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Abstract: Here, a new model was used to discuss the effect of a magnetic field on an isotropic, homogeneous, elastic
material with generalized thermoelastic diffusion with two-temperature using a new technique. Most researchers in this
domain discussed the behavior of the solution depending on two ways: the Laplace method and the normal mode method.
Those two methods fail in explaining some of the physical meaning of the problems, especially the behavior of time. On
the other hand, the separation of variables method solves the system of equations and gets the analytical solution directly.
Copper material is used to discuss the results found in some detail. Comparisons are made in the presence and absence of a

magnetic field.
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1 Introduction

The attention of most researchers has been drawn
to studying the generalized thermo elasticity theories due to
their relations with many practical applications. The
researches on this topic are now obtainable and we can
recall some recent interesting researches in [1-3].

Some problems of thermoelastic diffusion in solid
materials are discussed in [4-7]. Problems with one
relaxation time under the effect of diffusion were solved in
[8-9]. Two- temperature theory was discussed in [10-12].

Magnetic field and initial stress under two-
temperature discussed in [13]. A new mathematical model
of equations was discussed in [14]. The effect of magnetic
field and some fields investigated in [15-16]. Three Phase
Lag theory and its stability were discussed in [17-18]. Two-
dimensional problems are discussed under the theory of
Three Phase Lag under some theories discussed in [19-20].

Most of the researches in this domain investigated
the behavior of the physical quantities in two ways. The
first way is using the Normal Mode method, which is based
on the general form of the solution. The time was supposed
to be imaginary, which does not give accurate physical
meanings to the problems, see [21-22].

The second way is using Laplace Integral Method
to separate the time and then discuss the behavior of the
solution. This method has two defaults, one is it fails when
the inverse of Laplace transform is difficult. The second fail

is not obtaining directly, the function of time, see [23-24].

We adopt a new method in this study to
investigate the influence of two-temperature and diffusion
on a thermoelastic plate in two dimensions using the Three-
Phase-Lag model in the presence and absence of a magnetic
field. The general solutions of the physical quantities, under
specific boundary conditions of the problem, were found in
some detail.

2 Nomenclature

Uij Stress tensor components

eij- Strain tensor components
e=ep Dilatation cubic

5ij Kronecker's delta

u,v Vectors of displacement

T Thermodynamic Temperature
T, Reference Temperature |(T -T)/T)|<1
Q Conductive temperature

P Chemical potential

C Distribution of concentration
AU Lame's constants

P Density

7y=(3A+2u)ay, a,—Linear thermal expansion coefficient
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,31 = (34 +2u)a,, a, —Diffusion thermal expansion

coefficient
C E Constant strain at Specific heat
K Thermal conductivity coefficient
*
K Material characteristic
7, Thermal displacement gradient
T, Phase lag of Heat flux
(2 Phase lag of temperature gradient
a The measure of thermoelastic diffusion effects
constant
b, The measure of diffusive effects constant
d Constant of thermoelastic diffusion
T Relaxation time of diffusion
M, Magnetic permeability
£, Electric permeability
u Velocity of particle
F; Lorentz force
, o &
Vi=—+

ox’ y

3 Basic equations

Consider the case of a two-temperature isotropic,
homogeneous thermoelastic half-space under the influence
of diffusion and a magnetic field. As seen in Fig. 1, an

initial constant magnetic field H=(0,0,H, )causes induced

magnetic h and electric E fields

z

H
AAA
(]
Y
X
curlh:J+goE, €))
curlE = —ﬂol:l, 2)
divh=0, 3)
E=—u (axH). 4)

The equations of constitutive relations
Ul-j=2,uel-j+5lj[/le—}/(T—7;)—,6’1C], (%)

P=-pe+bC—-a(T-T)), (6)
¢ = ;(”i,j + ”j,i)' (7
In the absence of body force, the equation of motion is

pli; = ot K, ®)
Where,

E, = 115 (J x H). ©)

Mass diffusion equation

dBV’e+daV’T +C+1C—dbV’C = 0. (10)

The heat conduction equation
K'Vp+0,V2p+Ke, V=
o g . ) (1)
(41, L2 ) pC, T +yT6+aT,Cl,
To1 20" "

Where,

r; = (K+K*tv).
The two-temperature equation is as follows:

T=>1-bV)p. (12)

Notice that the symbols are defined in the nomenclature.
4 Formulation of the problem

In this paper, all quantities are functions of the
coordinates x and y and the time variable ¢, such that

U =(u,v,0). (13)
The stress functions take the forms
ou ov
Oxx =A—+A——yT-pBC, (14)
Ox oy
ov ou
X
R (16)
Oy = f(—+—).
Ve ax
Then, Eq.(8) can be written as
2 2 2
B ou ov u 5
pi=A—5+B——+u—5-y(1-bV)p
ox Ox0y Oy ’ (17)

oh 5 .
_ﬁlc,x —HoH, a — HoéoH i,
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. oy 0’u oy 5
X
y V ox (18)
oh 5 .
—/J’IC,y —poHy —— ppeoHpv.
o
Where
A=A+2u,and B= 1+ .
For aim of numerical evaluation, we introduced some
dimensionless quantities
',y u' V)= cln(x,y,u,v),
P
(tr’ - Z‘%,T'q,f")) = clzn(t, T, TT’Tq’Tv),P' = 7
! ﬁ ’ O-ij ’ ! }/
C :;C’GU = 75(T 9(0) :7(T3(0)3
A A A
p_ 22, ., h
b'=cnb,h=—,n=pCp/Kand
H,
cl=Alp. (19)

Defining the displacement components in terms of potential
functions g(x, y,¢)and y(x, y,t) are

U=y ~V,yV=4d,y V- (20)

Egs. (10), (11), (17), and (18) can be written as using Eqs.
(19) and (20). (after suppressing the primes)

Vi +a,(1-V)Vp+a,C+1a,C-aVC=0, (21)
2 2. 2..
a,V o+ (1+ay7,)V (p+rTV Q=
22)
o 1,8 , , o
4z, —+—7,—)| A1-bV)HPp+a.VG+al C |,
Tor 2908 [ ’ o]
.. 2 2
a,§G=a,Vq-(1-bV7)p-C, (23)
.. 2
a;y =a,,V'y, (24)
In the same way, we can get the stress functions in the
dimensional form
A0 (25)
O =7 tA_———¢-C,
Yodax oy
ov A ou
w=—+——-9-C, (26)
oy Aox
M1 Ou Ov
xy =, (—+—) 27)
A Oy Ox

Finally, the potential function is

P=-V’q+a,C—a,T. (28)
Where
ad A bA K
U=y = Uy = Ay T
ﬂl}/ dﬂl n ﬂl ,DCECI
2 2 2
L o _al, o HEH, ]
a5 = 6 — 3a’7 =1 9a8 —
nAK np K p ne,
B y7, 7 i
Gy = —5—, g = — 5,0 =, a4, =dg +ay,
pPen P PC
b A 4 aAd 29)
a;=—,anday, = —.
B By

5 A New model of solution

Here, the solution of the problem is representing as the
sum of two functions, the first in position and the second in
time. Then, the physical variables are defined as,

q(x, y,t) = q,(x, y) + f (1),

@(x, y,1) = @ (x, ) + f(2),
w(x,y,0) =y, (x,y)+ (),
Clx,y,0) =C(x, y) + [ (1),
;1€[0,T],T <1.

(20)
(30)

Where, the amplitudes of the functions ¢, @,w,C are

q,,9,,¥,, C,,respectively, and f(¢) is function in time
that satisfies the following conditions

JO)=T,, f(x)=0.
Using Eq.(30) on Egs. (21) - (24) become respectively

G

Vi +a,(1-bV Ve —aV>Cp +ay(f +2f) =0, (32)

a,V'p =(+1, EJrlr; izz)(fw(j), (33)
a 2%

a,f =a,V2q ¢ +bV’p, - C, -2/, (34)

a7f = alovzy/l. (35

6 A suitable time function

In this section, we are discussing the different forms of time
functions, and then choosing a suitable function that
satisfies the conditions.
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The first formula of time can be obtained from (32), and
under condition (31), we have
z

f=Te".

This formula fails at ¢ — oo, where it gives f(00) =0

(36)

II - The second formula of time is obtaining from (33),

under (31),
-t

g t
f(@t)=Tye * cos(—). 37
T
q
III- The third formula, after using (34) and (31) takes the
form

2

S (@) =T, cos(, /*f) (38)
a;

This function is finite ast — .

IV- The fourth formula, from (35) and (31) is

S=T, (39)

This formula gives constant values of heat function f(¢)

for all times.

From Egs. (36-39), we will consider the second formula of
time , as it is general form of the other forms.

Here, the general form of time function depends on the
value of the primary temperature and the type of constants
of the properties of the material. For this purpose, we
choose the cooper material for numerical computations.
Now, we are seeking to get the solution of the coordinate
functions.

7 The functions of position

After finding analytically the time function, we are going to
discuss the functions of position.
From Egs. (32)- (35), we get the following

Vig -a,V’C =0, (40)
Vi =0, (41)
a,Vq, -, —C, =0, (42)
Vi, =0. (43)

Taking in mind that all functions are considered equal zero
at(x,y) =(0,0), and
o9 oo oc” £ ot =0
_= . O = , — = . O =
o xx =N o 2 Xy

at (x,y)=(0,0),¢ =0 at(x,y)=(0,L).

(44)

Where f,and f,is afunctionin y .

Using the basic information of partial differential equation
of separating the variables, we have the following results.
The temperature function is
—t
T t
X q
+Te * cos(—).
fq

o(x,y;0) = X B, sin(s,y)e " 45)
n=0

And, the displacement functions are
© B +F 5,X

u(x,y;t)= 2 [(-2 y=D,s,)cos(s,y)~s,I, sin(s, Ve
n=0 a,

=t
fq
+Te cos(—) (46)
fq
And,

—"—"y-D,s, )sin(s,y)
0 alz
v(x,y;t)= 2

B +F, -5 X
+(]nsn - ) COS(S,,)’)]e "
snaIZ

(47)

After using the famous relations between the displacement
functions and the stress components, one can obtain

2sn2[nu (B+F)A
= {( +
o. (x,yt)= Z auAﬂ
i - F;z )(1 - aZ + al ) Sin(sny)

2 B +F x
A 2a

12 12

——")—D,s,”]cos(s,y)}e "

-

t
+T e" cos(—),
Tq

(43)
S 2us,’l, B+F ,
(X y7t) {(7"' _Bn —Fn)SIH(Sny)
Tyy
n=0 A/, a,
_ (49)
2,us B +F, T, t
—[(——)y—-D,s,]cos(s, e St +Te b cos(—),
Ay 26112 Tq
And,
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® u Bn + Fn 2
Ty (x,y;0) = X —[(——" =251, )cos(s,y)
n=0 A4 a
U 12
_t (50)
B +F X -5 X a t
-5, (—"—" y—2Ds)sin(s,y)le " +T e * cos(—).
a, 7,
Finally, the potential function is
® B +F, . =8,
P(x,y;t)= X [a,F, —a,,B, — ]sin(s, y)]e
n=l1 a,
=t
T t
+T e * cos(—). (62))]
T
q
Where
nx flAﬂ 1 Ve
sn: 9 Dn: sznziﬂ F;1 T
L 2us, s, s,
B +F
y = "f”,n =0,1,2,3,....
2s,"a,

8 Special case

If we considerC = a = b1 = ﬁl =0, we have the case of

absence of diffusion, which means neglecting the effect of
diffusion.
Then, the temperature function is
-t
- . hx 7 t
o(x,y;t) :ZBM sin(h,y )e "™ +T e cos(—).(52)
T

n=0 q

The displacement functions are

AN < yBln : _hn'x
u(x,y;t) = Zo [( =D, h, )cos(h,y)—h I sin(h y)le
)
—t
T t
+Te ' cos(—), (53)
T
q
And,
YB,, .
[(— D, h )sin(h,y)
0 2(112
v(x, y;t) = X
n=0 Bln ~hx
+(1,,h, - Ycos(h, y)le (54)

)

T, t
+Te " cos(—).

T
q

The stress functions are

© B, h
0 (6 p30) = X 120Dy, =2 o)
n=0 2a12A
o
2 ;t
zluhn [ln Blnﬂ' : ~hx !
H—""+—"—=B, Isin(h,y)le ™ +Te * cos(—),(55)
A,u ayp i Tq
o 2uh yB
oy (nyi)= X (ER 25, Jeos(h, )
n=0 a
U 12
B, 2uh’l B
—_ t
o _M—Bln]sin(hny)}e hx +Tger" cos(—), (56)
4y A,u Ty
And,

x 2u_ B,
o, (%)= X {1 ! —Ilnhnz)cos(hny)
n=0 A 2a12
=t

B - t
(24 D, ysin(h y)le M 4 Te™ cos( ).

2&12 Tq
(57)
Where,

nr B
LAY S N S [y . TR S

L h 2uh, 2h a,,

9 Numerical results

To explain the problem graphically, we will use copper
material as an example for the thermoelastic material,
which have the following values of physical constants.

T =293K,,A=17.76x10" kg /(m.s*)
,a,=1.78x10" K',C, =383.1J / (kg.K)

, 1 =3.86x10" kg / (m.s*), p=8954kg | m’

,a, =1.98x107 m’ / kg, K =300W
,a=12x10"m* /(s> .K),y =0.6,7=0.01,

,b, =0.9x10°m’ / (kg.s*), d =0.85x10°° (kg.s)/ m’
K =297x10°, £, =0.1, /, =02, f, =05, 7, = 0.0,
g, =36I1x107, H, =1000, 1z, = 4T1x107".

The numerical calculations were used to show the behavior

of U & O P> and C on the vertical axis with x at

y =0.5, in presence and absence of magnetic field.

Fig. 1 depicts the distribution of displacement components
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u against xin the presence and absence of a magnetic
field. The displacement function has a greater value in the
presence of a magnetic field than in the absence of one. The
two curves begin with negative values and gradually climb

until they attain stability. The stress distribution function
o .against x in the presence of a magnetic field is

depicted in Fig. 2. The two curves begin with a positive

value and gradually decrease until they reach a point of

stability at zero. The fluctuation of the stress function o

against x in the presence and absence of a magnetic field is
depicted in Fig. 3. The two curves begin with a negative
value and gradually increase until they attain stability. The

distribution of the temperature function ¢ and the

concentration function C in presence and absence of
magnetic field are shown in Figs. 4 and 5. In the two
figures, the two cases are implacable on their others. The
curves start from positive value decreasing till reaching
zero. Fig. 6 shows the distribution of the potential function
P against x . The curves start from negative value and then

began to increase until they decay to zero.

2+ P

Fig. 1 The displacement distribution ¥ in presence and absence
of magnetic field.
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20

Fig. 2 The stress distribution O in presence and absence of

magnetic field.

At , 1
1 ha

Fig. 3 The stress distribution o,, in presence and absence of

magnetic field.

04

0.351 b

Fig. 4 The temperature distribution (0 in presence and absence of
magnetic field.
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Fig. 5 The concentration distribution C in presence and absence

of magnetic field.
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Fig. 6 The potential distribution P in presence and absence of

magnetic field.

10 Conclusion and discussion

From previous work, we can deduce the following

1.

Isotropic,  homogenous, thermoelastic ~ body
discussed under the effect of diffusion, magnetic
field and two- temperature.

Separation of variables is used to get the physical
quantities.

The displacement was separated from the time, to
explain the physical meanings of the problem.
Cooper is used to get the numerical values of the
quantities we get.

The behavior of temperature function were discussed

at certain values using programming.

6.

The behavior of temperature and diffusion weren't
affected by the influence of magnetic field.
The physical quantities tends to infinity when the

H,>10’

, which means that it vanish.
Results discussed numerically and graphically using
Matlab program in presence and absence of magnetic

field.
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