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Abstract: Using the Tridiagonal Representation Approach (A method where we work in a complete set of square 
integrable basis that carries a tridiagonal matrix representation for the wave operator. Consequently, the matrix 
wave equation becomes a three-term recursion relation for the expansion coefficients of the wavefunction. Finding a 
solution of this recursion relation in terms of orthogonal polynomials is equivalent to solving the original problem) 
we obtain solutions for a new four-parameter one-dimensional potential function. We obtained the energy spectrum 
and corresponding wavefunction.  
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1 Introduction and Formulation 

Recently, we solved a new five - parameter potential box in 
one dimensional [1] using TRA. We got the energy 
spectrum and the wavefunction of this five parameter 
potential function. In this article we further consider a new 
four parameter potential function in one dimensional. This 
potential function is given as: 
 

               
(1) 

for , are real parameters such that 
isgreater than or equal to zero. Fig 1 is the plot of the 
potential function where  is vary (keeping  and 

 constant) and varying  and  (keeping 
constant). This potential has never been studied in the 
published literature. However, when deformed, this 
potential can be compared to a three – parameter 
potential in  

                                                  
(2) 

 

Where  are the potential strength and the range 
parameter  is positive with inverse length unit. The 
dimensionless parameter  is in the open range

. Graphically, this potential function cross the 
x –axis at  and then reaches a local 

extremum value of at

.   We observed that (1) and (2) 

are short range potentials with  singularity at the 
origin. Simple algebraic manipulation in (1) will 
easily produce (2). Note (1) is same as 

                       (3) 

          

 

When , such that we defined a dimensionless ratio 

for ; then we easily get (2).  
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Detailed study of these potentials; show that they can be 
used practically as an appropriate model for the interaction 
of an electron with extended molecules whose electron 
cloud is congregated near the centre of 
the molecules. Also, there is a resemblance between 
this potential and attractive Coulomb potential for nonzero 
angular momentum at short distances hence we expect 
them to finite bound states. In this paper, we are more 
interested in the generalized potential given in (1) where 
none of the potential parameters is zero in order to obtain 
the energy spectrum and wave function. 
We now formulate this problem and solve it using the 
Tridiagonal Representation Approach (TRA) [2-7]. 
 
We write the wavefunction as the bounded sum

, where is a complete set 

of square integrable basis functions and  are proper 
expansion coefficients in the energy. If we make the 
coordinate transformation , then the 
Schrödinger wave equation in the new configuration space 
becomes 

    (4) 

where the prime stands for the derivative with respect to x 
and we adopted the atomic units .With 

, we can choose the following square integrable 
functions in the new configuration space with coordinate y 
as basic elements for the expansion of the wavefunction 
 

                                (5) 
 

Where  is the Jacobi polynomial of degree 
 in y, the parameters µ and n are larger than -1 

and  . For simplicity, we 

rewrite (4) as 

              

(6) 

We applied the wave operator on the basis element to get 
 
 

       (7) 

where we had used , , and 

the potential function in new configuration space as 

.Using  and 

 in (7) we have  

 (8) 

Now, the boundary conditions and square integrability 
(with respect to the integral measure dx) dictate that the 
matrix wave operator becomes 

    (9) 

 where 

Hence we have and .As a result of these 
conditions with the fact that , the 
normalization constant will be     

 .Using the first and 

second derivatives of the basis element with respect to y in 
(8) gives                           

(10) 

The second order differential equation of the Jacobi 
Polynomial is  

         (11) 
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Therefore equation (10) becomes 
 

 

 

 

 

 

 

 

Since the matrix representation of the wave operator is 
required to be tridiagonal and symmetric, in line with the 
recursion relation of the Jacobi polynomial and its 
orthogonality; we eliminate the two non -linear terms in 
(12). Hence the basis parameters must be chosen as 
follows: 

                      and                        (13) 

It is explicit here that the solution of this problem will 
give negative energy and the potential 
parameter ( ) should be greater than or 
equal to zero. Now equation (12) becomes 
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(14) 

Using the three term recursion relation of the Jacobi 
polynomial and their orthogonality property, 

 in (14) after 

operating on the L.H.S of it; we have the tridiagonal 
and symmetric representation of the wave operator as 
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(a)                                                                                                          (b)                                               

 
 Fig 1. Plot of the potential function given by (1) with . (a) is obtained by vary (in step of 2) while keeping  and 

. (b) is obtained by  and  while (in steps of 2). It is observed that further variations in  and  
will result in an upper shift of the potential function in positive xy plane. 
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Hence, we can now write the matrix wave equation as 
which give the 

three –term recursion relation for the expansion coefficient 
of the wave function as  
 

     (16) 

writing , will make  and 

 where , 

, and .  This relation is 

valid for . 
 
This is a new polynomial that we discovered recently and is 
not found in any mathematics literature. Hence, its analytic 
properties, that is, weight function, generating function, 
orthogonality, zero, etc. are yet to be known. Therefore we 
resolved to a numerical techniques to calculate the energy 
spectrum of the potential given in (1) for a given set of 
parameters. 
 
2. Energy spectrum and wavefunction 
 
To calculate the energy spectrum, we obtain first the 
Hamiltonian matrix from the wave operator matrix (15) as

. Then, the energy spectrum is calculated from 

the wave equation  as the generalized 

eigenvalues  of the matrix equation

; where is the overlap basis 
element given as 

 

                                  (17) 

 

 

 

 

 

 

 
 

 
Using the conditions for the parameters of the basis element 

and with and ; the overlap 
basis element becomes  

 (18) 

Table 1 is a list of the energy spectrum for a given set of 
values of the potential parameters and for basis size of 

.We show only significant decimal digits that do 
not change with any substantial increase in the basis size 
(e.g. from size 10 to 50).Also, variation (increase) in ; we 
observed a rapid convergence of these values with the size 
of the basis size 
In Figure 2, we plot the bound state wavefunction 
corresponding to the physical configuration and energy 
spectrum of Table 1. We calculate the mth bound state using 

the sum , for some 

eigenvalues, where N is some large enough integer An 
energy resonance (scattering phase shift) phenomenon is 
observed with this potential function, which will observed 
when plotting the wavefunction using some of the 
eigenvalues in table 1. However, this can be further study 
using complex rotation method [15-17] 
 

3. Conclusion  
 
In this paper, in effort to enlarge the class of solvable 
potentials, we solve a new potential function that has not 
been solved in the physics literature to the best of our 
knowledge. This potential is of greater importance and we 
will encourage readers to put this into applications. The 
problem was formulated using the Tridiagonal 
Representation Approach. This method (algebraic in 
nature) is more encompassing then the conventional 
methods in solving the Schrödinger equation and allows for 
more realization of unknown potential functions which are 
yet to be associated with any physical systems. It has been 
shown that this approach has contributed greatly to the 
class of solvable quantum mechanical systems [8]   
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Appendix:  The Jacobi Polynomials and 
Manipulations of the Basis Elements 
 
   Below are the useful properties of the Jacobi polynomial 
and the effects of the relevant differential operators on the 
basis element (5). These are identities are available in 
textbooks and monographs on orthogonal polynomials [10] 
 

 

 

 

Table 1: The finite energy spectrum for the potential function (1) with , , and . It was 
obtained by diagonalizing the Hamiltonian matrix for different basis size. 
 
n                                    n   

  0 4126.9891447498 10 32.4394977694 
 1 1542.8903686294 11 22.4398560240 
2 787.2186135745 12 15.2463797234 
3 462.6214937613 13 10.1007245429 
4 294.0660278716 14 6.4695140302 
5 195.9554935304 15 3.9657920559 
6 134.3972745542 16 2.2930653158 
7 93.7323498172 17 0.0664830132 
8 65.8910440926  18 0.4757637553 

    9 46.3583338365 19 1.1960489428 
                                                                                                  
 
 
 
 
 
 
 
 

0 6u = - 1 10u = 2.5Ru =

ne ne

               
 
Fig.2. The graph of the wavefunction as we move down (however there coexist bound states and resonance) the table 1 with physical 
parameters: , , , and .  
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The Jacobi polynomials , where  and , : 
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Using the above, with some algebraic manipulations, the effect of differential operators on the basis elements give:  
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The matrix elements of an integrable function is defined as  

                                                                                   
    (A8) 

then we obtain  
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as a special case 
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