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Abstract: Using the Tridiagonal Representation Approach (A method where we work in a complete set of square
integrable basis that carries a tridiagonal matrix representation for the wave operator. Consequently, the matrix
wave equation becomes a three-term recursion relation for the expansion coefficients of the wavefunction. Finding a
solution of this recursion relation in terms of orthogonal polynomials is equivalent to solving the original problem)
we obtain solutions for a new four-parameter one-dimensional potential function. We obtained the energy spectrum

and corresponding wavefunction.
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1 Introduction and Formulation

Recently, we solved a new five - parameter potential box in
one dimensional [1] using TRA. We got the energy
spectrum and the wavefunction of this five parameter
potential function. In this article we further consider a new
four parameter potential function in one dimensional. This
potential function is given as:

V(x)= e“—1[V° +Vl(1—2e’“)+1

for 0<x<o, V,are real parameters such that J/,

isgreater than or equal to zero. Fig 1 is the plot of the
potential function where V), is vary (keeping ¥, and

V, constant) and varying ¥, and ¥, (keeping V,

constant). This potential has never been studied in the
published literature. However, when deformed, this
potential can be compared to a three — parameter
potential in

v(x)=v<—L )

Where V.

. are the potential strength and the range

parameter A is positive with inverse length unit. The
dimensionless parameter y is in the open range

0 < y <1. Graphically, this potential function cross the
x —axis atx,=-Iny/A and then reaches a local

extremum  value of V(x)=-V (1— 1- 7)2at

X, :—%ln<l— 1—;/). We observed that (1) and (2)

are short range potentials with 1/x singularity at the
origin. Simple algebraic manipulation in (1) will
easily produce (2). Note (1) is same as

v, +Vl(1—2e*“)+ Ve 3

_e—lx VRelx
elx -1 (e;“‘, _1)2

WhenVR =0, such that we defined a dimensionless ratio

y = V"z—;Vl forV; # 0; then we easily get (2).
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Detailed study of these potentials; show that they can be
used practically as an appropriate model for the interaction
of an electron with extended molecules whose electron
cloud is congregated near the centre of

the molecules. Also, there is a resemblance between

this potential and attractive Coulomb potential for nonzero
angular momentum at short distances hence we expect
them to finite bound states. In this paper, we are more
interested in the generalized potential given in (1) where
none of the potential parameters is zero in order to obtain
the energy spectrum and wave function.

We now formulate this problem and solve it using the
Tridiagonal Representation Approach (TRA) [2-7].

We write the wavefunction as the bounded sum
v(E,x)= Z” [, (E)¢,(x), where {¢n (x)}is a complete set
of square integrable basis functions and { S (E )} are proper

expansion coefficients in the energy. If we make the
coordinate  transformation y(x) =1-2¢**, then  the

Schrodinger wave equation in the new configuration space
becomes

1 fzd_z ”i_ _
(H=E)ly)=-7 0" Y 2E W)=0 @

where the prime stands for the derivative with respect to x
and we adopted the atomic units 7 =m =1.With
y €[-1,4+1], we can choose the following square integrable

functions in the new configuration space with coordinate y
as basic elements for the expansion of the wavefunction

8,(») = 4,1=»)" 1+ )" B"" () ©)

Where Pn(’ l’v)(x) is the Jacobi polynomial of degree
n=0,1,2,.. in y, the parameters & and v are larger than —1

— [ 2n+p+v+] T(n+ )T (n+p+v+1)
and 4, _\/ S T (v )T (nt 1)

. For simplicity, we

rewrite (4) as

ROLNE L

where we had used y'=1(1-y), (y%:—l/(l—y), and
y

the potential function in new configuration space as

V(y)=8;§;[V+zy+(12ff;)}.Using ”f:(%z)V,— and

£ :(%Z)E in (7) we have

(l‘yz)diz—(lw)i
%J ¢”>:_(1_y) dy dy ‘¢”>:0(8)
A (1+) (o) -y s 25 P
O (1=y) (1+y)

Now, the boundary conditions and square integrability
(with respect to the integral measure dx) dictate that the
matrix wave operator becomes

dy

e e LU =
—AA +1

== [(1-p)" () [F )R )R 0 )

where

nd d 2 2u,
F(y):(l—y )——(1+y)d—y—(g+u0)—u1y+rgy)—ﬁ

Hence we have 2a = g and 2 =v+1.As a result of these

conditions with the fact that)'= l(l - y) , the

normalization constant will be
— | 2n+p+v+] T(n+D)I(n+p+v+1) .

A, —\/ ST Ty D i) .Using the first and

second derivatives of the basis element with respect to y in
(8) gives

(1_yz)§+[zﬁ(l-y)-(za+1)(1+y)]% (10)

2 . I
=Il)=-4.01-) (14y) | 4— P (y)=0

(1+y)
1
-y

(28(B-1)-2u,)

)(2112+24:)—(a3'+ﬂ3)—(s+un)—u1y

y E)‘ >_ 1 (y’)2 d’ (y')z dy 0 ©) The second order differential equation of the Jacobi
( i 2(1—y2) 2(1—}’2)[ ] )= Polynomial P"(“’V)(y)is
E-V
(y’)z 2 i
d , (u+v+2)y+u-v|—| 4
We applied the wave operator on the basis element to get (l—yz)—zﬂ(”’ )(J’): [ ) de — (11)
dy dy
—n(n+,u+v+1)
o d? d
l—y")—,—(1+y)—+ 7
~ ~ __)i(l—)) dy’ dy ~ (7
(F=E)h)=714)= 2(1+y) 2040)E W, Wy W, #)=0
Al-y) 2 22 2(l+y)
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u, =—2.(b) is obtained by 1, =—3 and u,

will result in an upper shift of the potential function in positive xy plane.

Therefore equation (10) becomes

[ﬂ—v+y(y+v+2)}diy+[2/}(1—

y)-Qa+1)(1+y)] L
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Fig 1. Plot of the potential function given by (1) with A =1. (a) is obtained by vary u_=1,..,11(in step of 2) while keeping 1, =—5 and

=—2 while u, =1,..,11(in steps of 2). It is observed that further variations in %, and u,

1
py m(2[>’([>’-1)—2MR)

2 B V
I10)==A (=) ()| PR (12)
+(1_y)(2a2+25)—(0!2+ﬂ2)—(€+u0)—u1y—n(n+,u+v+1)
_ /2 vl 1 1 uv+l 2 ()
__A"(l y)” (1+y) ( (1+y)<vz_1_4”R)+2(1_y)(,u2+45)—(8+u0)—u1y—(n+ : ] P (y)
2 2 ”y /H'V+1 14
Since the matrix representation of the wave operator is  ;* > A1) (1+) 2[_(“”‘]) Y —[n+ ) j] ( )( )

required to be tridiagonal and symmetric, in line with the
recursion relation of the Jacobi polynomial and its
orthogonality; we eliminate the two non -linear terms in
(12). Hence the basis parameters must be chosen as
follows:

—4¢& (13)

v =1+4u, and u’ =

It is explicit here that the solution of this problem will
give negative energy u’ =-8E/A%and the potential
parameter ¥, ( u, >—1/4) should be greater than or

equal to zero. Now equation (12) becomes

Using the three term recursion relation of the Jacobi
polynomial and their orthogonality property,

J R ()R (v)dy =6,

operating <¢m |0n the L.H.S of it; we have the tridiagonal

1+y in (14) after

and symmetric representation of the wave operator as
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2
2 u+v+l
?Jnm = (n-l_ 2 j +(8+u0)+ulcn 5nm +M1 (anlé‘n,mﬂ +Dn5n,m71) (15)
where C, = V-t and D — 2 (n+1)(n+p+1)(n+v+1)(n+p+v+1)
(2n+u+v)(2n+u+v+2) " 2n+u+v+2 (2n+p+v+1)(2n+pu+v+3)

Hence, we can now write the matrix wave equation as

(8, 7|w) =D, 7|, )1, =D, f,, =Owhich give the

m
three —term recursion relation for the expansion coefficient
of the wave function as

—(5+u0)fn {('”sz“j +u1Cn}fn+u, (D,Hfm +ann+1) (16)

writing G, (E) =G, (E) f,(¢), will make f =1 and

(z—ao)f0
bO

where

fi=

z=—(e+u,),

2
a, :(Lmj +u,C,, and b, =u D,. This relation is
2

valid forn=1,2,3,....

This is a new polynomial that we discovered recently and is
not found in any mathematics literature. Hence, its analytic
properties, that is, weight function, generating function,
orthogonality, zero, etc. are yet to be known. Therefore we
resolved to a numerical techniques to calculate the energy
spectrum of the potential given in (1) for a given set of
parameters.

2. Energy spectrum and wavefunction

To calculate the energy spectrum, we obtain first the
Hamiltonian matrix from the wave operator matrix (15) as

H=J |E:O. Then, the energy spectrum is calculated from
the wave equation H |¢//> =K |1//> as the generalized
eigenvalues {E } of the
zmHW [ = EZan,m /., s where Q) is the overlap basis

element given as

0, =(416)= A4 (1= (1e2) B 3)22 o) =) (1)

-l

matrix equation

=(nl (1=p) " (1 2) " ) (a7

Using the conditions for the parameters of the basis element
2a = pand 25 =v+1with a=1and b =0; the overlap

basis element becomes

Qnm — <n| (1 + y) |m> — (1 + Cn )é‘nm + D/zflé‘n,mﬂ + Dné‘n,mfl (18)
(1 - y) (1 - Cn )5nm - anlgn,mﬂ - Dné‘mmfl

Table 1 is a list of the energy spectrum for a given set of
values of the potential parameters and for basis size of
N =20 .We show only significant decimal digits that do
not change with any substantial increase in the basis size
(e.g. from size 10 to 50).Also, variation (increase) in N ; we
observed a rapid convergence of these values with the size
of the basis size

In Figure 2, we plot the bound state wavefunction
corresponding to the physical configuration and energy
spectrum of Table 1. We calculate the m™ bound state using

the sum (//(Em,x)~Zi\;1R1(8m)¢n(x), for some

eigenvalues, where N is some large enough integer An
energy resonance (scattering phase shift) phenomenon is
observed with this potential function, which will observed
when plotting the wavefunction using some of the
eigenvalues in table 1. However, this can be further study
using complex rotation method [15-17]

3. Conclusion

In this paper, in effort to enlarge the class of solvable
potentials, we solve a new potential function that has not
been solved in the physics literature to the best of our
knowledge. This potential is of greater importance and we
will encourage readers to put this into applications. The
problem was formulated using the Tridiagonal
Representation Approach. This method (algebraic in
nature) is more encompassing then the conventional
methods in solving the Schrodinger equation and allows for
more realization of unknown potential functions which are
yet to be associated with any physical systems. It has been
shown that this approach has contributed greatly to the
class of solvable quantum mechanical systems [8§]
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Table 1: The finite energy spectrum for the potential function (1) with y, =—6, u, =10, and u, =2.5. It was

obtained by diagonalizing the Hamiltonian matrix for different basis size.

n g, n £,
0 4126.9891447498 10 32.4394977694
1 1542.8903686294 11 22.4398560240
2 787.2186135745 12 15.2463797234
3 462.6214937613 13 10.1007245429
4 294.0660278716 14 6.4695140302
5 195.9554935304 15 3.9657920559
6 134.3972745542 16 2.2930653158
7 93.7323498172 17 0.0664830132
8 65.8910440926 18 0.4757637553
9 46.3583338365 19 1.1960489428

2.x 1017

1.x 1017 [

-1.x10%7 v V

2.x 10% A /

1.x 10%

[

-1.x10%

-2.x 10% U

Fig.2. The graph of the wavefunction as we move down (however there coexist bound states and resonance) the table 1 with physical

parameters: A =1, u, =—6, u, =10, andu, =2.5.
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Appendix: The Jacobi Polynomials and
Manipulations of the Basis Elements

Below are the useful properties of the Jacobi polynomial
and the effects of the relevant differential operators on the
basis element (5). These are identities are available in
textbooks and monographs on orthogonal polynomials [10]
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The Jacobi polynomials Rf""” (), where ye [—1,+1] and y>-1, v>-1:

e 2(n+u)(n+v)
pl) _ vV —H pla) pla)
) (2n+u+v)(2n+p+v+2) " ( )+(2n+y+v)(2n+,u+v+l) A )

2(n+1)(n+/1+v+1)
(2n+,u+v+l)(2n+/1+v+2)

P4 (y)

— 27 F|-n, Lu+l—2 |= (1) P“) (-
F(ns ) (pat) 2 (AT TR 12 (=)

2
{(1—y2)%— (u+v+2)y+y—v]diy+n("+ﬂ+v+1)}1’n(”’v) (v)=0

d (i, v— ) (n+p)(n+v) .,
1= %)L pley) - _vVTH ple) QTR T ) pla)
( 7 ) () n(y+2n+y+v V) 2n+u+yv " ()

+1

. ) 240 T(n+p+1)T(n+v+1
FO-0) (12 B () B () = Al hdda),

m

i 20+ p+v+1T(n+ )T (n+pu+v+1) ™

(A1)

(A2)

(A3)

(A4)

(A5)

Using the above, with some algebraic manipulations, the effect of differential operators on the basis elements give:

(1 y2)(§¢; —{ 20 - (n+y+v+l)—n[y+ VZH J[za_v_l+1+#_2ﬂj+ﬂ(ﬁ—1)t—;+a(‘1_l)l__y f,

2n+pu+v I+y -y I+y
+2(”+ﬂ)(n+v)(2a—v—1+1+,u—2,BJ 4 4
2n+ p+v 1+y -y J)4,,""
d - 2 (ntu)(n+v) A4
ﬂ: 0{_,3_ n2y+ v—u é + 2( ﬂ)( )_,,¢n_]
dy I+y 1-y 1-y 2n+u+v 1-y° 2n+u+v A4
The matrix elements of an integrable function F ( )is defined as
(n[ F (y)|m)= 4, mf () FIRS (2) B (v)dy
then we obtain
V-’ 2 n(n+p)(n+v)(n+pu+v)
<n|y|m>:(2 nm §n,m+l
n+y+v)(2n+y+v+2) (2n+y+v) (2n+,u+v—1)(2n+y+v+l)

2 (n+1)(n+y+l)(n+v+1)(n+y+v+1)5
(2n+p+v+2) (2n+pu+v+1)(2n+ p+v+3) el
as a special case
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