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Abstract: In the present paper, we will investigate a family of explicit four-step methods first introduced by Anastassi and Simos [1]
for the case of vanishing of phase-lag and its first derivative. Thesemethods are efficient for the numerical solution of the Schrödinger
equation and related initial-value or boundary-value problems with periodicand/or oscillating solutions. As we mentioned before the
main scope of this paper is the study of the elimination of the phase-lag and its first derivative of the family of the methods to be
investigated. A comparative error and stability analysis will be presented for the studied family of four-step explicit methods. The new
obtained methods will finally be tested on the resonance problem of the Schrödinger equation in order to examine their efficiency.

Keywords: Phase-lag, initial value problems, oscillating solution, symmetric, multistep, Schrödinger equation

1 Introduction

In this paper the numerical solution of special
second-order initial-value problems of the form

y′′(x) = f (x,y), y(x0) = y0 and y′(x0) = y′0 (1)

with an periodical and/or oscillatory solutions are
investigated. The main characteristic of the mathematical
models of the above mentioned problems is that the
ordinary differential equations which describe the above
models are of second order in which the first derivativey′

does not appear explicitly (see for numerical methods for
these problems [3] - [32] and references therein).

2 Analysis of the Phase-lag For Symmetric
Multistep Methods

For the numerical integration of the above mentioned
initial value problem (1), one can use multistep methods
of the form

k

∑
i=0

ciyn+i = h2
k

∑
i=0

bi f (xn+i ,yn+i) (2)

with k steps over the equally spaced intervals{xi}k
i=0 ∈

[a,b] andh= |xi+1−xi |, i = 0(1)k−1, whereh is called
stepsize of integration.
If the method is symmetric thenci = ck−i andbi = bk−i ,
i = 0(1)⌊ k

2⌋.

The Multistep Method (2) is associated with the operator

L(x) =
k

∑
i=0

ciu(x+ ih)−h2
k

∑
i=0

biu
′′(x+ ih) (3)

whereu∈C2.

Definition 1.[1] The multistep method (2) is called
algebraic of orderq if the associated linear operatorL
vanishes for any linear combination of the linearly
independent functions 1, x, x2, . . . , xq+1.

Application of a symmetric 2m-step method, that is for
i =−m(1)m, to the scalar test equation

y′′ =−φ2y (4)

leads to the following difference equation:

Am(v)yn+m+ ...+A1(v)yn+1+A0(v)yn

+A1(v)yn−1+ ...+Am(v)yn−m = 0 (5)

∗ Corresponding author e-mail:tsimos.conf@gmail.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080201


448 T. E. Simos: On the Explicit Four-Step Methods with Vanished...

wherev= φ h, h is the step length andA j(v) j = 0(1)mare
polynomials ofv.

The associated with (5) characteristic equation is given
by:

Am(v)λ m+ ...+A1(v)λ +A0(v)

+A1(v)λ−1+ ...+Am(v)λ−m = 0 (6)

Lambert and Watson (1976) introduce the following
definitions:

Definition 2.A symmetric 2m-step method with
characteristic equation given by (6) is said to have an
interval of periodicity (0,v2

0) if, for all v ∈ (0,v2
0), the

rootsλi , i = 1(1)2m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2m (7)

whereθ(v) is a real function of v.

Definition 3.[14], [ 15] For any method corresponding to
the characteristic equation (6) the phase-lag is defined as
the leading term in the expansion of

t = v−θ(v) (8)

Then if the quantity t= O(vp+1) as v→ ∞, the order of
phase-lag is p.

Definition 4.[2] A method for which the phase-lag
vanishes, is calledphase-fitted

Theorem 1.[14] The symmetric2m-step method with
characteristic equation given by (6) has phase-lag order
p and phase-lag constant c given by

−cvp+2+O(vp+4) = (9)
2Am(v) cos(mv)+...+2A j (v) cos( j v)+...+A0(v)

2m2 Am(v)+...+2 j2A j (v)+...+2A1(v)

The formula proposed from the above theorem gives us a
direct method to calculate the phase-lag of any symmetric
2m- step method.

In our case, the symmetric four-step method has phase-lag
orderp and phase-lag constantc given by:

−cvp+2+O(vp+4) = T0
T1

(10)

T0 = 2A2(v) cos(2v)+2A1(v) cos(v)+A0(v)

T1 = 8A2(v)+2A1(v)

3 The Family of Explicit Four-Step Methods
with Vanished Phase-Lag and Its First
Derivative

From the form (2) and without loss of generality we
assumeck = 1 and we can write

yn+k+
k−1

∑
i=0

ci yn+i = h2
k

∑
i=0

bi f (xn+i ,yn+i), (11)

If the method is symmetric thenci = ck−i and
bi = bk−i , i = 0(1)⌊ k

2⌋.

From the form (11) with k = 4 andb4 = 0 we get the
form of the explicit symmetric four-step methods [1]:

yn+4+c3 (yn+3+yn+1)+c2yn+2+yn =

= h2

[

b1 ( fn+3+ fn+1)+b0 fn+2

]

(12)

where fi = y′′ (xi ,yi) , i = n−1(1)n+1.

3.1 First Case

Considering (12), we choose:

c0 = −2c1−2, c1 = − 1
10

(13)

The choice was based on the results of the investigation
presented in [1]. Based on this study, the above values give
for the method (12) the higher accuracy.

Demanding now the above method to have the phase-
lag and its first derivative vanished, the following system
of equations is produced:

T2
39
5 +2v2b1

= 0

− T3

(10v2b1+39)2 = 0 (14)

where

T2 = 2 cos
(

2v
)

+2
(

− 1
10

+v2b1

)

cos
(

v
)

− 9
5
+v2b0

T3 = 100 sin
(

v
)

v4b1
2+400 sin

(

v
)

cos
(

v
)

v2b1

+ 380 sin
(

v
)

v2b1+400vb1

(

cos
(

v
))2

− 800vb1 cos
(

v
)

+1560 sin
(

v
)

cos
(

v
)

− 390vb0−380vb1−39 sin
(

v
)

Solving the above system of equations, we obtain the
coefficients of the new proposed method:

b0 =
1
5

T4

sin(v)v3 , b1 =
1
10

T5

sin(v)v3 (15)

where

T4 = 24 sin(v)v+5v sin(3v)−cos(2v)

− 8 cos(v)+10 cos(3v)−1

T5 = −20v sin(2v)+18−20 cos(2v)

+ sin(v)v+2 cos(v)
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The following Taylor series expansions should be used
in the cases that the formulae given by (15) are subject to
heavy cancellations for some values of|v| :

b0 =
5
4
+

161
600

v2− 1541
20160

v4

+
473

67200
v6− 28811

79833600
v8

+
3991

342144000
v10− 1023167

3487131648000
v12

+
5317391

1778437140480000
v14− 60114757

243290200817664000
v16

− 216374219
12164510040883200000

v18+ . . .

b1 =
53
40

− 161
1200

v2+
943

201600
v4

− 13
134400

v6+
109

798336000
v8

− 457
4790016000

v10− 28033
3170119680000

v12

− 3202931
3556874280960000

v14− 31704163
347557429739520000

v16

− 1574039107
170303140572364800000

v18+ . . . (16)

The behavior of the coefficients is given in the
following Figure 1.

The new obtained method (12) (mentioned as
FourStepI) with the coefficients given by (15)-(16) has a
local truncation error which is given by:

LTEFourStepI=
161h6

2400

(

y(6)n +2φ2y(4)n +φ4y(2)n

)

+O
(

h8
)

(17)

3.2 Second Case

Considering (12), we choose:

c0 = −2c1−2, c1 = − 9
20

(18)

The choice was based on the results of the investigation
presented in [1]. Based on this study, the above values give
for the method (12) the medium accurate solution.

Requesting the above method to have the phase-lag
and its first derivative equal to zero, the following system
of equations is produced:

T6
71
10+2v2b1

= 0

− T7

(20v2b1+71)2 = 0 (19)

Fig. 1: Behavior of the coefficients of the new proposed method
given by (15) for several values ofv= φ h.

where

T6 = 2 cos
(

2v
)

+2
(

− 9
20

+v2b1

)

cos
(

v
)

− 11
10

+v2b0

T7 = 400 sin
(

v
)

v4b1
2+1600 sin

(

v
)

cos
(

v
)

v2b1

+ 1600vb1

(

cos
(

v
))2

+1240 sin
(

v
)

v2b1

− 3200vb1 cos
(

v
)

+5680 sin
(

v
)

cos
(

v
)

− 1420vb0−1240vb1−639 sin
(

v
)
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The coefficients of the new proposed method are
obtained as solution of the above system of equations :

b0 =
1
10

T8

sin(v)v3 , b1 = 1/20
T9

sin(v)v3 (20)

where

T8 = 41 sin(v)v+10v sin(3v)−9 cos(2v)

− 2 cos(v)+20 cos(3v)−9

T9 = 9 sin(v)v−40v sin(2v)

− 40 cos(2v)+18 cos(v)+22

The following Taylor series expansions should be used
in the cases that the formulae given by (20) are subject to
heavy cancellations for some values of|v| :

b0 =
23
24

+
329
1200

v2− 1039
13440

v4

+
25339

3628800
v6− 11719

31933440
v8

+
331

29952000
v10− 7440421

20922789888000
v12

− 11781241
3556874280960000

v14− 11049547
12476420554752000

v16

− 6020361833
72987060245299200000

v18+ . . .

b1 =
311
240

− 329
2400

v2+
589

134400
v4

− 919
7257600

v6− 4619
1596672000

v8

− 16703
41513472000

v10− 8357161
209227898880000

v12

− 28821899
7113748561920000

v14− 4529189
11033569198080000

v16

− 42499050289
1021818843434188800000

v18+ . . . (21)

The behavior of the coefficients is given in the
following Figure 1.

The new obtained method (12) (mentioned as
FourStepII) with the coefficients given by (20)-(21) has a
local truncation error which is given by:

LTEFourStepII=
329h6

4800

(

y(6)n +2φ2y(4)n +φ4y(2)n

)

+O
(

h8
)

(22)

4 Comparative Error Analysis

We will study the following methods (Case I)1:

1 The results for the Case II is analogous

Fig. 2: Behavior of the coefficients of the new proposed method
given by (20) for several values ofv= φ h.

4.1 Classical Method(i.e. the method (12) with
constant coefficients of the Case I)

LTECL =
161h6

2400
y(6)n +O

(

h8) (23)

4.2 The Method with Vanished Phase-Lag
Produced in [1]

LTEMethAnasSim=
161h6

2400

(

y(6)n +φ2y(4)n

)

+O
(

h8) (24)
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4.3 The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in
Section 3

LTEFourStepII=
161h6

2400

(

y(6)n +2φ2y(4)n +φ4y(2)n

)

+O
(

h8
)

(25)
The procedure contains the following stages

–Computation of the derivatives which presented in the
formulae of the Local Truncation Errors. These
computations lead to the following formulae:

y(2)n = (V(x)−Vc+G) y(x)

y(3)n =

(

d
dx

g(x)

)

y(x)+(g(x)+G)
d
dx

y(x)

y(4)n =

(

d2

dx2 g(x)

)

y(x)+2

(

d
dx

g(x)

)

d
dx

y(x)

+(g(x)+G)2y(x)

y(5)n =

(

d3

dx3 g(x)

)

y(x)+3

(

d2

dx2 g(x)

)

d
dx

y(x)

+4 (g(x)+G)y(x)
d
dx

g(x)

+(g(x)+G)2 d
dx

y(x)

y(6)n =

(

d4

dx4 g(x)

)

y(x)+4

(

d3

dx3 g(x)

)

d
dx

y(x)

+7 (g(x)+G)y(x)
d2

dx2 g(x)

+4

(

d
dx

g(x)

)2

y(x)

+6 (g(x)+G)

(

d
dx

y(x)

)

d
dx

g(x)

+(g(x)+G)3y(x)

y(7)n =

(

d5

dx5 g(x)

)

y(x)+5

(

d4

dx4 g(x)

)

d
dx

y(x)

+11(g(x)+G)y(x)
d3

dx3 g(x)

+15

(

d
dx

g(x)

)

y(x)
d2

dx2 g(x)

+13(g(x)+G)

(

d
dx

y(x)

)

d2

dx2 g(x)

+10

(

d
dx

g(x)

)2 d
dx

y(x)

+9 (g(x)+G)2y(x)
d
dx

g(x)+(g(x)+G)3 d
dx

y(x)

y(8)n =

(

d6

dx6 g(x)

)

y(x)+6

(

d5

dx5 g(x)

)

d
dx

y(x)

+16(g(x)+G)y(x)
d4

dx4 g(x)+26

(

d
dx

g(x)

)

y(x)

d3

dx3 g(x)+24(g(x)+G)

(

d
dx

y(x)

)

d3

dx3 g(x)

+15

(

d2

dx2 g(x)

)2

y(x)+48

(

d
dx

g(x)

)

(

d
dx

y(x)

)

d2

dx2 g(x)+22(g(x)+G)2y(x)

d2

dx2 g(x)+28(g(x)+G)y(x)

(

d
dx

g(x)

)2

+12(g(x)+G)2
(

d
dx

y(x)

)

d
dx

g(x)

+(g(x)+G)4y(x)

. . .

–Based on the above formulae and substituting them in
the expressions of the Local Truncation Error we can
produce formulae of the local errors which are
dependent from the energyE.

–We study two cases in terms of the value ofE within
the Local Truncation Error analysis :

1.The Energy is close to the potential, i.e.,
G = Vc −E ≈ 0. Consequently, the free terms of
the polynomials inG are considered only. Thus,
for these values ofG, the methods are of
comparable accuracy. This is because the free
terms of the polynomials inG are the same for the
cases of the classical method and of the methods
with vanished the phase-lag and its derivatives.

2.G>> 0 orG<< 0. Then|G| is a large number.

–Finally we compute the asymptotic expansions of the
Local Truncation Errors

The following asymptotic expansions of the Local
Truncation Errors are obtained based on the analysis
presented above :

4.4 Classical Method

LTECL = h6

(

161
2400

y(x) G3+ · · ·
)

+O
(

h8) (26)
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4.5 The Method with Vanished Phase-Lag
Produced in [1]

LTEMethAnasSim= h6

(

161
2400

g(x)y(x) G2+ · · ·
)

+O
(

h8)

(27)

4.6 The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in
Section 3

LTEFourStepII= h6

[(

161
2400

(g(x))2y(x)

+
161
1200

(

d
dx

g(x)

)

d
dx

y(x)+
161
480

(

d2

dx2 g(x)

)

y(x)

)

G+ · · ·
]

+O
(

h8)(28)

From the above equations we have the following
theorem:

Theorem 2.For the Classical Four-Step Explicit Method,
the error increases as the third power of G. For the
Four-Step Explicit Phase-Fitted Method developed in [1]
, the error increases as the second power of G. Finally,
for the new obtained Four-Step Explicit Method with
Vanished Phase-lag and its First Derivative, the error
increases as the first power of G. So, for the numerical
solution of the time independent radial Schrödinger
equation the New Proposed Method with Vanished
Phase-Lag and its First Derivative is the most efficient
from theoretical point of view, especially for large values
of |G|= |Vc−E|.

5 Stability Analysis

In order to investigate the stability of the new developed
methods, we apply them to the scalar test equation:

y′′ =−ω2y. (29)

This leads to the following difference equation:

A2 (s,v) (yn+2+yn−2) + A1 (s,v) (yn+1+yn−1)

+ A0 (s,v) yn = 0 (30)

where

A2 (s,v) = 1, A0 (s,v) = − 1
10

+
1
10

T10

sin(v)v3

A0 (s,v) = −9
5
+

1
5

T11

sin(v)v3 (31)

where

T10 = s2
(

−20v sin
(

2v
)

+18−20 cos
(

2v
)

+sin
(

v
)

v+2 cos
(

v
))

T11 = s2
(

24 sin
(

v
)

v+5v sin
(

3v
)

−cos
(

2v
)

−8 cos
(

v
)

+10 cos
(

3v
)

−1
)

ands= ω h.

Remark.The frequency of the scalar test equation (29), ω,
is not equal with the frequency of the scalar test equation
(4), φ , i.e.ω 6= φ .

Based on the analysis presented in Section 2, we have
the following definitions:

Definition 5.(see [16]) A method is called P-stable if its
interval of periodicity is equal to(0,∞).

Definition 6.A method is called singularly almost
P-stable if its interval of periodicity is equal to(0,∞)−S2

only when the frequency of the phase fitting is the same as
the frequency of the scalar test equation, i.e. s= v.

In Figure 3 we present thes− v plane for the method
developed in this paper (First Case). In Figure 4 we
present thes− v plane for the method developed in this
paper (Second Case).

Remark.A shadowed area denotes thes− v region where
the method is stable, while a white area denotes the region
where the method is unstable.

Remark.There are cases where it is appropriate to observe
the surroundings of the first diagonal of the s− v
plane. These cases have mathematical models where in
order to apply the new produced methods the frequency
of the phase fitting must be equal to the frequency of the
scalar test equation. The cases are many problems in
sciences and engineering (for example the time
independent Schrödinger equation).

Based on the above remark, the case where the
frequency of the scalar test equation is equal with the
frequency of phase fitting is now studied, i.e. we
investigate the case wheres= v (i.e. see the surroundings
of the first diagonal of thes− v plane). Based on this
study we extract the results that the interval of periodicity

2 whereS is a set of distinct points
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Fig. 3: s−v plane of the the new obtained method with vanished
phase-lag and its first derivative (First Case)

Fig. 4: s−v plane of the the new obtained method with vanished
phase-lag and its first derivative (Second Cas)

of the new methods developed in section 3 are equal to:
(0,8.0) (First Case) and(0,9.9) (Second Case).

The above investigation leads to the following
theorem:

Theorem 3.The methods developed in section 3:

–are of fourth algebraic order,
–have the phase-lag and its first derivative equal to zero
–have an interval of periodicity equals to:(0,8.0) (First
Case) and(0,9.9) (Second Case) when the frequency
of the scalar test equation is equal with the frequency
of phase fitting

6 Numerical results

The efficiency of the new proposed explicit four-step
methods is investigated via the approximate solution of
the radial time-independent Schrödinger equation.

The one-dimensional time independent Schrödinger
equation with mathematics model given by :

y′′(r) = [l(l +1)/r2+V(r)−k2]y(r). (32)

is a boundary value problem which has the following
boundary conditions :

y(0) = 0 (33)

and another boundary condition, for large values ofr,
determined by physical properties of the specific problem.

We give the following definitions of the functions,
quantities and parameters for the above mathematical
model (32) :

1.The functionW(r) = l(l + 1)/r2 +V(r) is calledthe
effective potential. This satisfiesW(x)→ 0 asx→ ∞,

2.The quantityk2 is a real number denotingthe energy,
3.The quantity l is a given integer representing the

angular momentum,
4.V is a given function which denotes thepotential.

In order the new obtained methods to be applied to
any problem, and since these methods are frequency
dependent methods, the value of parameterφ (see for
example the notation after (4) and the formulae in section
3) must be defined. The parameterφ for the case of the
radial Schr̈odinger equation is given by (forl = 0) :

φ =
√

|V (r)−k2|=
√

|V (r)−E| (34)

whereV (r) is the potential andE is the energy.

6.1 Woods-Saxon potential

For the purpose of our numerical tests we use the well
known Woods-Saxon potential. This can be written as :

V (r) =
u0

1+q
− u0q

a(1+q)2 (35)

c© 2014 NSP
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with q= exp
[

r−X0
a

]

, u0 =−50, a= 0.6, andX0 = 7.0.

The behavior of Woods-Saxon potential is shown in
Figure 5.

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r

The Woods-Saxon Potential

Fig. 5: The Woods-Saxon potential.

For some potentials, such as the Woods-Saxon
potential, and using their investigation, some critical
points are defined and these points are used in order the
parameterφ to be defined (see for details [36]).

For the purpose of our tests, it is appropriate to choose
φ as follows (see for details [37] and [38]):

φ =























√
−50+E, for r ∈ [0,6.5−2h],√
−37.5+E, for r = 6.5−h√
−25+E, for r = 6.5√
−12.5+E, for r = 6.5+h√
E, for r ∈ [6.5+2h,15]

(36)

For example, in the point of the integration regionr =
6.5−h, the value ofφ is equal to:

√
−37.5+E. So,w =

φ h=
√
−37.5+E h. In the point of the integration region

r = 6.5−3h, the value ofφ is equal to:
√
−50+E, etc.

6.2 Radial Schr̈odinger Equation - The
Resonance Problem

We will study the numerical solution of the radial time
independent Schrödinger equation (32) with the
Woods-Saxon potential (35) for the examination of the
efficiency of the new proposed methods. The
approximation of the true (infinite) interval of integration
by a finite one is necessary for the approximate solution
of this problem. We take the integration interval
r ∈ [0,15] for the purposes of our numerical experiments.

Fig. 6: Accuracy (Digits) for several values ofCPU Time (in
Seconds) for the eigenvalueE2 = 341.495874. The nonexistence
of a value of Accuracy (Digits) indicates that for this value of
CPU, Accuracy (Digits) is less than 0

We consider equation (32) in a rather large domain of
energies, i.e.,E ∈ [1,1000].

In the case of positive energies,E = k2, the potential
decays faster than the terml(l+1)

r2 and the Schr̈odinger
equation effectively reduces to

y′′ (r)+

(

k2− l(l +1)
r2

)

y(r) = 0 (37)

for r greater than some valueR.
The above equation has linearly independent solutions

kr j l (kr) and krnl (kr), where j l (kr) and nl (kr) are the
spherical Bessel and Neumann functions respectively.
Thus, the solution of equation (32) (whenr → ∞), has the
asymptotic form

y(r)≈ Akr jl (kr)−Bkrnl (kr)

≈ AC

[

sin

(

kr− lπ
2

)

+ tandl cos

(

kr− lπ
2

)]

(38)
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whereδl is the phase shift that may be calculated from the
formula

tanδl =
y(r2)S(r1)−y(r1)S(r2)

y(r1)C(r1)−y(r2)C(r2)
(39)

for r1 andr2 distinct points in the asymptotic region (we
chooser1 as the right hand end point of the interval of
integration andr2 = r1 − h) with S(r) = kr j l (kr) and
C(r) = −krnl (kr). Since the problem is treated as an
initial-value problem, we needy j , j = 0,(1)3 before
starting a four-step method. From the initial condition, we
obtainy0. The valuesyi , i = 1(1)3 are obtained by using
high order Runge-Kutta-Nyström methods(see [39] and
[40]). With these starting values, we evaluate atr2 of the
asymptotic region the phase shiftδl .

For positive energies, we have the so-called resonance
problem. This problem consists either of finding the
phase-shiftδl or finding thoseE, for E ∈ [1,1000], at
which δl = π

2 . We actually solve the latter problem,
known asthe resonance problem.

The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for larger. (40)

We compute the approximate positive eigenenergies of
the Woods-Saxon resonance problem using:

–The eighth order multi-step method developed by
Quinlan and Tremaine [41], which is indicated as
Method QT8.

–The tenth order multi-step method developed by
Quinlan and Tremaine [41], which is indicated as
Method QT10.

–The twelfth order multi-step method developed by
Quinlan and Tremaine [41], which is indicated as
Method QT12.

–The fourth algebraic order method of Chawla and Rao
with minimal phase-lag [43], which is indicated as
Method MCR4

–The exponentially-fitted method of Raptis and Allison
[42], which is indicated asMethod RA

–The hybrid sixth algebraic order method developed by
Chawla and Rao with minimal phase-lag [44], which
is indicated asMethod MCR6

–The classical form of the fourth algebraic order four-
step method developed in Section 3, which is indicated
asMethod NMCL 3.

–The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1

–The Phase-Fitted Method (Case 2) developed in [1],
which is indicated asMethod NMPF2

–The New Obtained Method developed in Section 3
(Case 2), which is indicated asMethod NMC2

–The New Obtained Method developed in Section 3
(Case 1), which is indicated asMethod NMC1

3 with the term classical we mean the method of Section 3 with
constant coefficients

Fig. 7: Accuracy (Digits) for several values ofCPU Time (in
Seconds) for the eigenvalueE2 = 341.495874. The nonexistence
of a value of Accuracy (Digits) indicates that for this value of
CPU, Accuracy (Digits) is less than 0

The numerically calculated eigenenergies are
compared with reference values4. In Figures 8 and 9, we
present the maximum absolute error
Errmax= |log10(Err) | where

Err = |Ecalculated−Eaccurate| (41)

of the eigenenergies E2 = 341.495874 and
E3 = 989.701916 respectively, for several values of CPU
time (in seconds). We note that the CPU time (in seconds)
counts the computational cost for each method.

4 the reference values are computed using the well known two-
step method of Chawla and Rao [44] with small step size for the
integration
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7 Conclusions

In this paper, we studied a family of explicit four-step
methods first introduced by Anastassi and Simos [1]. The
main purpose of this investigation is the study of the
elimination of the phase-lag and its first derivative of the
above mentioned family of the methods. For this family
we presented a comparative error and stability analysis.
We have also investigated the effect of the vanishing of
the phase-lag and its first derivative on the efficiency of
the above mentioned methods for the approximate
solution of the radial Schrödinger equation and related
problems.

From the results presented above, we can make the
following remarks:

1.The classical form of the tenth algebraic order
four-step multiderivative method developed in Section
3, which is indicated asMethod NMCL is more
efficient than the fourth algebraic order method of
Chawla and Rao with minimal phase-lag [43], which
is indicated asMethod MCR4. Both the above
mentioned methods are more efficient than the
exponentially-fitted method of Raptis and Allison
[42], which is indicated asMethod RA.

2.The tenth algebraic order multistep method developed
by Quinlan and Tremaine [41], which is indicated as
Method QT10 is more efficient than the fourth
algebraic order method of Chawla and Rao with
minimal phase-lag [43], which is indicated asMethod
MCR4. TheMethod QT10 is also more efficient than
the eighth order multi-step method developed by
Quinlan and Tremaine [41], which is indicated as
Method QT8. Finally, the Method QT10 is more
efficient than the hybrid sixth algebraic order method
developed by Chawla and Rao with minimal
phase-lag [44], which is indicated asMethod MCR6
for large CPU time and less efficient than theMethod
MCR6 for small CPU time.

3.The twelfth algebraic order multistep method
developed by Quinlan and Tremaine [41], which is
indicated asMethod QT12 is more efficient than the
tenth order multistep method developed by Quinlan
and Tremaine [41], which is indicated asMethod
QT10

4.The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1 is more
efficient than the classical form of the fourth algebraic
order four-step method developed in Section 3, which
is indicated as Method NMCL , the
exponentially-fitted method of Raptis and Allison [42]
and the Phase-Fitted Method (Case 2) developed in
[1], which is indicated asMethod NMPF2

5.The New Obtained Method developed in Section 3
(Case 2), which is indicated asMethod NMC2 is
more efficient than the classical form of the fourth
algebraic order four-step method developed in Section
3, which is indicated asMethod NMCL , the

exponentially-fitted method of Raptis and Allison [42]
and the Phase-Fitted Method (Case 2) developed in
[1], which is indicated asMethod NMPF2 and the
Phase-Fitted Method (Case 1) developed in [1], which
is indicated asMethod NMPF1

6.The New Obtained Method developed in Section 3
(Case 2), which is indicated asMethod NMC1 is the
most efficient one.

All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).
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