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Abstract: In the present paper, we will investigate a family of explicit four-step wastfirst introduced by Anastassi and Simi [
for the case of vanishing of phase-lag and its first derivative. Threthods are efficient for the numerical solution of the 8dhrger
equation and related initial-value or boundary-value problems with peradifor oscillating solutions. As we mentioned before the
main scope of this paper is the study of the elimination of the phase-lag andsitddrivative of the family of the methods to be
investigated. A comparative error and stability analysis will be preseotatié studied family of four-step explicit methods. The new
obtained methods will finally be tested on the resonance problem of thédbeher equation in order to examine their efficiency.

Keywords: Phase-lag, initial value problems, oscillating solution, symmetric, multispd8inger equation

1 Introduction with k steps over the equally spaced intervés}’,
[a,b] andh = |xi+1 — X[, i=0(1)k—1, wherehis called
In this paper the numerical solution of special stepsize of integration.
second-order initial-value problems of the form If the method is symmetric thegy = ¢,_; andb; = by,
i =0(1)[5].

y'(x) = f(xy), Y(xo) =Yo and Y(xo) =yp (1)

with an periodical and/or oscillatory solutions are
investigated. The main characteristic of the mathematical . )

models of the above mentioned problems is that th . _ Gy 2 " .

ordinary differential equations which describe the abovgl‘(x) - i;c.u(x+|h) h i;b.u (x+ih) ©)
models are of second order in which the first derivayive o -

does not appear explicitly (see for numerical methods forvhereu € C~.

these problems3] - [32] and references therein). Definition 1.[1] The multistep method 2) is called
algebraic of order if the associated linear operatar
vanishes for any linear combination of the linearly
2 Analysis of the Phase-lag For Symmetric independent functions, X, x?, ..., x4+1,

Multistep Methods Application of a symmetric Brstep method, that is for

. . ) . i = —m(1)m, to the scalar test equation
For the numerical integration of the above mentioned

initial value problem {), one can use multistep methods Y = —?y (4)
of the form

The Multistep MethodZ) is associated with the operator

leads to the following difference equation:

¢ a An(V) Ynim+ ... +A1(V) Ynr1+Ao(V) Yn
Vo =S b f (Xngi, Ynsi 2
i;Qyn+| i;) i f (X, Ynti) (2) ALV Y1+ o+ An(V) Ynm = O 5)
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wherev = @h, his the step length andlj(v) j = 0(1)mare
polynomials ofv.

The associated witlb characteristic equation is given
by:

An(V)A™+ ..+ AL(V) A +Ag(V)

FAIMA T L+ ARVAT™=0 (6)

Lambert and Watson (1976) introduce the following

definitions:

Definition 2.A  symmetric 2m-step method  with
characteristic equation given by6) is said to have an
interval of periodicity (0,v3) if, for all v € (0,v3), the
rootsA;,i = 1(1)2m of Eq. 6) satisfy:

A =€V 2, =%V and|A| < 1,i=3(1)2m (7)
where6(v) is a real function of v.

Definition 3.[14], [ 15] For any method corresponding to
the characteristic equatiors} the phase-lag is defined as
the leading term in the expansion of

t=v-0(v) (8)

Then if the quantity &= O(vP™!) as v— o, the order of
phase-lag is p.

Definition 4.[2] A method for which the phase-lag
vanishes, is calleghase-fitted

Theorem 1[14] The symmetric2m-step method with
characteristic equation given by) has phase-lag order
p and phase-lag constant c given by

—CVP+2 + O(VWPH) =

2Am(v) cogmV)+...+2Aj(v) cog jV)+...4+-Ag(V)
2mP Am(V)+...+2 )2 A (V) +...+2A1 (V)

©)

The formula proposed from the above theorem gives us a
direct method to calculate the phase-lag of any symmetrier, —

2m- step method.

In our case, the symmetric four-step method has phase-lag

orderp and phase-lag constangiven by:
T
—CW 2 O(WPH) = 2
To = 2A2(v) coq2V) + 2A1 (V) cogV) + Ag(V)
Ty =8Az(V) +2A4(V)

(10)

3 The Family of Explicit Four-Step Methods
with Vanished Phase-Lag and Its First
Derivative

From the form 2) and without loss of generality we
assumes, = 1 and we can write

k—1 k
Yntk + i;) CiYn+i = h? i;bi f(Xntis Ynti), (11)

If the method is symmetric ther; = ¢ and
bi = by, i=0(1)%].

From the form (1) with k = 4 andb, = 0 we get the
form of the explicit symmetric four-step methodg:[

Ynt4+C3 (Yni3+Yni1) +CoVny2 +Yn =

=1 by (friz+ fret) +bo frsz (12)
wherefi =y’ (x,yi),i =n—1(1)n+1.
3.1 First Case
Considering 12), we choose:
=-2C—-2, ¢ = _1 (13)
Co = 174 =75

The choice was based on the results of the investigation
presented in]]. Based on this study, the above values give
for the method 12) the higher accuracy.

Demanding now the above method to have the phase-
lag and its first derivative vanished, the following system
of equations is produced:

T B
3§9~6—2V2 b1 n
SR R (14)
(10v2b; + 39)?

where

T2

2 cos<2v) +2 (—1—104—v2b1) cos(v) — g +Vv2ho
100 sir(v) V*by? + 400 sir(v) cos(v) by
+ 380 sir(v)vzbl 4 400vhy (cos(v) ) ?

~ 800vby cos(v) + 1560 sir{v) cos(v)

— 390vhy — 380vh; — 39 sin(v)

Solving the above system of equations, we obtain the
coefficients of the new proposed method:
1 0T 10T

bo = 5 sin(v)v3’ by = 10 sin(v)v3 (15)

where

T4 = 24 sin(v) v+ 5vsin(3v) — cos(2v)
— 8cos(v)+10cog3v)—1

Ts = —20vsin(2v) + 18— 20 cog2v)
+ sin(v) v+ 2 cog(v)

© 2014 NSP
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The following Taylor series expansions should be used behavior of the coefficient log(b_0)
in the cases that the formulae given ) are subject to o
heavy cancellations for some valuesdf:
,1,
5 161 1541
bo = Z‘Lﬁ)vz_ 20160 -2
473 28811
Voo v
+ 67200" ~ 79833600 3
n 3991 V0 1023167 12
342144000 3487131648000 In(6_0) -4
N 5317391 1, 60114757 14
177843714048000 243290200817664000 ]
B 216374219 e
12164510040883200000 ' ]
b 53 161 ., 943 N
1= 40 1200° " 201600
B 13 N 109 B
134400 798336000 behavior of the coefficient log(b_1)
457 1o 28033 1 o ‘ ‘ ‘ ‘ ‘
— VvV — 20 40 60 80 100
4790016000 3170119680008 v
B 3202931 14 31704163 16 5
355687428096000\6 347557429739520000
B 1574039107 18 (16) n
170303140572364800000
The behavior of the coefficients is given in the 61

following Figure 1.

The new obtained method1%) (mentioned as
FourStep) with the coefficients given byl6)-(16) has a -8
local truncation error which is given by:

In(b_1)

LT Erourstepi= 247 (yﬁf” +202y) + @*yid) | +0(n8) -
(17)

Fig. 1: Behavior of the coefficients of the new proposed method
3.2 Second Case given by (L5) for several values of = @h.

Considering {2), we choose:

Co=—2C1—2, ¢ = (18)

20 where
The choice was based on the results of the investigation
presented in]]. Based on this study, the above values give
for the method 12) the medium accurate solution. 9 11
Requesting the above method to have the phase-lags = 2 COS(ZV) +2 (fﬁ)+v2b1) cos(v) - 1—0+v2b0
and its first derivative equal to zero, the following system

of equations is produced: T, = 400 sir(v)v“bl2 41600 sir(v) cos(v)v2 by
L + 1600vb; (cos(v) ) * 11240 sir{v)v2by
1 T+ 2v2hy — 3200vhy cos(v) 45680 sir(v) cos(v)
- m =0 (19) — 14200y — 1240vby — 639 sir(v)
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The coefficients of the new proposed method are behavior of the coefficient log(b_0)
obtained as solution of the above system of equations :
1 Ts Ty
bo=—%———-= b1 =1/20——— 20
O~ 10sin(v)v3’ / sin(v)v3 (20)
where
Tg = 41 sin(v)v+10vsin(3v) — 9 cos(2v)
— 2cos(v) 420 cog3v)—9
To = 9sin(v)v—40vsin(2v) n(6_0)

— 40 cog2v) + 18 cogv) 422

The following Taylor series expansions should be used
in the cases that the formulae given 29) are subject to
heavy cancellations for some valuesf:

23 329 1039 behavior of the coefficient log(b_1)

2471200 " 13440 ]
25339 11719 |

3628800 31933440 ’ % 40 e s 1o
331 4 7440421 o, :

29952000  20922789888000
11781241, 11049547

3556874280960000  12476420554752000
- 6020361833 g,
72987060245299200000

311 329 , 589 ,

240 2400 ' 134400
919 4619 o

7257600 1596672000
16703 4, 8357161 4, 12

41513472000 2092278988800
28821899 14 4529189 \16 -141
711374856192000 11033569198080000
42499050289 18 Fig. 2: Behavior of the coefficients of the new proposed method
- 1021818843434188800080 te. (21) given by @O) for several values of = gh.

The behavior of the coefficients is given in the
following Figure 1.

The new obtained method1?) (mentioned as i ) .
FourStepl) with the coefficients given by20)-(21) hasa 4.1 Classical Method(i.e. the methdtl| with

bo =

|
(=)
L

In(b_1)

'
=)
L

by =

local truncation error which is given by: constant coefficients of the Case I)
161h° (¢
LT Erourstepi= 2mo <ng> +2¢2y) + gty | +O(nf) LTEcL = Sao5 % +O(1%) (23)
(22)

4.2 The Method with Vanished Phase-Lag

4 Comparative Error Analysis Produced in ]

We will study the following methods (Case) 16106 [ g " i
LT = 5 ron + +0(h°%) (24
1 The results for the Case Il is analogous Buvethanassini= 2400 \ I % ) (%) (24)
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4.3 The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in .

' 6
Section 3 W = (;@g(x)> y(x)+6 (oclj%f'g( )) :xy( X
Vi

d d
LT Erourstepli = oo <yn 1202y 1+ gty +0(h8) +16(9(X)+G)y(x)wg(x)+26 (dxg(x)> y(X)

dd d dd
| | @5) 5e900+24(009+6) (09 ) a0l
The procedure contains the following stages X X
. L . . 2 2
—Computation of the derivatives which presented in the 15( 9 a4
formulae of the Local Truncation Errors. These 15 dng(x) y(x)+48 d 9()

computations lead to the following formulae: d d2 5
. (5709 800+ 22809+ GPy (Y

o e = 600+ 28(a00+ 6y ( Lg00)
d d gx+289x+ny(gx)
= (x ) +(@Q(X)+G) &y(x) dx? dx
d d
e @ N\ +12(900+ 62 ( gy g0
! = (a900) voo+2 ( ga00) gy | \a )
+(OX)+G6)"y(x)
+(9(0)+G)?y(x)
2 d
3
(dx39 ) X)+ (d a9 )) dxy(x) —Based on the above formulae and substituting them in
the expressions of the Local Truncation Error we can
4(9(x) +G)y(X )dxg(x) produce formulae of the local errors which are
, d dependent from the energy.
+(900+6)* -y
g4 e d —We study two cases in terms of the valuebofvithin
(6) _ “ o the Local Truncation Error analysis :
0 = (5000 +4 (a0 ) Gy _ o
) 1.The Energy is close to the potential, i.e.,
d G =V, — E =~ 0. Consequently, the free terms of
+7(9( )+G)y(x)ﬁg(x) the polynomials inG are considered only. Thus,
d 2 for these values ofG, the methods are of
+4 <dg(x) y(X) comparable accuracy. This is because the free
X terms of the polynomials i@ are the same for the
d d cases of the classical method and of the methods
+6(9(x)+G) dxy(x)) ax® ) with vanished the phase-lag and its derivatives.
2G>>00rG << 0. Then|G| is a large number.
+(O09+6)°y(¥ [Glisalarg
7 dd d4 d . . .
e (g(x)) y(X)+5 (g(x)) —vy(X) —Finally we compute the asymptotic expansions of the
dx dx! dx Local Truncation Errors
3
+11(g(x)+G)y(x)d—ng(x) The following asymptotic expansions of the Local
d d2 Truncation Errors are obtained based on the analysis
+15 < d Q(X)> y(x) Wg(x) presented above :
+13(g(x) +G) d (x) d—z (x)
g ax’ a9 )
q 2 4 4.4 Classical Method
+10( a00) gy
+9(g(x) +G)*y(X)
d 3 d 161
HI0+EX+6)° Fy() LT = (moy( )G ) +o(h)  (26)
© 2014 NSP
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4.5 The Method with Vanished Phase-Lag

Produced i
roduced in [1] A2(sVv) =1, Ao(s,V) = _%) Tl()SinE/(;Vg’

9 1 Tiu
161 A(sV) = ——+ - = 5 (31)
LT Emethanassine h° <24009 (x)y(x) GZ+ - | +0 (hg) ° 5 sm(v)v
@7) where
Tio = &(~20vsin(2v) + 18- 20 cog 2v)
4.6 The New Proposed Method with Vanished _
Phase-Lag and its First Derivative Produced in +S'”(V)V+2 COS(V»
Section 3 T = 52(24 sin(v)v+ 5vsin(3v)
- cos(2v) -8 cos(v) +10 cos<3v) — 1)
161 ands= wh.
LT EFourStepII = h6 [(2400 (g (X))Zy(x)
RemarkThe frequency of the scalar test equati@f)( w,
161 /d d 161 is not equal with the frequency of the scalar test equation
1200\ &x3™ ) @’ * 280 @), 9 ie.w# Q.
d? s Based on the analysis presented in Section 2, we have
(dng(x)) y(x)> G+ 1 +0(h°(28)  the following definitions:
Definiti . A method i lled P-stable if it
From the above equations we have the following efinition 5.(see [L6)) A method is calle stable if its

theorem: interval of periodicity is equal t¢0, «).
Definition 6.A method is called singularly almost

Theorem 2For the Classical Four-Step Explicit Method, P-stable if its interval of periodicity is equal {®, ©) — S

the error increases as the third power of G. For the only when the frequency of the phase fitting is the same as

Four-Step Explicit Phase-Fitted Method developedlh [ the frequency of the scalar test equation, i.e: &.

, the error increases as the second power of G. Finally,

for the new obtained Four-Step Explicit Method with  In Figure 3 we present the— v plane for the method

Vanished Phase-lag and its First Derivative, the error developed in this paper (First Case). In Figure 4 we

increases as the first power of G. So, for the numericalpresent thes—v plane for the method developed in this

solution of the time independent radial Setinger paper (Second Case).

equation the New Proposed Method with VanishedR KA shad d d " . h
Phase-Lag and its First Derivative is the most efficient emarkA shadowed area denotes t5e v region where

from theoretical point of view, especially for large values € Method is stable, while a white area denotes the region
of |G| = [Ve — E|. where the method is unstable.

RemarkThere are cases where it is appropriate to observe
the surroundings of the first diagonal of the s—v

5 Stability Analysis plane. These cases have mathematical models where in
order to apply the new produced methods the frequency

In order to investigate the stability of the new developed©f the phase fitting must be equal to the frequency of the

methods, we apply them to the scalar test equation: scglar test equation: Thg cases are many PfOb'e”?S in

sciences and engineering (for example the time

Y = — Py (29) independent Schdinger equation).
. . . . Based on the above remark, the case where the
This leads to the following difference equation: frequency of the scalar test equation is equal with the
frequency of phase fitting is now studied, i.e. we
investigate the case whese-=v (i.e. see the surroundings

A2(SV) iz +Yn-2) + AL(SV) (Y1 +Yn-1) of the first diagonal of thes— v plane). Based on this

+ Ao(s,V) yn=0 (30)  study we extract the results that the interval of periogicit

where 2 whereSis a set of distinct points

© 2014 NSP
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The above investigation leads to the following
SabilyFego tri o ~odrd Khed o anicrng Phases s s e il - e th e Or e m

Theorem 3The methods developed in section 3:

—are of fourth algebraic order,

—have the phase-lag and its first derivative equal to zero

—have an interval of periodicity equals t@, 8.0) (First
Case) and0,9.9) (Second Case) when the frequency
of the scalar test equation is equal with the frequency
of phase fitting

6 Numerical results

The efficiency of the new proposed explicit four-step
methods is investigated via the approximate solution of
the radial time-independent Séldinger equation.

The one-dimensional time independent Schinger
equation with mathematics model given by :

Y'(r) =01 +1)/r2+V(r) —Ky(r). (32)

is a boundary value problem which has the following
Fig. 3: s—v plane of the the new obtained method with vanished boundary conditions :
phase-lag and its first derivative (First Case)

y(0)=0 (33)

and another boundary condition, for large valuesr of

determined by physical properties of the specific problem.
LR Y T R 2 We give the following definitions of the functions,
quantities and parameters for the above mathematical
model 32) :

1.The functionW(r) = I(1 +1)/r2 +V(r) is calledthe
effective potentialThis satisfie®V(x) — 0 asx — oo,

2.The quantityk? is a real number denotirthe energy

3.The quantityl is a given integer representing the
angular momentum

4V is a given function which denotes tpetential

In order the new obtained methods to be applied to
any problem, and since these methods are frequency
dependent methods, the value of paramegefsee for
example the notation afted) and the formulae in section
3) must be defined. The parametgeffor the case of the
radial Schodinger equation is given by (for=0) :

p=\/IV()=K[= V() -E| (34)

whereV (r) is the potential an is the energy.

Fig. 4: s—v plane of the the new obtained method with vanished § 1 \Noods-Saxon potential
phase-lag and its first derivative (Second Cas)

For the purpose of our numerical tests we use the well
known Woods-Saxon potential. This can be written as :

of the new methods developed in section 3 are equal to: V(r)= Yo ﬂz (35)
(0,8.0) (First Case) and0,9.9) (Second Case). 1+a a(1l+q)
© 2014 NSP
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i _ r—Xo _ _ _
with q = eXp[T} » Uo = —50, a= 0.6, andXo = 7.0. Err_,, for the resonance 341.495874

The behavior of Woods-Saxon potential is shown in B—E—8 Method QT8
Figure 5. @@ Method QT10
Ar—dr—d Method QT12
¥ Method MCRA
e Method RA
E—8—E Method MCRE
&80 Method NMCL
The Wbods- Saxon Pot ent i al E—— Method NMPF1
S| Method NMPF2
Ly p——p——>p Method NMC2
o @t ethod NMCL

Errmaa
|

Fig. 5: The Woods-Saxon potential.

For some potentials, such as the Woods-Saxon ¥
potential, and using their investigation, some critical o Bt - tlme‘}fﬂ — ds}” a4
points are defined and these points are used in order th
parameter to be defined (see for detail3q]).

For the purpose of our tests, it is appropriate to choos

o as follows (see for detail8[] and [38)): %ig. 6: Accuracy (Digits) for several values @PU Time (in

Seconds) for the eigenvall® = 341495874. The nonexistence

/ENLE . of a value of Accuracy (Digits) indicates that for this value of
_gg;E’E fgrrre_[(e),g.f h 2h), CPU, Accuracy (Digits) is less than 0
@=< v—25+E, forr=6.5 (36)
v—125+E, forr =6.5+h
VE,  forre[6.5+2h,15 We consider equation3g) in a rather large domain of

F le. in th int of the intearati _ energies, i.eE € [1,1000.
6 5_0hr Et};](grcglﬁélgfqo iesr:a(:qlﬂa?to e_lr13$g5ri Ensrce)gvr\?f In the case of positive energies,= k?, the potential
@h—/—375+ENh. In the point of the integration region decays faster than the tert ;2 and the Sctidinger
r = 6.5— 3h, the value ofp is equal to:/—50+ E, etc. equation effectively reduces to

v+ (- )ym-o @

6.2 Radial Schiwdinger Equation - The r
Resonance Problem for r greater than some vallR:

The above equation has linearly independent solutions
We will study the numerical solution of the radial time krj, (kr) and krny (kr), where j, (kr) and n; (kr) are the
independent  Schbdinger equation 32) with the  spherical Bessel and Neumann functions respectively.
Woods-Saxon potentiaBp) for the examination of the Thus, the solution of equatio®®) (whenr — o), has the
efficiency of the new proposed methods. The asymptotic form
approximation of the true (infinite) interval of integratio

by a finite one is necessary for the approximate solution y(r) ~ Akrj; (kr) — Bkrny (kr)

of this problem. We take the integration interval . It I

r  [0,15 for the purposes of our numerical experiments. ~ AC {S'” (kr - 2) +tand, cos(kr - 2)] (38)
@© 2014 NSP
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whereg is the phase shift that may be calculated from the
formula

y(r2)S(r1) —y(r1) S(rz)
y(r1)C(r1) —y(r2)C(rz)

for ry andr; distinct points in the asymptotic region (we
chooser; as the right hand end point of the interval of
integration andrp = r; —h) with S(r) = krj; (kr) and
C(r) = —krn, (kr). Since the problem is treated as an
initial-value problem, we need;, j = 0,(1)3 before
starting a four-step method. From the initial condition, we
obtainyp. The valuesy;, i = 1(1)3 are obtained by using
high order Runge-Kutta-Nysim methods(see3p] and
[40]). With these starting values, we evaluate abf the
asymptotic region the phase shift

For positive energies, we have the so-called resonanct
problem. This problem consists either of finding the
phase-shiftd or finding thoseE, for E € [1,1000, at
which § = 7. We actually solve the latter problem,
known asthe resonance problem

The boundary conditions for this problem are:

tand = (39)

y(0) =0, y(r) = cos(\@r) forlarger.  (40)
We compute the approximate positive eigenenergies ol
the Woods-Saxon resonance problem using:

—The eighth order multi-step method developed by
Quinlan and Tremaine4fl], which is indicated as
Method QTS8.

—The tenth order multi-step method developed by
Quinlan and Tremaine4fl], which is indicated as
Method QT10.

Err,.,, for the resonance 989.701916
B8 Method QT8
&—8—8 Method QT10
dr——de—d Method QT12
W dfm¥ Piethod MCR4
St Method RA
BE—E—8 Method MCRE
O—0—0 Method NMCL
E—&—& Method NMPF1
@—8—8 Method NMPF2
p—ip—pp Method NMC2
#—4— Method NMC1

0.8
CPU time (in seconds)

12

—The twelfth order multi-step method developed by fig 7. accuracy (Digits) for several values GPU Time (in

Quinlan and Tremaine4fl], which is indicated as
Method QT12.

Seconds) for the eigenvalle = 341495874. The nonexistence
of a value of Accuracy (Digits) indicates that for this value of

—The fourth algebraic order method of Chawla and Raocpu, Accuracy (Digits) is less than 0

with minimal phase-lag43], which is indicated as
Method MCR4

—The exponentially-fitted method of Raptis and Allison
[42], which is indicated adMethod RA

—The hybrid sixth algebraic order method developed by
Chawla and Rao with minimal phase-lag4], which
is indicated aslethod MCR6

—The classical form of the fourth algebraic order four-
step method developed in Section 3, which is indicated
asMethod NMCL 3.

—The Phase-Fitted Method (Case 1) developedljn [
which is indicated aMethod NMPF1

—The Phase-Fitted Method (Case 2) developedlin [ of
E; = 989701916 respectively, for several values of CPU

which is indicated adMethod NMPF2

The numerically calculated eigenenergies are

compared with reference valuésin Figures 8 and 9, we

present the maximum absolute error
Erfmax= |logio(Err) | where
Err= ‘Ecalculated— Eaccuratd (41)
the eigenenergies E; = 341495874 and

—The New Obtained Method developed in Section 3time (in seconds). We note that the CPU time (in seconds)

(Case 2), which is indicated &ethod NMC2
—The New Obtained Method developed in Section 3

counts the computational cost for each method.

(Case 1), which is indicated &&ethod NMC1

4 the reference values are computed using the well known two-

3 with the term classical we mean the method of Section 3 withstep method of Chawla and Ra#4] with small step size for the

constant coefficients

integration
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7 Conclusions exponentially-fitted method of Raptis and Alliso$2]

and the Phase-Fitted Method (Case 2) developed in
In this paper, we studied a family of explicit four-step ~ [1], which is indicated asvlethod NMPF2 and the
methods first introduced by Anastassi and SinidsThe Phase-Fitted Method (Case 1) developedLlinyhich
main purpose of this investigation is the study of the isindicated asMethod NMPF1
elimination of the phase-lag and its first derivative of the 6.The New Obtained Method developed in Section 3
above mentioned family of the methods. For this family ~ (Case 2), which is indicated &sethod NMCL1 is the
we presented a comparative error and stability analysis. most efficient one.
We have also investigated the effect of the vanishing of
the phase-lag and its first derivative on the efficiency of
the above mentioned methods for the approximat
solution of the radial Sckdinger equation and related
problems.

From the results presented above, we can make th
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