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Abstract: In this paper, we found the location and asymptotic of the eigenvalues of thelinear differential equation

−y′′+q(x)y = λ 2p(x)y,x ∈ (0,a)

with the boundary conditionsy′(a)+ iλy(a) = y′(0)+ iλy(0) = 0 whenρ(x)> 0 and the normalized condition
∫ a
0 ρ(x)|y(x)|2dx = 1 ,

whereλ is a spectral parameter.
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1 Introduction

Consider the linear differential equation

−y′′+q(x)y = λ 2p(x)y,x ∈ (0,a) (1)

whereλ is a spectral parameter,q(x) and p(x) are real-
valued continuous functions and positive on the interval
(0,a) with the boundary conditions contains the spectral
parameterλ and normalized condition of the forms:

y′(a)+ iλy(a) = y′(0)+ iλy(0) = 0 (2)

∫ a

0
ρ(x)|y(x)|2dx = 1 (3)

Numerous problems of oscillation theory for spatially
distributed systems lead to necessity of study of
eigenvalues and their appropriate eigenfunctions of
differential operators as well as to issues related to study
of various functional of eigenvalues and eigenfunctions. It
is known that many problems of mathematical physics,
mechanics, elasticity theory, optimal control leads to the
problem of studying the spectrum of differential operators

and the expansion of arbitrary functions in series of
eigenfunctions of the operator. In [1-6], the eigenvalues
and the corresponding eigenfunctions to the differential
(1) studied, but they used different boundary conditions in
which we used in this paper.

2 The main results

The aim of our article is to found the location and
asymptotic for the eigenvalues to the problem (1)-(3)
(named problemH1) which appear in the following
theorems in below:

Theorem 1: Let λ be an eigenvalue corresponding to
the eigenfunctiony(x) of the problemH1, if δ 6= 0 and
ρ(x) > 0 then λ is complex, and located in upper half
plane.

Proof:
Multiply equation (1) by ¯y(x) and integrate the resulting
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equation from 0 up toa, as a result we shall get:
∫ a

0
y′′(x)ȳ(x)dx+

∫ a

0
q(x)y(x)ȳ(x)dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx,

− y′(x)ȳ(x)]a0+
∫ a

0
|y′(x)|2+

∫ a

0
q(x)|y′(x)|2dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx,

− y′(a)ȳ(a)+ y′(0)ȳ(0)
∫ a

0
|y′(x)|2+

∫ a

0
q(x)|y′(x)|2dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx,

In view of boundary conditions(2) we have:

− iλy′(a)ȳ(a)− iλy′(0)ȳ(0)
∫ a

0
|y′(x)|2+

∫ a

0
q(x)|y′(x)|2dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx,

Hence

− iλ |y(a)|2− iλ |y(0)|2+
∫ a

0
|y′(x)|2+

∫ a

0
q(x)|y′(x)|2dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx.

In equation (1) and in boundary condition (2) replace y(x)
by ȳ(x) the following equations are obtained:

−ȳ′′+q(x)ȳ(x) = λ 2p(x)ȳ(x),

ȳ′(0) = ȳ(a)+ iλ ȳ(a) = 0.

Multiplying differential equation ony(x) and integrate
from 0 up to a, yields:

iλy′(a)ȳ(a)+ iλy′(0)ȳ(0)
∫ a

0
|y′(x)|2+

∫ a

0
q(x)|y′(x)|2dx

=
∫ a

0
λ 2ρ(x)y(x)ȳ(x)dx,

Subtracting equations (4) from (5) we obtain:

i(λ + λ̄ )(|y(a)|2+ |y(0)|2) = (λ 2− (λ̄ 2)
∫ a

0 ρ(x)|y(x)|2dx,

i(λ + λ̄ )(|y(a)|2+ |y(0)|2) = (λ − (λ̄ )
∫ a

0 ρ(x)|y(x)|2dx,

Clearly,(λ + λ̄ ) 6= 0 becauseδ 6= 0 , then

(λ − λ̄ )
∫ a

0 (x)|y(x)|2dx− i(|y(a)|2+ |y(0)|2) = 0,

2iσ
∫ a

0 (x)|y(x)|2dx− i(|y(a)|2+ |y(0)|2) = 0.

Thus,σ =
|y(a)|2+ |y(0)|2
2
∫ a

0 (x)|y(x)|2dx
,

and since 2
∫ a

0 (x)|y(x)|2dx = 1 , thenσ > 0 .

Henceλ is complex and located in upper half plane. Thus
the theorem is proved.

Theorem 2:
Asymptotic behaviour of eigenvalues of the problem
(1)-(2) in the case of regular and in the sectorT1 has the
form:

λm =
1
d
(mπ − i

2
lnC0+O(

1
m
)),

whereC0 =
−(

√

ρ(a)+1)(1−
√

ρ(0))
√

ρ(a)−1)(1+
√

ρ(0))
Proof:

Consider the determinant of∆(λ ), defined by

∆(λ ) = |Uk(y j)|k, j=0,1.

Uk(ỹ j) =
2

∑
r
= 1(−iλwk)

2−rỹ(r−1)
j (a,λ ) = 0

,k = 0, j = 0,1.

Uk(ỹ j) =
2

∑
r
= 1(−iλwk)

2−rỹ(r−1)
j (0,λ ) = 0

,k = 1, j = 0,1.

U0(ỹ0) = (−iλ )ỹ0(a,λ )+ ỹ0(a,λ ) = 0.

U0(ỹ1) = (−iλ )ỹ1(a,λ )+ ỹ1(a,λ ) = 0.

U0(ỹ0) = iλ ỹ0(0,λ )+ ỹ1(0,λ ) = 0.

U0(ỹ0) = iλ ỹ1(0,λ )+ ỹ1(0,λ ) = 0.

y(s)k (x,λ ) = (ϕkλ )seλ
∫ a
0 ϕkdx[A0+O(

1
λ
)],

s = 0,1.
(4)

The following results can be obtained by using the formula
(6) and the boundary conditions (2).

U0(ỹ0) = (iw′
0λ )[

1
4
√

ρ(0)
](
√

ρ(0)−1)

= iλeiλd(
√

ρ(a)−1)[
1

4
√

ρ(0)
],

wherew′
j = e

i(
( j− k)π

n
)
.

U0(ỹ1) = −iλe−iλd)(
√

ρ(a)+1)[
1

4
√

ρ(0)
]

U1(ỹ0) = iλ (1−
√

ρ(0))[
1

4
√

ρ(0)
],

U1(ỹ1 = iλ (1+
√

ρ(0))[
1

4
√

ρ(0)
],
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∆(λ ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

iλeiλd)(
√

ρ(a)−1)[
1

4
√

ρ(0)
]− iλe−iλd)(

√

ρ(a)+1)

[
1

4
√

ρ(0)
]

iλ (1−
√

ρ(0))[
1

4
√

ρ(0)
]iλ (1+

√

ρ(0))[
1

4
√

ρ(0)
]

= 0

and

∆(λ ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(iλ )2eiλd(1+
√

ρ(0)(
√

ρ(a)−1)[
1

4
√

ρ(0)
]

[
1

4
√

ρ(a)
]+(iλ )2e−iλd(1−

√
ρ(0)(

√
ρ(a)+1)

[
1

4
√

ρ(0)
][

1
4
√

ρ(a)
]

= 0.
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∣
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∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∣

Supposef (λ ) = (iλ )2[
1

4
√

ρ(0)
][

1
4
√

ρ(a)
]

∆(λ ) = f (λ )[(1+
√

ρ(0)(
√

ρ(a)−1)eiλd+

(1−
√

ρ(0)(
√

ρ(a)+1)e−iλd ] = 0

e2iλd =
−(1+

√

ρ(0)(
√

ρ(a)−1)

(1−
√

ρ(0)(
√

ρ(a)+1)
, where

C0 =
−(1+

√

ρ(0)(
√

ρ(a)−1)

(1−
√

ρ(0)(
√

ρ(a)+1)

e2iλd = C0 → 2iλd = lnC40 + 2mπi + o(
1
m
)

λm =
1
d
(mππ − i

2
lnC0+o(

1
m
)).

In the case of regular the sectorT1 asymptotic behaviour
of spectrum has the form:

λm =
1
d
(mππ − i

2
lnC0+ o(

1
m
)), wherem = N,N +1, ...

(N is natural number), and in the sectorT2

λm =
1
d
(mππ +

i
2

lnC0+ o(
1
m
)), wherem = N,N +1, ...

(N is natural number) . Thus the theorem is proved.
Theorem 3: Asymptotic behavior of eigenvalues of the
problem (1)-(2) in the case of irregular and in the sector

T1 has the form:λm =
1
d
(−mπ +

i
2

lnC0 +
i
2

lnλ 0 + o(1)

and in the sectorT2 asymptotic behaviour of spectrum has
the form:

λm =
1
d
(−mπ − i

2
lnC0 − i

2
lnλ 0 + o(1) where

C0 =
(4i)2

q(a)+
1
4

ρn(a)
and d =

∫ a
0

√

ρ(x)dx , such that

q(a)+
1
4

ρ ′′(a) 6= 0 . q(0)+
1
4

ρ ′′(0) 6= 0 .

Proof:
Consider the determinant of∆(λ ), which is defined by:

∆(λ ) = |Uk(y j)|(k, j=0,1),

Uk(ỹ j) = (−iλwk)ỹ j(a,λ )+ ỹ j(a,λ ) = 0, f or k = 0,

Uk(ỹ j) = (−iλwk)ỹ j(0,λ )+ ỹ j(0,λ ) = 0, f or k = 1,

U0(ỹ0) =−iλ ỹ0(a,λ )+ ỹ0(a,λ ),
U0(ỹ1) =−iλ ỹ1(a,λ )+ ỹ1(a,λ ),
U1(ỹ0) = iλ ỹ0(0,λ )+ ỹ0(0,λ ),
U1(ỹ1) = iλ ỹ1(0,λ )+ ỹ1(0,λ ),

U0(y0) = eiλd(−iλ )[s1(A0(p)(a)+ s3)+

1
λ

1
2i

A1(p)(a)+ s4+O(1
1

λ 2 )],

U0(y1) = eiλd(−iλ )[s1(A0(p)(a)+ s3)+

1
λ

1
2i

A0(p)(a)+ s4+O(1
1

λ 2 )],

U1(y0) = iλ [s2(A0(p)(0)+ s3)+

2
1
λ

1
2i

A0(p)(a)+ s4+O(
1

λ 2 )],

U1(y1) = iλ [s1(A0(p)(0)+ s3)−

2
1
λ

1
−2i

A0(p)(a)− s5+O(
1

λ 2 )],

where

A0(p)(a) = 1

A1(p)(a) =
∫ a

0 (q(t)A0−A′′
0)A0dt, ...,

An(p)(a) =
∫ a

0 (q(t)An−1−A′′
n−1)A0dt, ...,

s1 = (1+
√

(ρ(a)),

s2 = (1+
√

ρ(a))),

s3 =
1
λ

1
2i

A1(p)(a).

s4 =
21
λ 2

1
(2i)2 A′

1(p)(a)

and

s5 =
21
λ 2

1
(2i)2 A′

1(p)(0)

Spectrum of (1)-(2) coincides with the set of roots of the
equation:∆(λ ) = 0 , then

∆(λ ) =
∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= 0 Where

a11 =eiλd(−iλ )(s1(A0(p)(a)+
1
λ

1
2i

A1(p)(a))

+2
1
2

1
2i

A′
0(p)(a)+ s4+O(

1
λ 2 )),
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a12 =eiλd(−iλ )(s1(A0(p)(a)− s3)

−2
1
λ

1
(−2i)

)A′
0(p)(a)− s4+O(

1
λ 2 )),

a21 =iλ (s2(A0(p)(0)+
1
λ

2
2i

A1(p)(0))

+
21
λ

2
2i

A′
0(p)(0)+ s5+O(

1
λ 2 )),

a22 =iλ (s2(A0(p)(0)+
1
λ

1
2i

A1(p)(0))

−2
1
λ

1
−2i

)A′
0(p)(0)− s5+O(

1
λ 2 )),

=⇒−(iλ )2eiλd(s1(A0(p)(a)+ s3)

+2
1
λ

2
2i

A′
0(p)(a)+ s4+O(

1
λ 2 ))x(s2(A0(p)(0)

+
1
λ

1
−2i)

)A1(p)(0))−2
1
λ

1
(−2i)

)A′
0(p)(0)− s5

+O(
1

λ 2 ))+(iλ )2e(−iλd)(s1(A0(p)(a)− s3)

−2
1
λ

1
(−2i)

)A′
0(p)(a)− s4+O(

1
λ 2 ))

+(s2(A0(p)(0)+
1
λ

1
2i

A1(p)(0))

−2
1
λ

1
(−2i)

)A′
0(p)(0)− s5+O(

1
λ 2 )) = 0,

e2iλd

=
(−4λ 2+2

λ
i

A(1(p))(a)−A′
1(p)(a))(4λ 2+A′

1(p)(0))

(q(a)+
1
4

ρ ′′(a))(q(0)+
1
4

ρ ′′(0))[1]

= 0,

From which we obtain that:

e2iλd

=
−16λ 4

(q(a)+
1
4

ρ ′′(a))(q(0)+
1
4

ρ ′′(0))[1]

= 0,

=⇒ e2iλd [1] =C0.λ 4

where

C0 =
(4i)2

(q(a)+
1
4

ρ ′′(a))(q(0)+
1
4

ρ ′′(0))[1]
= 0,

andq(a)+
1
4

ρ ′′(a) 6= 0 , q(0)+
1
4

ρ ′′(0) 6= 0.

Taking the initial approximationλ0 =
−mπ

d
, and

using the method of successive approximation we obtain:

lambdam =
1
d
(mπ − i

2
lnC0 − i

2
lnπ4 + o(1), where

m = N,N +1, ... (N is natural number), and in the sector

T2 lambdam =
1
d
(mπ +

i
2

lnC0+
i
2

lnλ 2+o(1) where

m = N,N +1, ... (N is natural number). Thus the theorem
is proved.
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