionally, a conducted survey indicates that
an integral model that replaces the whole programshearly 60% of organizations around the world may have
irrespective of their updated componen86,[40l. The changed their databases in the years 2010 and ZR.1 |
first method prevents unnecessary replacements duringherefore, supporting the automatic data upgrade during
the upgrade, resulting in short disruption timek3)[redeployments seems to be essential to reach our short
However, this technique interposes an extra level ofdisruption time goal in more than fifty percent of
access indirection between each two components in th@pgrades. To update databases, we are provided with two
program which leads to more overhead on thegajternatives: (1) leveraging an extra level of access
performance of the programsd. Because of the variety indirection between the database and other tiers of
of tiers and components in the enterprise softwaregpplication in order to prevent database updates from
systems, any imposed overhead amongst componeniseing propagated9], and (2) redeploying the entire
may cause significant overall performance degradationsapplication in the case of database changes.
In addition, replacing only modified parts of the The first model has a major negative impact on the
application causes components of different versions togpplication’s performance since all database queries
co-exist in the memory which may result in ConSiStencysh0u|d be passed through a query rewriting engihe_
violations [L3]. Nevertheless, unlike updating front-ends which does not
The second model, on the other hand, does not requir@iecessarily result in updating databases (e.g., fixing a bug
consistency preservation mechanisms because it replac@sa function, improving front-end performance, changing
the whole application at run-timeL§|. The other benefit yser interface, etc.), we believe that database updates
of this approach is that it supports most kinds of changesnust be reflected in all programs of the presentation tier.
in the source codes of the front-ends3|. Nevertheless, For example, if a column is added to a database table, all
this approach causes long update durations owing to th@ont-ends should also be updated to utilize the added
unnecessary module replacements in the memoryeolumn in the database, or else the added column will be
Replacing all tiers of the application and their meaningless or may cause inconsistencies. Therefore,
components for small Changes in a front-end leads tOARESA emp|oys the latter approach to update the
many unnecessary replacements and is not justifiable igatabases. Based on this approach, ARESA pauses all
the enterprise systems. front-ends, updates database, and then updates the
To satisfy our both short disruption time and front-ends with the proper states loaded. In other words,
consistency goals, ARESA combines the two updatewe sacrifice short disruption time for performance and
models described above. It replaces the entire modifie@¢onsistency in the case of data tier upgrades.
front-end while allowing other front-ends and other tiers
to continue execution. For instance, consider a banking
application with two front-ends, a web-based and az.3 Redeployment timing
desktop in its presentation tier, and a new version be
available for the web front-end to fix a bug in one of its ; ; ; ; ;
HT'ML'fiIes. ARESA replaces the whole web frpnt-end EQSSSITI,? atnhg ppdr;ggr?]tii tlrgsd(;tirjlgdaéisrtseg];hagigglragr
while it allows the desktop program to continue itS regearchers have come to believe that the update timing is
execution. an undecidable probleml[2, 6, 38, 54-56]. There are

_Based on this approach, there is no need to use accegy merous approaches to find the appropriate time of
indirections within front-ends because the whole mOd'f'edupgrade in the literature. Some systems apply updates

front-end is renewed. Furthermore, we have a Shor‘immediately either by replacing the active
disruption time because only the modified front-end is,ctions D6, 38, 40], or by continuing the execution of
redeployed. Of note, this approach causes unnecessary
replacements only in the modified front-end which is 1A web-based conference management application,
negligible compared to the overheads on frequent accesstp://pkp.sfu.ca/ocs/

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P 541

old functions and invoking their new versions not have considerable advantages over off-line updates.
afterwards 4, 32,47]. The former technique is difficult to There are two main techniques to transfer the state from
implement while the latter may jeopardize the old to new version of the applicationly]: (1)
applications’ consistency, because it causes componentg-execution %9, 60, and programmer-specified state
of different versions to invoke each other during the transformersT, 2, 6, 33]. According to the first approach,
upgrades13]. the execution is rolled back to the nearest point in the old

The other on-line updating systems defer the upgradeversion that is equivalent to a point in the new version,
until a specific criterion is satisfied. This criterion can be and then the new version is executed from there to the
programmer-specified1[2, 6, 35|, fulfiled when no point corresponding to the point in the old version where
modified function is active 75 27, 34, 36, 37, a the execution was interrupted. In the second approach, the
timeout B, 57], or quiescence (i.e., no modified function programmer provides functions called state transformers
participates in any active transaction of the to be executed during the upgrade in order to transfer the
program) PR3, 51]. Systems which use the state from oldto new version.

‘programmer-specified’ technique usually ~ suggest The first technique not only needs the source codes to
programmers choosg the end of main infinite loop as thgye annotated by the check-points, it also requires the
program’s update point. o o system to analyze the codes in order to discover
According to the update timing undecidabilit$q, similarities and differences among theS0[61]. These

the ~‘timeout’ and ‘no-updated-function-is-active’ are not trivial tasks, and therefore, the first mechanism
methods do not completely guarantee the consistency ofazs been leveraged by a few systems in the dynamic
the programs 3. The other two methods, ypdating literature. The second technique is simpler to
‘programmer-specified’ and ‘quiescence’ suffer from jmplement. It also enables the dynamic updating system
unpredictability, because it is not exactly known when thetq transform the state of every front-end by invoking the

execution reaches the point specified by the programmegrovided methods while programmers can populate them
or all modified functions finish the execution in the active th the content of their choosing. However, it requires

transactions. The situation worsens in the muIti-threadeq)rogrammers to provide more components in order to
and distributed applications, because all threads Oprepare patches for the automatic redeployments.

programs of such applications must converge to the Because of simplicity and practicability, ARESA uses

specified - points _ until the update ~can be the programmer-specified approach. To present this
applied B8, 52 58). Since the enterprise applications are technique can be used in the enterprise applications, we

composed of multiple running components, the problem X : ¥ ;
of update point convergence also exists in these systems.gfgsesggsr'Za?1 dwér]e(jscé\pill‘;’eor:osva%iss?att;rg?teizgSisl?rtgn;?;?r?a d
To reduce the aforementioned timing problems, . — . . .
; . .~ . ~'by this mechanism: (1jorm windows with which the
ARESA integrates the programmer time determmatlonend-users enter data, (@lculationpages which enables
with two other update bringing forward mechanisms: (1) the end-users to viéw the progr%sg of their submitted
timeout and (2) access deniald. Determining the calculation, and (3)report pages which show the

appropriate update time by the programmer helps ; LAY
AFI;{pESE)A to be pconsistent in giverse 2ntgrprise Systenﬁ)s.programs data in different formats. These three classes

For example, in a highly available costing application are common between .de.slftop and web front-ends.
ascertain whether a specific front-end is busy Withupgrades.do not destroy their filled data. In this case, the
interrupted or it is sitting idle making this a perfect time from and set them to the graphical components of
for dynamic updating. On the other hand, ARESA front-ends, respectively. In desktop prograr@_saphmal
reduces the chance of deadlocks by safely discarding &Ser Interface(GUI) data are gathered and filled by the
program not reached its update point in the specific timecomponents’ provided functions and in the web
frame. It also makes the web front-ends reject any@pplications, this happens by the Javascript functions
incoming requests during the upgrades to ensure that thwhich access HTML elements.
current threads of execution finally converge to the The calculation pages do not require the state
specified update points. Concerning the desktoptransformation during upgrade because the programmers
front-ends, it is the programmer’s responsibility to mgdif usually do not permit applying updates when this type of
the program in a way that it does not accept new requestpages are viewed. The last class of windows, report ones,
while being upgraded in the current version of ARESA. contain a database query executed at the page’s load and
display the information stored in the database based on
the executed query. The report pages also do not have any
4.4 State transformation user-provided data. Since databases or report queries may
be changed by the upgrades, the state of report pages
Without a state transformation mechanism, a softwaremust be renewed to reflect these changes. This can be
updating system becomes a stop/start service which doeschieved by re-opening the opened pages automatically in

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

542 NS 2 H. Seifzadeh et al.: A performance-based approach to...

order to execute their modified database queries; no othezonfiguration described above, the programmer is simply

state transformation action is required. required to send the URLs of the patches to ARESA
In addition to the pages’ states, programs of theruntime environment in supported organizations. All

presentation tier probably have other invisible statesremaining redeployment steps are automated without any

which must be transferred from their old to the new interaction required on the part of the users or the

versions. These include global variables in the desktogrogrammer.

programs or sub-variables of tlsessiorandapplication

variables in the web front-ends. The two functions

getState and setState are also able to transfer these valubsl Patch generation

after they transfer the state of the pages. If a)))

transformation is also needed, it can be performed inAn enterprise patchin ARESA includes three components:

either the getState or the setState based on thél) an updatable desktop front-end, (2) an updatable web

programmer’s needs, although the latter is more probableProgram, and (3) a db patch. As upgrading front-ends does
not necessarily requires updating the database, the fiost tw

components are essential while the third is optional (refer
to Subsectiod.2 of Sectiord for more information).
Fig. 1 illustrates the process of patch generation in

))) o ARESA. When a new requirement comes in, the
Today, service oriented architecture and other distribute rogrammer modifies source code of the front-ends and

communication protocols have led to the emergence Of,ges the provided DSUlnjector tool to make them

enterprise applications comprising of components written s jatable. The updatable code is able to receive the
in different programming language€. Therefore, an nqyification of future updates and store its state for later
automatic redeployment system designated for th&ggieval by subsequent versions of the code. The
enterprise applications needs to support mMoSstyogrammer completes the updatable template code
programming languages, or else it probably fail o generated by DSUInjector. The more well-structured a
redepl'oy the whole application. To th|s'a|m, ARESA has front-end is, the more complete the code generated by
been implemented as Java web services. Owing to thgysynjector; hence requiring less manual tweaking of
portability advantage of Java, the components of ARESAwe code by the programmer. Structure of updatable code
can be installed on different platforms and also beynq the parts may need the programmer’s attention are
invoked by every programming language able to use th&jescribed for desktop and web applications in the
web services. Moreover, this implementation en\(qunm.entfo"owing two subsections, respectively. Since web pages
enables ARESA to Qpply updates remotely, ehmmatmgusua”y do not require compiling, web front-end

the need for physical presence of programmers Ocomponent of the enterprise patch is ready for

technicians in target organizations. deployment at this stage of the process. However, desktop
program component must be compiled before it can be
embedded in the enterprise patch.
5 ARESA architecture Final step of the process is to provide a SQL script in
order to update the enterprise database automatically.
Detailed description of the overall architecture of ARESA There are various database differencing tools available
as well as its patch model is presented in this section(e.g., mysqldift, OpenDBDiff, SQL Workbench/]
Runtime components and their interactions is alsotablediff’, and DBComparator). Although these tools
presented. assist programmers in preparation of database patches,
Redeployment of an enterprise application consists ofione can fully automate the process. For example, none is
(1) patch generation, and (2) patch application. As part ofable to detect renaming or moving a field in a database.
the patch generation phase, the programmer constructEherefore, in this version of ARESA, the programmer has
and places the patch in a patch repository. In applying thdo compose the SQL scripts of db patches with the help of
patch, the programmer sends the patch URL to thethe aforementioned tools. The enterprise patch is now
ARESA runtime environment. Upon receiving a patch complete.
URL, the ARESA engine notifies all registered
front-ends, saves the execution state of each front-eid th .
has been paused timely, patches the application’s databagel-1 Updatable desktop client

(ensuring no front-end connected), and finally refreshesry, o g cture of the updatable desktop applications and

the front-ends W'th their correct state. . . their differences with the conventional equivalents are
Front-ends which have not reached their update points

in the specified time frame must be renewed manually by http://www.mysqldiff.org/

using the providedbootstrapprogram. This program also 2http://opendbiff.codeplex.com/

registers the client machine with the ARESA runtime 3http://www.sgl-workbench.net/

environment for future dynamic updates. With the “http://msdn.microsoft.com/en-us/library/ms16284g@xas

4.5 Environment

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P

web program files;

programmer

(augmented updatable W%b

(augmented updatable deskt+p

updatable desktop

programmer

Figure 1: Patch preparation process performed by the programmer

described in this section. This section concludes by a
discussion on overheads this model imposes on the space

requirement and the execution time of front-ends.

Making a desktop front-end updatable in ARESA
requires the following four modifications to be applied to
the program’s source code. Of note, the first two
modifications are made by DSUlnjector automatically
while the third and fourth should be applied manually at
this time.

—The first modification is to add an instruction to the

even conventional best practices such as Hibefnate
use singleton design pattern 3] for database
connection, we make sure only one point is altered in
the programs. If it is not the case, the connection
string can be requested from ARESA at the
application’s start-up and be passed to every requiring
command during the execution. As an alternative, the
connection string can remain hard-coded provided
that the programmer sets the name of database’s
updated version in the connection strings of the new
program.

program’s startup routine to create an updater thread. —The last modification is the update points specified by

The thread starts by checking whether a previous state
has been stored in ARESA runtime environment and
if so, loads the state. It then binds to a known pant
order to receive the notification of future updates,
waits until the execution reaches the nearest update

point specified by the programmer, sends the currenbro

state to ARESA for subsequent retrieval by the next
version of the program, and finally terminates the
program in order for the remaining automatic
redeployment tasks to be completed.

—The second modification relates to setters and getter
of the program’s state. ARESA expects the
implementation of two abstract methodgtStateand
setState in DSUlnjector at the time of dynamic
updating injection. DSUInjector then embeds these
two methods into the updatable program in order to be
used by the updater thread for state transformation. b

—The third modification is to change hard-coded
database connection strings and enable retrieval o
such a connection from ARESA. Since developers or

1IARESA uses theocket programmingp communicate with

the programmer throughout the original source code.
The more update points the programmer specifies, the
shorter disruption the end-user might experience
during the redeployment.

A sample redeploying code for Java applications is
vided in Fig.2. In this example, the two abstract

methods, setState and getState, are implemented by
DSUHandler class. Updater class includes the updater
startup thread as well as the DBHandler which contains a
method returning the latest database connection string as
Fequired. Furthermore, two lines of code have been added
to the beginning of the main method in order to create the
updater thread and pass an instance of DSUHandler to it.
The original main code follows without any changes
except for the programmer-specified update points.

As seen in this example, the space overhead incurred

y ARESA does not exceed several tens of lines, noting
he state setters and getters are provided by the
rogrammer and can be of any length. This is a modest

space overhead especially for large front-ends. The time

overhead can occur in two places: (1) the updater thread

the desktop programs.

Zhttp://www.hibernate.org

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

H. Seifzadeh et al.: A performance-based approach to...

O©CoO~NOUAWNPE

[En
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

public interface DSURequester ({
public void setState(State s);
public State getState();

}

public class DSUHandl er inplenents

DSURequest er {

.../IFilled by the programer

}

public class DBHandl er {

ARESAC! i ent Updat eService s = ne
public String getConnString() {
return s.get DBConnString();

}

}

public class Main {

W ..

public static void main(...) {
DSUHandl er h = new DSUHandl er () ;
Updat er updater = new Updater(h);
/1 The original main
/I Updat e point specified by progranmer
i f (updat er. updat eAvai |l abl e) {
updat er. update();
}
}
}

(a) additions to the original source code

public class Updater inplenents
Runnabl e {
DSURequester r;
ARESAC! i ent Updat eService s = new .. .;
bool ean updat eAvai |l abl e = fal se;

bﬁblic Updat er (DSURequester r) {
'r:§etState(s.getState());
this.r =r;
new Thread(this).start();

public void update() {
s.setState(r.getState());
System exit(0);

public void run() {

19 for(::) {

20 Socket sock = server.accept();
21 String req = readFron(sock);
22 if (req.equal s(UPDATE)) {
23 updat eAvai l abl e = true;
24 } elseif ... {
25 c.
26 }
27 }
28 }
29 }
(b) the updater thread

Figure 2: The source code of an updatable desktop application

execution, and (2) obtaining the new database connectiothese types of programs and the approaches taken by
string from ARESA. Once the updater thread is bound toARESA to tackle them.

its port, it is merely blocked by the OS awaiting an In order to make a web front-end updatable, four
incoming update notification with minimal time overhead. modifications are required to be applied to the source
Assuming the host program utilizes singleton pattern tocode. The first and second are performed automatically by
connect to the database, the majority of the time overhea®SUInjector and the last two have to be applied manually
occur at the program’s startup. Overheads of ARESA inin the current version of ARESA:

several specific applications are discussed in Segtion

5.1.2 Updatable web client

Despise similarities of the web and the desktop programs,
the distributed nature of the web programs makes them
more difficult to be automatically updated. Multiple users

connected to a single application cause the application’s
state to be split into two parts of the server side and the
client side. This means reaching an agreement on the

—The first modification is to incorporate a web page
called updatérinto the web program. Requests to this
page belong to two main categories, (1) those coming
from the front-end’s pages, and (2) others sent by
ARESA enginé. With regard to the former category,
this page keeps track of opened pages in the users’
browsers, notifies them of new updates, saves state of
the opened pages, and sends the stored states back to
their new version. With respect to the second
category, the updater gets update notification from the
ARESA engine, removes web pages that generate

correct update time or transferring state of the applicatio 1This page has been implemented in PHP and is being
is not a trivial task. In the following, we explain developed in other web programming languages.
modifications required to make web front-ends updatable 2ARESA utilizes the HTTP requests to interact with the web
and this brings us to addressing the issues of upgradingont-ends.

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P 545

output in order to refuse any new requests during the The second issue is on notifying web pages about
upgrade, sends the acknowledgment back to ARESAevents occurred on the server such as notifying them of
when all pages save their states meaning they ar¢he availability of updates. This can be accomplished
ready for update, receives the resume message fromsing different techniques (e.g., Pushlets64]]

the ARESA engine and asks pages to redirect to theComet B5], Ajax [66], Jaxcent). In ARESA, we use
new versions. It is noteworthy that only one instancelong responseechnique to achieve this effect. In this
of the updater is added to each web front-end. technique, every web page send®gisterrequest to the

—The second modification relates to the dynamicupdater at the start-up, and the server sends back a
updating scriptadded to each output web page (i.e., a predefined character such as null character once a second
page that generate output for the end-users) to enablas a response. When the updater stops sending the
it to interact with the updater and perform automatic character, the web page interprets this as a new update
updating tasks of the page. The script generates &aving become available.
uniqgue random number at the page’s start-up and The third issue is about choosing a method through
sends it to the updater in order to uniquely identify the which independent threads of the updater know each
opened instance of the page to the updater. At updatether’s state. For instance, the threads sending the null
times, the script disables HTML elements included in character to their registered pages should be informed
the page to make them not to accept any furtherabout the other thread that receives the update notification
requests and sends their states along with thdorm the ARESA runtime environment. To address this
generated id to the updater. After the update, the scriptssue, thdile systemspproach has been used, in which a
retrieves the page’s old state via the unique id passethread waiting for a special event checks the existence of
through the new URL and loads it to the components.a related file in the application’s directory repeatedly.
The mentioned script is usually injected into a few When an event occurs in a thread, it touches the related
pages of the web front-ends, because the welfile in the application’s directory and other interested
front-ends (e.g., Joomla, SquirrelMgiland OCS) threads are informed of that event.
typically leveragefacadedesign patterng3] to emit The fourth issue is how to keep the list of opened
output. For example, as seen in Sectigronly two pages held by the updater up-to-date. The reason for this
pages of over 5,000 web pages generate output ifis that if the list is not up-to-date, the updater may wait
Joomla. forever for a non-existent web page. To prevent this

—The third modification is to adjust the database deadlock, the updater removes a web page from the list if
connection string of the program by techniquesit cannot send the null character to it, assuming the page
similar to those described in the previous subsection. has been unloaded.

—The last modification is to specify blocks of codes The lastissue is that the updater has to keep a list of the
inside which the dynamic updates must not be appliedoutput pages in order to ask them to decline new incoming
due to the possibility of consistency violations. This is requests during the upgrade. To do so, a configuration file
accomplished by incrementing a predefined counter atontaining the required information is placed in the web
the beginning of the block and decrementing thatfront-end component of the enterprise patch and sent to
counter at the end. If a block of code is not the ARESA runtime engine at the redeployment times.
surrounded by this specification, ARESA Fig. 3 shows an updatable web page along with the
automatically replaces the front-end irrespective ofrequired DSU script and updater. Of note, we assume in
whether the code is executing or not. this example that the page does not need to connect to

database for brevity. Noting this, the page simply has

Implementing ARESA, we faced five minor issues that heen modified to include the script and a hidden HTML
will be discussed in the following where the approaches todiv element activated by the script at the update arrivals.
direct them are also presented. The first issue is how torhe div’s task is to inform the users about the update and
embed the dynamic updating script into the output pagesask them to wait awhile until the page is renewed. The
To this end, two methods can be employed: (1) an HTMLpage’s original code follows with the exception of the
frameset is used to encapsulate the original page in ongrogrammer-specified blocks whose execution and the
frame and its dynamic updating code in another, or (2) ardynamic updating are mutually exclusive.
HTML script tag may be used to include the DSU code at wiith respect to the space overhead, the updater has
the start of the original page. The former method is morethe |east impact since there is a single instance of it added
modular while the latter is more efficient. In addition, the tg the front-end. The second modification imposes a
HTTP parameters sent to the frameset should be redirectegkeater overhead on the size but it is also negligible,
to the original page in the former technique. A comparisonpecause it is added to only the output pages. As
of the above two methods is found in Sectibon emphasized before, it is common amongst web
programmers to create a few output web pages in which

The script has been implemented in Javascript, andother configuration pages have been included. Existence
therefore, can be incorporated into almost every web progra

2A web-mail client application, http://www.squirrelmaitg/ Shttp://www.jaxcent.com/

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

546 NS 2 H. Seifzadeh et al.: A performance-based approach to...

index.php: index.js:
1 <script ... src="index.js"/> 1...
2 <div id="DSU' style="displ ay: none" > 2<l-- Uilities -->
3 Upgrading the page... 3 function transforner(op, async,...) {
4 </div>. .. 4 xm Ht t pReq. open(TRANS_ADDR+" ?" +
5 <?php 5 +op+" &agel d="+pagel d, ...);
6 $_SERVER’count’] ++; 6 ..
7 ...l/The original main 7}
8 $_SERVER 'count’]--; 8 function waitForUpdate() {
9 7> 9 transforner("register", true,
. 10 "updat eCal | Back") ;
updater: 11}
1 function ready() { 12 function updat eCal | Back() {
2 if($_SERVER ' count']==0 && enpty($pages))| 13 ...
3 return true; 14 docunent. get El enent Byl d(" DSU")
4 else return fal se; 15 .styl e. di spl ay="bl ock";
51} 16 //Disable all HTM. objects
6 if($_CET['register’]) { 17 sendState();
7 append($pages, $ _CET[’ pageid']); 18}
8 while(!file_exists($update)){ 19 function sendState() {
9 echo(chr(0)); 20 ...
10 sl eep(1); 21 <!I-- Gather state -->
11} 22 transformer("setstate", true,
12} else if($_CET[getstate’]) { 23 "sendSt at eCal | Back", state);
13 $lines=file($states); 24}
14 $line=find($lines, $_CET[pageld]); 25 function sendStateCal | Back() {
15 echo $line; 26 wi ndow. top. | ocation.replace(
16 unset($lines[$line_nuni); 27 xm htt pFor St at e. responseText);
17 } else if($_CET[' update_notif']) { 28 }
18 touch($update); 29 function getState() {
19 repl ace_out put _pages(); 30 transforner("getstate", false);
20 if(ready()) send_ready_to_aresa(); 31 ...<!-- Inject state -->
21} else if($_CET['setstate’]) { 32}
22 append($states,$_GET[’ pageid'], 33...
23 $_GET[state’]); 34 <!-- Extract pageld fromURL -->
24 if(ready()) send_ready_to_aresa(); 35 i f (pagel d==undefi ned) {
25 wait_for_start_file(); 36 pageld = Math.randon()...;
26 ... echo new_url(); 37} else {
27 } else if($_CGET['start’]) { 38 getState();
28 unlink($update); 39}
29 touch($start); 40 wai t For Updat e() ;
30}... 41 . ..
(a) Updatable web page, state transformer (b) Javascript part of updatable web page

Figure 3: The source code of an updatable web application

of files like config.inc.phpn most PHP applications is an also requires that the connection is opened during visit of
evidence for this fact. the page. The updater, on the other hand, does not indeed
dncur overhead on the time or the bandwidth, because it
resides in server and is not executed unless a request
comes.

Regarding the time overhead, the added code to th
output page along with its DSU script occupy more
bandwidth loading them into the end-user’s browser. In
addition and similar to the desktop applications, getting
the latest database connection string from ARESA
runtime environment lengthens processing of dynamic.2 Patch application
web pages. Transmission of null characters between
server and clients is another bandwidth overhead ouiThe ARESA runtime environment is divided into three
approach incur. Of note, the null characters transmissiorparts: (1) acoordinator, managing upgrade of front-ends

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P 547

with their global database transformation, (2)Céient not acknowledged reaching a timeout. It is worth noting

Update ServicéCUS), responsible for updating a single that clients which do not satisfy criteria determined in one

desktop or web front-end and its local state, (3) and astate are excluded from the remaining redeployment

DataBase Update Service(DBUS), updating the process to avoid the aforementioned problems relating to

enterprise database. Figjillustrates these three parts and consistency violations. In addition to the above tasks

their relationships. In the next three subsections, wewhich are performed when an update is being applied, the

describe details and also approaches used in theoordinator has other duties fulfilled in its normal state.

coordinator, CUSs, and DBUS, respectively. These include sending address of the latest version to the
new clients or ones failed in applying the last update,
registering CUSs of these new clients for future contacts,

5.2.1 Coordinator returning the latest database connection string to every
legitimate requester, stating if a client is the latest igrs

As described in Sectiod, ARESA must strike a balance or not, etc.

between preventing version inconsistencies as well as It should be noted that the coordinator keeps the

minimizing service disruptions based on whether the needequired information such as a list of updatable front-ends

for update of the global database. Coordinator isand the latest database connection string in a file which its

responsible for keeping this balance in ARESA. To contents is renewed accordingly when an automatic

support both cases, the coordinator goes through twaeedeployment is performed or a new front-end is

distinct composite states: (1) ‘software-and-db-updgtin registered to the ARESA system.

in which the coordinator obeys the inconsistency

prevention rules, and (2) ‘software-updating’ in which the

rules are relaxed in order to minimize service disruptions5.2.2 DataBase update service

during redeployment.

Fig. 5 includes a UML statechart illustrating the DBUS automatically updates the global database of the
coordinator’s states and transitions amongst them. In bottenterprise application when no program in the system
states, ‘software-and-db-updating’ and uses that database. To do so, DBUS closes all opened
‘software-updating’, the coordinator downloads the lates connections to the database and instructs the DBMS not
patches from the programmer’s patch repository ando accept any incoming connections while the patch is
notifies CUSs of the recent update instructing them tobeing applied. Specifically, it sets the maximum number
download the related component. After these steps and inf allowed connections to one. DBUS then executes a
the ‘software-and-db-updating’ state, the coordinatorSQL script provided by the programmer and sent by the
waits until all clients respond and then queries for coordinator to patch the database. After db patching,
interruption of their executions. The coordinator then DBUS sets the maximum number of allowed connections
steps into the ‘waiting-for-pause-ack’ sub-state andto the previous value. It also renames the old database in
lingers until all acknowledge. Upon acknowledgment, theorder to invalidate its connection string and no program
coordinator requests automatic patching of the databasean read from or write to that database. The DBUS finally
from DBUS and obtains the latest connection string fromgives the control back to the coordinator and sends also
it. Finally, it asks CUSs to start the new programs. the newly generated connection string to it.

In the ‘software-updating’ state on the other hand, the = DBUS supports MySQL and Microsoft SQL server
coordinator transitions to the ‘sending-renew’ sub-statenow. However, the aim has been to minimize changes to
immediately after sending the update notification messag®BUS when other database management systems are
to the client applications and having received firstincorporated into it. By contrast to the coordinator, DBUS
acknowledgment from any one of them. In this state, thedoes not require a configuration file in order to be
coordinator sends pause or start messages individually tdeployed or executed.

a CUS that responds to the previous command

irrespective of other clients’ status. Contrary to our &ili

this latter case was harder to implement, because th&.2.3 Client update service

coordinator has less synchronization points to test the

overall system and allowable statuses of each individuaClient Update Service, or CUS for short, is responsible

CUS. For example, it may be possible in the forupdating a single application client in the system. The

‘software-updating’ state that a CUS starts the updatectlient can be either desktop or web-based. The major task
front-end while another is still downloading it. of CUS is to transfer the state of the front-end from old to

Timeouts are used in the coordinator’s statesnew version. As described in Sectidnthis is performed
whenever a deadlock may occur in the system. Foy the programmer-specified state transformation
instance, in the ‘waiting-for-ack’ state in which the approach.
coordinator must wait for all clients to download the At the update arrival, CUS first downloads the new
latest patches, it may transition to the next version from the coordinator's file management system
‘sending-pause’ state regardless of any clients which havand places it in a specified location. The downloaded

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

548 NS 2 H. Seifzadeh et al.: A performance-based approach to...

ARESA runtime

<
2
I tch §
- & DBUS apply patc DB s
& :
. read/ -2
local enterprise coordinator write =
. — N Q
filesystem| patch service €
@
\‘ﬁ@%_, v Dl
% state tran., apply patcl Ferstfiera
(A CUSs <—'pauselstan‘ applicationg
o —
Figure 4: Patch application process in ARESA
software-and-db-updating
downloading a sending-notificatioh 2 waiting-for-ack
{ 3
software and db patchgs ‘ sending-pause‘ n ‘ waiting-for-pause-ack‘ . ‘ db updating‘ o ‘ sending start ;

| ()

software-updating

software patch

downloading ‘ ‘ sending-notification|
1

| :

——

‘ waiting-for-ack 2 sending-renew
* white states are transient
1: downloading of new patches finished 5: all clients pause/timeout
2: all clients get update notification 6: db updating is finished
3: all clients download the new version/timeout 7: all clients start the new version
4: all clients get pause message 8: first client finishes downloading of the new version

Figure 5: Coordinator’s states illustrated by statechart

program is usually an executable file for the desktop Other duties of CUS performed in the normal state
front-ends (e.g., exe, jar) and a zip file containing pagesnclude (1) asking the coordinator if its front-end is
for the web front-ends (e.g., html, jsp, php). The CUSregistered and updated, (2) requesting the front-end’s
then declares arrival of the update notification and lingerdatest version if is obsolete, (3) determining if an
until the coordinator instructs to pause the front-endautomatic redeploymentis in progress, and (4) delivering
under its control. the latest database connection string from the coordinator
to the corresponding client application.

Once the program receives the pause message and
reaches the nearest update point, it sends the transformed
state to CUS, asking it to store that state and then6 = | f
terminates. CUS in turn announces the interruption of the ormal proo
corresponding front-end to the coordinator and waits for
its start message. When this message arrives, CUS starls this section, we aim to prove formally that the
the front-end’s new version by executing a provided shellARESA's update model and timing approaches do not
script. This script takes different approaches to start theviolate systems’ consistency. To this end, we first provide
desktop or the web front-ends. It creates an operating formal definition of constraints that must be true in
system process to run the former while it unzips theorder for an enterprise application to be consistent, and
downloaded file in the application’s root directory to then, we show formally that the mentioned constraints
renew the latter. Finally, CUS gives the stored state baclalways hold true in the applications that employ ARESA
to the application’s new version upon request. for the automatic redeployments.

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P 549

Definition 61(Front-end Fy). Let Fx denotes the version ProofHere, we show that the two specified statements in
i of front-end F which uses the global database version k.the Definition65 always hold true in ARESA. The first
F stands for a front-end F version i which may statementis valid all the time due to this consideration tha
communicate with an unknown version of the globalenterprise application is data-centric in ARESA (refer to
database. In addition, ik denotes that the front-end F Section3 for more information). In other words, there is
does not and also must not use any version of the globahoF andG; in the application such that= j andF ~ G;.
database. In order to prove the second condition in ARESA, we

assume all possible states of the enterprise application
Definition 62(Database). Dy represents the version k and then check fulfilment of the condition in each state.
of the global database. It is noted that there is only oneTwo coarse-grained states are assumed for the enterprise
version of the global database at a time in the system. applications: (1) during the redeployment and (2) after the

redeployment. In the former state, the application remains
Definition 63(Dependency ~-). Let ~» indicates consistent because no front-end uses the database at that
dependency between two front-ends, say+F5; means time (all db connections are closed and maximum number
that F depends on ¢ Dependency between two of connections is set to one). Specifically, for &,
front-ends may be message passing or web service call. | = x during applying the update patches.

The latter state, say after the redeployment, is divided

Definition 64(Update—). Let F — K1 denotes that the into four distinct states based on whether the global
front-end F version i is updated to versio#iL. database and the front-end have been successfully

updated or not. First, (2al) suppose that the databgse
Definition 65(Consistency)). An enterprise system with has been updated and the old front-éhdconverged to
a set of front-ends and a global database is consistent athe specified update point in the proper time frame,
a specific time if and only if the following two conditions meaning it also has been successfully updated. Formally

hold true: speaking,Dy — Dy 1 AR — Fi1)41. We must show
o A{Dy.1,F.1141} In this case. Since the system has been
1VF,Gj R~ Gj=i=]. , consistent before redeployment, we have:
23Dk = VR (=) v (I =kAi > 1). ADGFRI} = k=1Ai>1=kfl=1+1Ai+1>

, | +1= A{Dys1,Fy1i41}-

In short, the former statement controls consistency gecond, (2a2) consider a state in which the database
among front-ends while the latter does so betweenp, nas not been modified but the front-eRd has been
front-ends and the enterprise database. The first statemephsed timely and upgraded successfully. Therefore, we
places this constraint that the version of two dependenEa\,eFLI — Fir11. According to this fact that the system
clients must be the same. For example, it should not bg,as heen consistent before the redeployment, we conclude:
possible for a client of version 1 to send a message A (p, F |1 = k=IAi>|=i+1>|= A{DyFi}.
another client of version 2. The reason for this is that the " Thirg (2b1) we study a state in which the ’datablaﬁ,e
programs’ semantics may be changed during upgrades,as peen updated but the front-éhgdhas failed to update
The second statement forces front-ends to either not Usgye to reaching its time-out. Specifically, what happed in
the database or use its latest version if they need to. FOfhe system isDy — Dy1. Since ARESA renames the old
instance, if the latest version of the global database is 2g4iapase after upgrading it, no front-end includigis
then front-ends requiring to access the global databasgye 1o use it after the update, meaning thaecomesx
must also use the database version 2. Of note, the notatiog this kind of front-end. Therefore, the system becomes
3D, means there is only one (and obviously the latest)y et of{ Dy 1,Fi.x } which in turn is consistent according
version of database at any time in the system. to the second statement of Definiti6B.

The other constraint imposed by this statement is that | the fourth state, (2b2) the databdehas not been
the versions of programs in the presentation tier should behanged and the front-en, has failed to update
higher than the version of database they use. For instancgecause it has not converged to the update point in the
versions of front-ends requiring to access the enterprisgyredefined interval. Since the system has been consistent
database must not be older than the version 2 in the abovefore the redeployment, we have{Dy,F,}. On the
example. This ensures establishment of thegther hand, neither the database nor the front-end has
aforementioned constraint on the system that if thepeen modified during the redeployment, and therefore, the

enterprise database is updated, all front-ends must also hg/stem remaingD, R} after the redeployment which is
updated, although the converse might not be always tru@onsistent. The proof is now complete.

(the reason of this constraint is described in Secti®ns
and4).

7 Experiment
Theorem 6JARESA update model and redeployment

timing do not cause consistency violations during andpynamic software updating systems devised to date have
after redeployments. been evaluated by different types of benchmarks; from

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

550 NS 2 H. Seifzadeh et al.: A performance-based approach to...

desktop applications4] 17, 33-35], to servers such as The last benchmark is a custom web application
Apache, vsftpd, and PostgreSQA[1,2,6,18,57]. Smith, which has a single PHP and one MySQL table containing
et al. have classified the benchmarks used by the DSipersonal information of a community such as students of
systems in order to standardize the evaluation carried oua class. The PHP page displays the information stored in
in this area of research6]]. However, since these the table through an HTML table tag. The upgrade patch
benchmarks focus on the application logic tier of therenames column ‘id’ of the application’s table to
programs, they cannot evaluate the database or the webtudentid’ and also adds a column called ‘address’ to it.
features of ARESA. Therefore, we have chosen threeMe measured the page's load time of both the
other benchmarks each of which can evaluate a specificonventional and the updatable versions of this
part of ARESA. In this section, the experiences gainedapplication when different number of records are stored in
from applying ARESA to these benchmarks as well as thethe application’s table. This helps us to find how different
justification of choosing each one are described. When walatabase loads affect the ARESA time overhead upon the
performed our empirical studies, two evaluation metrics,web applications. In the following two subsections, the
time and space overheads, were more important to us, andveraged methods by which we have performed our tests
therefore, values of only these two are shown for eachand the results we obtained from them are described,
study in the second subsection. respectively.

The first application, HABC (Hasib Activity Based
Costing), is a cost calculator implemented in Microsoft
C# 2008 and SQL server 2005. Six consecutive loops/-0.4 Method
surrounded by two other nested loops calculate costs in
HABC. Its database contains 90 tables and the front-endn order to evaluate ARESA in automatic updating of
has been composed of 56 C# classes. In the upgraddABC, we have used one physical and two virtual
chosen to be performed automatically in this paper, threénachines with the following specifications: (1) the first
database changes have occurred: (1) a table responsidiysical machine has a Core i3 CPU with the speed of 2.4
for saving and then reporting some fine-grained costGHz and 4 gigabytes of RAM. Its operating system is
information has been added, (2) in the product table, thé-edora 17 on which Java version 1.2P and Oracle
type of user-entered code has been converted frdrto WEb|OgiC 11g are installed. The coordinator has been
nchar to support special characters such as ‘-’ in thedeployed in this machine. (2) The second machine is
products’ codes, and (3) in the users table, a columrnstalled on Virtualbox version 4.1.18 with one 2.4 GHz
named ‘activeyear’ has been added to enable each user t6>PU and 1 gigabytes of RAM. Its operating system is

work with a desired financial year regardless of otherMicrosoft Windows 7 with SQL server 2005 and the
users’ active yeatr. HABC database installed on it. It also includes Oracle

HABC is distributed across two kinds of machines; WebPlogic 11g on which the DBUS is installed and
(1) server which contains the database and one copy of f"NiNg. (3) The last virtual machine with the same
exists in target organizations, and (2) client that inciide nardware specification as the previous one executes
the HABC's executable and there are usually up to fiveMicrosoft Windows 2003 server, Oracle weblogic 11g,

copies of it deployed and running. Since HABC has beendNd CUS deployed in it. This machine is responsible for

installed on several organizations in which multiple runmfng the HABC front-ends. H q |
end-users work simultaneously, automatic and remote AMt€r running HABC, we have created a sample
updating of it saves time. This along with dynamic product with two production phases to be able to calculate

updating of a C# application that accomplishes heavyfn® cost of at least one product. In addition, we
calculations for the first time in the literature have interpolated a profiling code into the six parts of both the

encouraged us to choose HABC as one of our cas&onventional and the updatable versions of HABC to
studies. compare the time consumed for the program’s startup and

3 | q tudv. | loading five different pages of the application. We
oomia, our second case study, IS an Open SOUCky .. taq the conventional and the updatable versions of
content management system written in PHP and work

. HABC alternatingly for a total of 10 cycles (i.e., 20
mostly with MySQL. It has composed of 50 d""tab"’lseexecutions), measured the startup and pages loading

tables and over 5,000 PHP files. Dynam|cally_updat|ng Oftimes, and then, averaged all results to achieve more
Joomla, we evaluate web features of ARESA in a popular,

real-life environment. We chose to upgrade Joomlareliable numerals. In addition to the time, the space
version 2.5.4to 2.5.5 in order to update both the front-encgverhead of ARESA has been evaluated. The results are

and the database, and therefore, evaluate more parts 0 own in the next subsection.
ARESA. In this test, the time overhead incurred by In order to make Joomla automatically updatable, one

requires to know how the application generates results
ARESA before and after the update has been measured. and where its database connection string is stored.

Regarding the first question, we have found that only two

Lhttp:/ivsftpd.beasts.org/ PHP files, index.php and administrator/index.php
2http:/iwww.postgresql.org/ generate the application’s results. In other words, the
(@© 2016 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp NS P 551

end-users invoke one of these pages and pass parametenses used for evaluating ARESA in the Joomla upgrade,
of the information they looking for and the pages sendand therefore, they are not described here.
back the generated results after including other pages. In order to appraise the effect of different database
With respect to the second question, the databaséoads on the performance degradation of ARESA, we
connection string is stored in a configuration file namedrequested both the updatable and non-updatable versions
configuration.phpvhich is created at the setup time. of the custom web application to display 10, 1000, 5000,
Therefore, making this application updatable merely10000, and 20000 random records stored in their
requires injection of dynamic updating code into the databases and then measured the response times of each
index.php and administrator/index.php files and alteringrequest. Of note, since the index page of the updatable
the updater to set the connection string of the patcheersion is a frameset containing two other frames, we
database in the configuration.php file. As seen, Joomla'§reated three requests to be submitted to the updatable
good design specification has minimized codeVersion instead of each request in the conventional one.
modifications required by ARESA and consequently its Then, the sum of response times obtained from these
overheads. We have made Joomla version 2.5.4 updatabfxecutions has been considered as the response time of
by configuring DSUInjector to perform the above one request in the updatable version. These tests have
modifications to this version. been performed alternatingly and under the loads of 10,
Similar to the HABC test scenario, we used three 100, 250, and 500 users. We used Apache JMeter to
machines to evaluate ARESAs practicability and the timeP€rform each test 10 times. Average time overhead results
and size overheads it incurs in the Joomla upgrade. Th@long with the space degradation of ARESA are
first machine executing the coordinator is the same as itdlustrated in the next subsection.
corresponding in the previous test case. The second and
third machines are virtual, each of which has a single 2.4
GHz CPU, 1 gigabytes of RAM, and executes Fedora 167-0-5 Results
as the operating system. The second computer includes
MySQL server version 5.5, Oracle weblogic 11g, and aTabIel_shows the_ re_sults of performance tests on HAB_C.
copy of DBUS installed and running. This machine playsAS this table indicates, interpolating the dynamic
the role of database server for the installation. The thirduPdating features increases the startup time of HABC
computer includes Apache server 2.2, PHP version 5.3/T0mM 5.6 to 6.9 seconds. On the other hand, the form
Oracle weblogic 11g, and a copy of CUS installed on it. foadmg and calculation times remain nearly unchanged_.
Both the conventional and the updatable versions ofon€ time the updatable code took longer and once again

Joomla application are deployed in the Apache server off'® conventional program took more time to execute.
this computer. Based on this information, we conclude that ARESA

After the installation has been combpleted. we usedincreases the time overhead of this desktop application by
P ' 19% and only at the startup time.

Apache JMeter to measure and compare the response We observed in the evaluations performed on Joomla

time of the conventional and the updatable front-ends tothat the time complexity functions of both the updatable

load their index.php pages in different users loads. To this nd the conventional versions arow similarly. either
end, we set JMeter to send 10, 50, 100, 150, and 20 9 ; Y.
efore or after the upgrade. The maximum difference

requests to the both versions with the ramp-up time of 2 : N
seconds for all of these requests. To be more accurate, ngappened after the update with the 200 users load in

performed the tests alternatingly for a total of 10 timeswggﬂlatcvealsaﬁ;%gf sfsgr?orllssahtillr:?hgfc(;rr]reescc())g\zﬁgtlc'ziﬁé
and then average the results, except for the test of ZOC] ' P 9

requests which has been executed three times. We ha\}n;??hlépgsgg Ieevﬁlfri'aogx?ﬁelgj?ﬁgusﬁggngs' ;FZIIIESSrRengS
repeated the tests after both versions were updated t 9 y

check if updates affect the performance of ARESA Thereal-life. web applications is 15%. Fid illustrates the
results are illustrated in the next subsection ' evaluation results performed on Joomla in two charts.

Functions of dashed and solid lines show the response

With regard to the last test scenario, we used thejmes of the conventional and the updatable front-ends,
frameset technique described in Subsectibri of respectively.

Section5 to make the custom web application updatable. Tne most significant time overhead imposed by
Due to HTML framesets overhead, this results in A\Rega occurred in the custom web application at high
evaluating the maximum degradation of performance angy,iapase loads. As Fig.indicates, this happened when
space ARESA may impose. In addition, the updatable5g o 500 users simultaneously request the program’s
index.php was configured to obtain the databasgnsin page to fetch and display 5000 records from the
connection string from CUS to cause the worst possibley,iapase. In the first case (250 users), the response times
database connection time. The deployment structure angs ne updatable and the non-updatable versions were

machines specifications in this scenario are the same ags 157 and 48.699 seconds, respectively. This means that

ARESA increases the response time of the page by 43%
Ihttp://jmeter.apache.org in this circumstance. In the second case (500 users), the

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

552 NS 2 H. Seifzadeh et al.: A performance-based approach to...

Table 1: Performance comparison of updatable and conventionalédeles of HABC

Startup elapsed times:
Sys. 1 2 3 4 5 6 7 8 9 10 | average
upd. | 6279 | 7050 | 6949 | 6892 | 6399 | 6819 | 6209 | 10737 | 6168 | 6279 | 6978.1
norm. | 6299 | 5628 | 5197 | 5598 | 5537 | 5387 | 5808 | 6349 | 5507 | 5527 | 5683.7

Page loading elapsed time in updatable HABC:

no. material | equivalent units| cost allocation| cost | calculating cost
1 400" 230 200 150 520
2 360 240 210 190 751
3 370 270 210 160 490
4 721 490 280 250 630
5 781 370 340 210 690
average| 526 320 248 192 616

Page loading elapsed time in conventional HABC:

no. material | equivalent units| cost allocation| cost | calculating cost
1 600 250 250 230 530
2 400 240 200 200 460
3 390 270 230 180 450
4 440 230 180 210 530
5 660 300 450 220 580
average| 498 258 262 208 510

ITimes are in milliseconds.

2,0005- 2,0008-
1,5008" 1,5008-
1,000s 1,0008-
500t 500+
10 50) 106' 150 200 10 50 100 150 200
(a) before redeployment (b) after redeployment

Figure 6: Performance comparison of conventional and updatabléoversf Joomla

response times of the updatable and the non-updatablef the custom web application was decreased when the
pages were 62.366 and 35.549 seconds, respectively. Asumber of users grew from 250 to 500. The reason is that
in the first case scenario, ARESA degrades performancan average of 20 percent of requests failed in the 500
by 43%. users workload.

It is however noted that since the custom web
application is very small and also we used inefficient ~We measured and summarized sizes of both the
dynamic updating techniques in this scenario, ARESAupdatable and non-updatable test cases in TablEhis
had significance impact on the program’s size andtable indicates that ARESA somewhat imposes the space
performance. A real-life application ought to spend a lot overhead on the commercial and real-life applications less
of time in business logic layer, and therefore, the impactthan 1%. However, this overhead increased to more than 3
of ARESA significantly decreases as the size andtimes for the custom web application which contains only
complexity of the application approaches those ofone web page made updatable by the space-occupying
real-life applications. As another point, the responsetim frameset technique.

(@© 2016 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp

6005 GOOT
5008

400s-

5005,
4008
3005 3008~

2005 200s-

100s 1008

10,000 20,000

(a) 10 users

9a;600 5,000
6003

5005
4005
3005
2005

100s-

Ya 00

10,000 20,000

(b) 100 users

5,000

10,000 20,000

(c) 250 users

da600 5000

Figure 7: Performance comparison of conventional

Ya600

10,000 20,000

(d) 500 users

5,000

and updatabléoversf custom web application

Table 2: Size comparison of updatable and conventional application

system _ HABC _ Joomla custom web
conventional| updatable | conventional| updatable | conventional| updatable

source | 32,292,536 | 32,299,211 18,920,034 | 18,931,621 4,737 13,645

binary | 9,962,496 | 9,965,568 N/A N/A N/A N/A

1Sizes are in bytes.

8 Conclusion and future work

complexities. We plan to extend ARESA in the future,

particularly in the following important areas:

This paper presented a framework, called ARESA, to
automatically redeploy data-centric enterprise systems.
ARESA provides a novel update model as well as a
unique update timing technique in order to preserve the
consistency of applications undergoing the automatic
redeployments while the end-users just experience short
and predictable disruptions. Practicability and correstn

of this approach is proved both formally and empirically.
We used ARESA to dynamically update programs written
in web and desktop programming languages, some
reported for the first time in the software updating
literature. The experimental results suggest ARESA
provides at most 19% performance penalty in
dynamically updating of applications with real-life

—Omitting the data-centric constraint ARESA
automatically redeploys enterprise applications in
which front-ends communicate with each other
through a central database. We are planning to extend
ARESA to support a wider range of applications.

-DB comparison two further features in
DBComparator can make automatic redeployment of
enterprise applications simpler. First, DBComparator
must support renaming and moving of database
elements such as tables and columns. Second, it
should generate SQL patches in addition to only
report the differences. We are working on adding
these functionalities in addition to supporting other
database management systems.

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

554 NS 2 H. Seifzadeh et al.: A performance-based approach to...

—Dynamic Updating injectionCurrently, DSUInjector [9] C A Curino, H J Moon, and C Zaniolo. Graceful database
requires the programmer’s intervention in two stages: schema evolution: The PRISM workbenctRroc. VLDB
(1) determining how a new database connection string Endow, 1(1):761-772, August 2008.
should be set in the updated web and desktod10]S Guo, H Li, C Ding, and H Ren. Study on Large-
front-ends, and (2) specifying which web files Scale Embedded Databases Evolution. In W Du, editor,
dynamic updating code should be injected to. We plan Informatics and Management Science blume 205 of
to omit the human intervention required in these two ~ Lecture Notes in Electrical Engineeringages 153-158.
stages of the dynamic updating injection. Springer London, 2013. .

—Dealing with timeoutsdefining appropriate timeout 111 Mario Pukall, C Kastner, W Cazzola, S Gotz, Alexander
after which automatic redeployments are performed ~ orebhahn, R Schroter, Gunter Saake, K Christian,
irrespective of the running programs has proved to be G Sebastian, and Reimar Schr. JavAdaptorFlexible runtime

.) updates of Java applications. Software: Practice and
a challenge in ARESA. Short timeouts could make Experience43(2):153-185, 2013,

more front-ends hitting the limit, and therefore, be [12] Tudor Dumitras, P Narasimhan, and Eli Tilevich. To
exclud_ed from the rest of the redeployment process. " ngrade or not to upgrade: Impact of online upgrades
Long timeouts may cause some front-ends to wait 4cross multiple administrative domainsSIGPLAN Not,
unnecessarily for other processes to terminate before 45(10):865-876, October 2010.
an u_p_date can be apP"?d- We pIa_n to .perform an[13] H Seifzadeh, H Abolhassani, and M S Moshkenani. A
empirical study determining appropriate timeouts for survey of dynamic software updatingournal of Software:
several categories of software applications. Evolution and Proces25(5):535-568, 2012.
[14] Microsoft. How To Deploy an ASP Application to Another
Server by Using Internet Information Server, 2014.
References [15] Oracle. Enterprise Manager Lifecycle Management
Administrator’s Guide, 2014.

[1] M W Hicks, J T Moore, and S Nettles. Dynamic software [16] B Noyes. Smart Client Deployment with ClickOnce:

updating. InSIGPLAN Not. pages 13-23, New York, NY, Deploying Windows Forms Applications with ClickOnce
USA, 2001. University of Pennsylvania, ACM. Pearson Education, 2006.
[2] | G Neamtiu. Practical dynamic software updatingPhD [17] S Malabarba, R Pandey, J Gragg, E Barr, and J F
thesis, University of Maryland, College Park, 2008. Barnes. Runtime Support for Type-Safe Dynamic Java
[3] Andrew Baumann, Jonathan Appavoo, Robert W Classes. IrProceedings of the 14th European Conference

Wisniewski, Dilma Da Silva, Orran Krieger, and G Heiser. on Object-Oriented ProgrammingCOOP '00, pages 337—

Reboots are for hardware: Challenges and solutions to 361, London, UK, 2000. Springer-Verlag.

updating an operating system on the fly. 2007 USENIX [18] H Chen, J Yu, R Chen, B Zang, and P.-C. Yew. POLUS:

Annual Technical Conference on Proceedings of the A POwerful Live Updating System. IfProceedings of

USENIX Annual Technical Conferenc&TC’07, pages the 29th international conference on Software Enginegring

1-14, Berkeley, CA, USA, 2007. USENIX Association. ICSE '07, pages 271-281, Washington, DC, USA, 2007.
[4] Allan Raundahl Gregersen, Michael Rasmussen, and IEEE Computer Society.

BoNg rregaard Jg rgensen. State of the Art of Dynamic[19] Y Vandewoude Dynamically updating component-oriented

Software Updating in Java. In José Cordeiro and Marten systems PhD thesis, Informatics Section, Department of

van Sinderen, editorsSoftware Technologiesolume 457 Computer Science, Faculty of Engineering, K.U.Leuven,

of Communications in Computer and Information Science Leuven, Belgium, 2007.

pages 99-113. Springer Berlin Heidelberg, 2014. [20]R S Fabry. How to design a system in which modules
[5] D.-Y. Lin and | Neamtiu. Collateral evolution of can be changed on the fly. IRroceedings of the 2nd

applications and databases. Mmoceedings of the joint international conference on Software engineefinGSE

international and annual ERCIM workshops on Principles '76, pages 470-476, Los Alamitos, CA, USA, 1976. IEEE

of software evolution (IWPSE) and software evolution Computer Society Press.

(Evol) workshops IWPSE-Evol '09, pages 31-40, New [21] Insup Lee. Dymos: A dynamic modification syster®hD

York, NY, USA, 2009. ACM. thesis, The University of Wisconsin - Madison, 1983.

[6] S Subramanian, M Hicks, and K S McKinley. Dynamic [22] Multicians. MultiCS Dynamic Linkage Features, 2009.
software updates: A VM-centric approac8GPLAN Not,. [23] J Appavoo, K Hui, C A N Soules, R W Wisniewski, D M D

44(6):1-12, 2009. Silva, O Krieger, M A Auslander, D J Edelsohn, B Gamsa,
[7] Pamela Bhattacharya and | Neamtiu. Dynamic updates for G R Ganger, P McKenney, M Ostrowski, B Rosenburg,

web and cloud applications. IRroceedings of the 2010 M Stumm, and J Xenidis. Enabling autonomic behavior in

Workshop on Analysis and Programming Languages for systems software with hot swappin§M Syst. J.42(1):60—

Web Applications and Cloud ApplicatignsSPLWACA '10, 76, 2003.

pages 21-25, New York, NY, USA, 2010. ACM. [24] S Potter and J Nieh. AutoPod: Unscheduled System Update
[8] M Wahler, S Richter, S Kumar, and M Oriol. Non-disruptive with Zero Data Loss. II$econd International Conference on

Large-scale Component Updates for Real-Time Controllers. Autonomic Computingpages 367—368, 2005.
In Proceedings of the 3rd International Workshop on Hot [25] A Baumann. Dynamic update for operating systems

Topics in Software Upgrade$iotSWUp '11, Hannover - PhD thesis, Computer Science & Engineering, Faculty of
Germany, April 2011. IEEE Computer Society. Engineering, UNSW, 2007.
(@© 2016 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.10, No. 2, 537-556 (2016)Wwww.naturalspublishing.com/Journals.asp %N =) 555

[26] K Makris and K D Ryu. Dynamic and adaptive updates of Proceedings of the ACM International Conference on
non-quiescent subsystems in commodity operating system Object Oriented Programming Systems Languages and
kernels. InProceedings of the 2nd ACM SIGOPS/EuroSys Applications OOPSLA '12, pages 249—-264, New York, NY,

European Conference on Computer Systems 2BQioSys USA, 2012. ACM.

'07, pages 327-340, New York, NY, USA, 2007. ACM. [41] S Ajmani, B Liskov, and L Shrira. Modular Software
[27] 3 Arnold and M F Kaashoek. Ksplice: Automatic reboatles Upgrades for Distributed Systems. [@bject-Oriented

kernel updates. IfProceedings of the 4th ACM European Programming volume 4067 oLLNCS ECOOP 20Q6pages

conference on Computer systerBsiroSys '09, pages 187— 452-476, 2006.

198, New York, NY, USA, 2009. ACM. [42] S van der Burg, E Dolstra, and M de Jonge. Atomic
[28] 3 Montgomery. A Model for Updating Real-Time upgrading of distributed systems. Rroceedings of the

Applications.Real-Time Syst27(2):169-189, 2004. 1st International Workshop on Hot Topics in Software
[29] G Gracioli and A A Frohlich. An operating system Upgrades HotSWUp '08, pages 1-5, New York, NY, USA,

infrastructure for remote code update in deeply embedded 2008. ACM.

systems. IrProceedings of the 1st International Workshop [43]V P La Manna. Dynamic software update for

on Hot Topics in Software UpgradeldotSWUp '08, pages component-based distributed systems. Phoceedings of

31-35, New York, NY, USA, 2008. ACM. the 16th international workshop on Component-oriented
[30] Habib Seifzadeh, Ali Asghar Pourhaji Kazem, Mehdi programming WCOP '11, pages 1-8, New York, NY, USA,

Kargahi, and Ali Movaghar. A Method for Dynamic 2011. ACM.

Software Updating in Real-Time Systems. Rroceedings [44] C Boyapati, B Liskov, L Shrira, C.-H. Moh, and

of the 2009 Eigth IEEE/ACIS International Conference on S Richman. Lazy modular upgrades in persistent object

Computer and Information Sciend€lS '09, pages 34-38, stores.SIGPLAN Not.38(11):403-417, 2003.

Washington, DC, USA, 2009. IEEE Computer Society. [45] B Liskov, A Adya, M Castro, S Ghemawat, R Gruber,
[31] A C Noubissi, J Iguchi-Cartigny, and J.-L. Lanet. Hot U Maheshwari, A C Myers, M Day, and L Shrira. Safe

Updates for Java Based Smart Cards. Phoceedings of and efficient sharing of persistent objects in Thor. In
the 3rd International Workshop on Hot Topics in Software Proceedings of the 1996 ACM SIGMOD international
Upgrades HotSWUp '11, Hannover - Germany, April 2011. conference on Management of daB@IGMOD '96, pages
IEEE Computer Society. 318-329, New York, NY, USA, 1996. ACM.

[32] M Dmitriev. Safe Class and Data Evolution in Large and [46] Cristiano Giuffrida. Safe and Automatic Live Update
Long-Lived Java ApplicationsPhD thesis, Department of phdthesis, VU University Amsterdam, 2014.

Computing Science, University of Glasgow, 2001. [47] G Hjalmtysson and Robert Gray. Dynamic C++ classes:

[33] A Orso, A Rao, and M Harrold. A Technique for Dynamic A lightweight mechanism to update code in a running
Updating of Java Software. Boftware Maintenance, IEEE program. InProceedings of the annual conference on
International Conference qrpage 649, Los Alamitos, CA, USENIX Annual Technical Conferenc®&TEC '98, page 6,
USA, 2002. IEEE Computer Society. Berkeley, CA, USA, 1998. USENIX Association.

[34] R P Bialek.Dynamic Updates of Existing Java Applications [48] M Dmitriev. Towards flexible and safe technology for
PhD thesis, Faculty of Science, University of Copenhagen, runtime evolution of java language applications. In
2006. Proceedings of the Workshop on Engineering Complex

[35] G Bierman, M Parkinson, and J Noble. UpgradeJ: Object-Oriented Systems for Evolution, in associatiomhwit

Incremental Typechecking for Class Upgrades. In OOPSLA 2001 International Conferen@901.
Proceedings of the 22nd European conference on Object{49] Habib Seifzadeh, Mostafa Kermani, and Mohsen Sadighi.

Oriented Programming ECOOP ’'08, pages 235-259, Dynamic Maintenance of Software Systems at Runtime.
Berlin, Heidelberg, 2008. Springer-Verlag. In ARES '08: Proceedings of the 2008 Third International
[36] Deepak Gupta and Pankaj Jalote. On line software versio Conference on Availability, Reliability and Securipages
change using state transfer between proceSaféw. Pract. 859-865, Washington, DC, USA, March 2008. IEEE
Exper, 23(9):949-964, September 1993. Computer Society.
[37] G Altekar, | Bagrak, P Burstein, and A Schultz. OPUS: [50] M Jalili, S Parsa, and H Seifzadeh. A Hybrid Model
Online patches and updates for security. Proceedings in Dynamic Software Updating for C. In DSlkezak

of the 14th conference on USENIX Security Sympqgsium and T.-h. Kim and A. Kiumi and T. Jiang and J.

SSYM'05, page 19, Berkeley, CA, USA, 2005. USENIX Verner and S. Abrahao, editoAdvances in Software

Association. Engineering volume 59 of Communications in Computer
[38] K Makris and R A Bazzi. Immediate Multi-Threaded and Information Sciengepages 151-159. Springer Berlin

Dynamic Software Updates Using Stack Reconstruction. In Heidelberg, 2009.

Proceedings of 2009 USENIX Annual Technical Conference [51] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and

2009. Theo D’Hondt. Tranquility: A Low Disruptive Alternative
[39] Luis Pina and Michael Hicks. Rubah: Efficient, General to Quiescence for Ensuring Safe Dynamic Updatd=EE

purpose Dynamic Software Updating for JavaPhesented Trans. Softw. Eng33(12):856-868, 2007.

as part of the 5th Workshop on Hot Topics in Software [52] lulian Neamtiu and Michael Hicks. Safe and timely upat

Upgrades San Jose, CA, 2013. USENIX. to multi-threaded programsSIGPLAN Not. 44(6):13-24,

[40] Christopher M Hayden, Edward K Smith, Michail Denchey, 2009.
Michael Hicks, and Jeffrey S Foster. Kitsune: Efficient, [53] ITIC. Database Competition Heats Up. http://itic-
General-purpose Dynamic Software Updating for C. In corp.com/, 2010.

(© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

556 NS 2 H. Seifzadeh et al.: A performance-based approach to...

[54] D Gupta, P Jalote, and G Barua. A Formal Framework for
On-line Software Version ChangEEE Trans. Softw. Eng.
22(2):120-131, 1996.

[55] G Bierman, M Hicks, P Sewell, and G Stoyle. Formalizing
Dynamic Software Updating. I@n-line Proceedings of the
Second International Workshop on Unanticipated Software
Evolution (USE)2003.

[56] K Makris. Whole-program dynamic software updatiRhD
thesis, Arizona State University, 2009.

[57] J Stanek, S Kothari, T N Nguyen, and C Cruz-Neira. Online
Software Maintenance for Mission-Critical Systems. In
Proceedings of the 22nd IEEE International Conference
on Software MaintenancelCSM '06, pages 93-103,

Habib Seifzadeh
received his Ph.D. in
Software Engineering from
Islamic Azad University,
Science and Research Branch
in 2013. His areas of research
include software engineering,
programming languages, and
algorithms. Besides over ten
years of academic experience,
Habib also has extensive practical experience gained by

Washington, DC, USA, 2006. IEEE Computer Society. being |_nvolved. in _several p|g and smal.l projects on

[58] C Giuffrida and A S Tanenbaum. Cooperative update: A enterprlse apphcatlons._ He IS now an assistant _professor
new model for dependable live update. Rroceedings of ~ With the computer engineering faculty of Islamic Azad
the 2nd International Workshop on Hot Topics in Software University, Najafabad Branch.

Upgrades HotSWUp '09, pages 1-6, New York, NY, USA,
2009. ACM.

[59] M Hashimoto. A Method of Safety Analysis for Runtime
Code Update. IrAdvances in Computer Science - ASIAN
2006. Secure Software and Related Issymgyes 60-74,
2007.

[60] J Buisson and F Dagnat. ReCaml: Execution state as the
cornerstone of reconfigurations. Broceedings of the 15th
ACM SIGPLAN international conference on Functional from Human Designers. His
programming ICFP '10, pages 27—-38, New York, NY, USA, areas of academic research
September 2010. ACM. i include software automation,

[61] J Buisson and F Dagnat. Introspecting continuatiorsder semantic Web researches,
to update active code. IHotSWUp '08: Proceedings of | q\yledge-based software design, and design patterns.
t;'sg%:éégtsggiolni Vm%zl\(ls\?c?ri Ol\rl'YHStSZOF;'ggén AS(.;)'\fAtware He Worked. as Senior Technt_)logis_t providing software

[62] Kishore Channabas’avaiah, K’errie, Holléy, aﬁd EdWard bgsed .SOlu“onS fpr top—IeveI_cllents In Japan_ when he was

with Xist-Interactive (Razorfish Japan), until the end of

Tuggle. Migrating t ice-oriented hitectutBM L . . .
Di%gliper\',?/g?gf&Ozgos;mce oriented architect September 2004, when he joined Sharif University of

[63] E Gamma, R Helm, R E Johnson, and J VlissidBesign Techn_ology as an assistant professor. He is now an
Patterns: Elements of Reusable Object-Oriented Software @SS0Ciate professor with the computer engineering
Addison-Wesley, Reading, MA, 1995. department of Sharif University of Technology.

[64] Just Van Den Broecke. Pushlets: Send events from Sgrvle
to DHTML client browsers.JavaWorld 2000.

[65] P McCarthy and D CraneComet and Reverse Ajax: The Mohsen Sadighi
Next-Generation Ajax 2.0 Apress, New York, NY, USA, Moshkenani received
2008. his B.S. in Mathematics

[66] J J Garrett. Ajax: A new approach to web applications. and Statistics from Shiraz
http://www.adaptivepath.com/, 2005. University, Shiraz, Iran,

[67] E K Smith, M Hicks, and J S Foster. Towards Standardized in 1973, and his M.S.
Benchmarks for Dynamic Software Updating Systems. In in Computer Engineering

Hassan Abolhassani
received his Ph.D. from
Saitama University of
Japan with a thesis on
Automatic Software
Design focusing on Learning

Proceedings of the 4th International Workshop on Hot i from Sharif University
Topics in Software UpgradesHotSWUp 12, Zurich - of Technology Tehran
Switzerland, June 2012. IEEE Computer Society. . Iran. in 1977. and his Ph.D. in

Computer Engineering from Indian Institute of Science
(llIsc) Bangalore, India, in 1991. He has over three
decades of professional experience in well known
universities of Iran: Shahid Beheshti University, Isfahan
University of Technology, and Sharif University of
Technology-International Campus at Kish Island. His
research interests are knowledge engineering, semantic
Web, software engineering and education. Dr. Sadighi
Moshkenani is a member of ACM and Informatics
Society of Iran.

(@© 2016 NSP
Natural Sciences Publishing Cor.

	Introduction
	Background and related work
	Assumptions
	ARESA approaches
	ARESA architecture
	Formal proof
	Experiment
	Conclusion and future work

