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Abstract: Increasingly sophisticated methods and tools are needetlaitking the dynamics and detecting inherent structumes i
modern day highly voluminous multi-faceted. Data scigstisave long realized that tackling global challenges swltlmmate
change, terrorism and food security cannot be containedirwihe frameworks and models of conventional data analysis
example, separating noise from meaningful data in even aliovensional data with heavy tails and/or overlaps is qefitallenging
and standard non-linear approaches do not always succesdinig the dynamics of multi-faceted data involving coexgbystems is
tantamount to tracking agent-based complex systems withy rirderacting agents. Dimensional-reduction methodscaremonly
used to try and capture structures inherent in data but theytigenerally lead to optimal solutions mainly because timisation
functions and theoretical methods typically rely on splestiaictures. We propose a parameter leveraging methochfupervised big
data modelling. The method searches for structures in daiai@ates a series of sub-structures which are subsegueatged or
split. The strategy is to present the algorithm with a set erfiqalic data as one complex system. It then uses the paiterhe
sub-structures to determine the overall behaviour of theptex system. Applications on solar magnetic activity egchnd seismic
data show that the proposed method out-performs convertimsupervised methods. We illustrate how the method caxtemded
to supervised modelling.

Keywords: Big Data, Clustering, Data Mining, Data Visualisation, ke&hs, Optimisation, Seismic Signals, Sunspots, Unsigetvi
Modelling.

1 Introduction

Extracting knowledge from data continues to stimulaterthigeiplinary research across the world mainly because the
complex nature of global challenges such as climate chaegerism and food security can no longer be tackled in
isolation. In the big data era, data scientists are emlataietracking data dynamics, volume and variety as most
multi-faceted data applications depart from the convertionodels of data analysis. For example, separating naige f
meaningful data in even a low-dimensional data with heag &nd/or overlaps is quite challenging and standard
non-linear approaches do not always succeed in detectingafig arising structures in such circumstances. Idgim
natural structures becomes even more challenging undemithedata scenario in which data systems become
increasingly complex and attribute relationships lessi@mls: Applications of mathematical structures in desogbi
general behaviours of complex systems are well-documenteduch applications the main goal is typically to
investigate how inter-relationships among attributes artipl systems lead to generalisations about aspects afibro
systems I]. A wide range of unsupervised and supervised modellinghotdg are used across applications.
Dimensional-reduction methods are commonly used to try @auture structures inherent in data but they do not
generally lead to optimal solutions mainly because theiintipation functions and theoretical methods typicallly 1en
special structures. Large volumes of multi-faceted ddtted to global challenges - climate change, terrorism and f
security - continue to flow in the big data era. Tracking thiginamics, volume and variety inevitably entails more
sophisticated methods and tools for detecting inheremttsires.
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Tracking the dynamics of multi-faceted data involving cdexpsystems is tantamount to tracking agent-based
complex systems with many interacting agents. We proposgrangeter leveraging method for unsupervised big data
modelling. The method sequentially searches for strustimedata and creates a series of sub-structures which are
subsequently merged or split. We follo®] who used pattern-oriented modelling framework to desigst, and analyse
bottom-up models. The strategy is to present the algorithtin avset of periodic data as one complex system. It then
uses the patterns in the sub-structures to determine thralbleehaviour of the complex system. Applications on solar
magnetic activity cycles and seismic data show that the geegp method out-performs conventional unsupervised
methods. The algorithm inherently illustrates how it carekiended to supervised modelling applications. The paper i
organised as follows. An overview of unsupervised modegliggiven in Section 2; methods and data description in
Section 3 are followed by data analyses, results and disnssim Section 4 and concluding remarks in Section 5.

2 BACKGROUND OF UNSUPERVISED MODELLING

The main idea of extracting knowledge from data relies omesking the two main data mining problems - unsupervised
and supervised modelling which, in a conventional staéstijargon, can be described as data clustering and
classification/regression. This section provides focuseshe former. Under unsupervised modelling data points are
allocated to, a priori, unknown groups (clusters) with #hizseach cluster being as homogeneous as possible whike thos
between clusters being as heterogeneous as possible. [Bhatiah rule is based on some measure of similarity -
typically, the distance between data points. Unsuperisedelling is based on the well-known finite mixtures mo@I [
and @] which constitutes a set of probability distributions easisociated with membership to one of K defined clusters.
Its mechanics can be illustrated by the category utilifywhich provides a measurement of partition quality as de¢a a
allocated to different clusters (categories). For instagéven cluster€i_j » k-1 kthe category utility is define as

Co — SIPC)yisi(Px= ij Gi)? — P[x = &j|G%) 1)

X as they assume specific valug§s,3 = summed overj. The main idea of Equation (1) is that the probability of a
particular attribute assuming a specific value within a gieteister provides a better estimation than just the praipabf

an attribute assuming a specific value. Thus, the differbat@een the squared probabilities over all attributes ahabs

is crucial in determining the usefulness of the clusterg dénominator gives per cluster measure to avoid overfitfihg
Equation (1) can be extended to continuous variables byv@agla Gaussian model,

(x=p)?
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with the analogy
1

2,/To;
Variation is estimated within clustéo; ) and over all clustergo;) as follows
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Typical unsupervised modelling algorithms such as the leiég/] and the EM B], typically manage inherent data
randomness and dependency on starting points via crog&tiali. This commonly accepted practice still leaves open t
optimality challenge9], effectively emphasising the need for model assessmehtasithe one in Equation (1).

P :fijIQ]Zﬁ/f(N)sz =

3METHODSAND DATA DESCRIPTION

The proposed strategy is inspired by the Gaussian mixtudehapproach to density estimation in which data are viewed
as coming from a mixture of probability Gaussian distribot, each representing a different clus&r Given data, the
strategy is to sequentially search for structures, crgatiseries of sub-structures in the process which are substyu
merged or split. It follows 2] who used pattern-oriented modelling framework to destgst and analyse bottom-up
models.
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3.1 Data Description

Two time-series datasets with clear periodic patterns shiowrig. 2 are used. The first is a set of 3160 average monthly
sunspot records for the period from midtA8entury to early 2012 (NOOA, 2012) of which th® &ind 6" had the lowest
activity and 19 and 21 had the highest. The second set con$i6b436 data seismic signals (861x76) obtained from the
Department of Geophysics at the University of Leeds.

The left hand side panel in Fig.1 shows the individual dégssibf four cycles - two shortest and two longest - with a
superimposed density of all cycles between them. The rightilside panel exhibits four sets of signal readings 1, 25, 50
and 76 with a superimposed overall density estimate curvalfesignals. Identifying the essence of sub-structures in
both cases is crucial to understanding numerous phenorenistance, sunspots numbers are known to be strongly
correlated with modern measures of solar activity which wevk that can interfere with power grids and
communication satellites.f] and [11].
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Fig. 1: Densities for selected sunspot cycles (LHS) and selecisth&ecolumns (RHS)

Further, recent studies have closely associated sunspitits space weatherl1p], [14], and [20. Similarly,
segmentation of the earth is useful in many ways. Homoggheiierogeneity of sub-regions within the same geological
structure may guide searches for natural resources - oilemais or water. The framework and mechanics of our
proposed Data-Split-Merge (DSM) algorithm are describeld\.

3.2 The DSM Algorithm

The algorithm reads data as one complex system, determimes/érall behaviour before carrying out parameter
estimation. Its general mechanics can be summarised as/fll
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X - D : Read Data into a Processable Medium
EDA(X) : Initial Exploratory Analysis (Explore Distributional Behaviour)
F(X) : Initial Density Estimation
@ Initialise Density Variations
SSuum : Initialise a Substructure Cumulative Variable
Bcum : Initialise a Parameter Cumulating Variable
For i=1 toLength (X) Do
For j=1 toLength (xn€X) Do

8 ={61,6,,...,6,_1,6,: Initial Parameters

SS : Determine Initial Substructure
6h = {6ny,6n,,...,6n} : Substructure Parameters

Fj(xn) : Density Estimation
While i<j Do

SScum<—SS*j:|Z§531

Ocum < 6 ={61,02,...,65<y}
|| = F(X) — Fsgym(Xn) : Density Variation
E(6%||0]) : Conditional Parameter Update
CV(||@]) : Assess Estimation Quality via Cross Validation
@< ||
End While
End For
E(6%|¢) : Conditional Parameter Update
CV () : Assess Estimation Quality via Cross Validation
End For

The algorithm’s novelty derives from its dependency on tataaviour and modularity. The parametérsan be adapted
to specific datasets. For instandéx) = x' 8,0 = 3 while for the density in Equation (3),8 = 7k, U, 0k}. Thus, for a
general Gaussian model,

-1
7 &Xp— % (X0 — IJnj)T Z(Xn — Hnj) (3)

n

y y
P(Xn; 6h) = 5 TP(Xnjlthj) & Y
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—
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msare the mixing parameterp(xsj|6hj) is the pdf corresponding to the distributiBy(x,) and6, denotes the vector
of all unknown parameters associated with the parametring@adopted for thespcomponent densities. In the case of
multivariate Gaussian components, theta consists of #maezits of the mean vectops; and the covariance matrices
Ynj- The conditional parameter update is a function of the agtbpteasure of fit quality such as cross validation or one
in the form of Equation (2). Since, are effectively random samples, maximisation of the Itkedid of resulting density
is generally very awful. Thus, we can treat group memberakimissing data and use an adapted version of the EM
algorithm, say, to estimate the MLEs for the vector of unknsyir and6 [15). Continuous data can be clustered around
medoids - a group of data objects having minimal averagenvihoup dissimilarity L6]. The random samplesg, can be
selected using any robust sampling method or a sequerigatise method as inl[7] to form initial “medoids”. Distances
to all other points can then be computed on the basis of whith ploints are allocated to clusters. Finally, iteratiyely
the clusters can be optimised with the minimal average wigtoup dissimilarity being measured by the silhouettethvid
[18] as follows

gout _ 5in
N = — 1 4
! mx(qotjt’élln) = (4)
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in
d

1_6IW if 5Iin< 5|0ut
Ai={0 if d"=6M & -1<A<1
5|out H in out

Where6,i” is the average dissimilarity of th® observation with the other data points within the clusigt is the minimal
average dissimilarity of th# observation to any other cluster not containing it- i’s.next best fit cluster.

4 DATA ANALY SES, RESULTS AND DISCUSSIONS

Analyses proceed in accordance with the algorithm abovelwdglects a sampig € X of sizem - a partial or full cycle

or signal, each time incrementing it by one unit or moreiahEDA results for selected sample sizes for the two dasaset
are given in Fig.2. The top two panels highlight the presafcwtural groupings within cycles and signals. The bottom
two panels are results from a standard cluster-searchgayitdm on the same data based on the assumption that 76
different signals and 23 cycles (omitting the incomplet® 2¢cle) constitute clusters. The algorithm therefore dezuic

for clusters above and below these values. Here, the seignals exhibit a very high within group variation for less
than 30 clusters which decreases with an increasing nunilmbusiers. The pattern is repeated for the sunspots except
that now extremely few clusters exhibit extreme rates adrimal variation. It is these variations that we need to noonit
and control.
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Fig. 2. Visual natural structures in sunspots and seismic data (top panels) and results from a standard cluster-searching
algorithm (bottom panels)

Without loss of generality, we apply our proposed algorithmtontinuous data and on the assumption that clustering
is around medoids and that the number of clusters is estihmate¢he basis of optimum average silhouette width which
as described in Equation (4). The plots in Fig.3 are gengrdtedifferent data models and in each case the most likely
model and number of clusters are determined by the maxinketiibod estimation and some Bayesian criteria.
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Fig. 3: Sunspotsand seismic signal analyses (LHS and RHS respectively) based on an arbitrary choice of data

For the sunspots data, the optimal model according to the®ay Information Criterion (BIC) was a Gaussian
ellipsoidal, equal volume and shape (EEV) with 3 compondtisthe seismic signal, it was a diagonal, varying volume
and shape (VVI) with 9 components. Our adopted rule herevdI[19] and chooses the model and number of clusters
with the largest BIC. The choice of optimal clusters in bott).E and Fig.3 is hugely affected by the starting point. The
four panels in Fig.4 exhibit multiple simulations of critem value densities for numbers of clusters in the first to the
239 sunspots cycles. Approximation of the average silhoueititwis done by breaking the dataset into subsets 5 and
taking averages. The numbers of clusters to be compareetavérage silhouette width criterion are shown in the legend
The criterion varies inversely with the compared numberasters. Here, the p-value for against the null hypothefsis o
similarity between clusters is extremely low. Also as thenber of averaged subsets decreases, the criterion plotrigsco
spikier.

Fig. 4: Multiplesimulations of criterion value densities for numbers of clustersin sunspots data

For the seismic data, averaging over 8 subsets yielded thierésults. The four panels in Fig.5 exhibit a more
consistent behaviour with bimodality being sustainablerall comparisons. Like in Fig.5 the criterion varies irsady
with the compared number of clusters. Unlike in the sunspré&snple, the number of averaged subsets does not affect
stability of inherent structures. Averaging over 2 to 20sib yielded similar results. In both cases, the densitpti@an
|¢| = F(X) — Fss,,(Xn) in the algorithm above can be measured using any appropritggon such a€ k in Equation
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(1) or Aj in Equation (4). Spiky plots imply swamping as spurious ®ts emerge warning against data over-fitting
while unimodality may suggest masking or under-fitting. Bgss-validating multiple runs of the algorithm the deaisio
to merge or split clusters can be made.

5 CONCLUDING REMARKS

The complex nature of global challenges such as climategghdarrorism and food security can no longer be tackled in
isolation and as Big Data becomes an increasingly housetmittept, we are all called upon to engage into
interdisciplinary research initiatives. This paper foation the knowledge extraction from data. Based on a general
purpose data clustering algorithm, we were able to usesdtie plots and averaging over data subsets to determine the
natural number of clusters within the two datasets. The pmffieds are readily extendable to classification and/or
regression.

The algorithm’s mechanics derive from its dependency oa Hahaviour as demonstrated by the different behaviour
of the two datasets (Fig.4 and Fig.5). We sought to identi$yirictive data sub-structures, verify model robustnéas v
data reconstruction using a combination @f the conditional parameter update function and crossiaatin to
determine sub-structure. Implementations on sunspotsseisinic data revealed more stable structures than those
obtained by conventional methods like PCAleMeans. For example, neither principal component analysisdata
clustering tells us how to relate the sunspots variablesita t a particular characteristic and forming a new vagiéd
future analysis. While plotting two components in a 2-D spamy reveal a number of clusters which may guide future
hypotheses, specifying criteria for robustly defining poied clusters in this case is a major challenge and it is wiat
paper sought to address. Apparently, more tests are negésserify the algorithm’s robustness. It is expected tihat
proposed methods will contribute towards unifying alduritc theories on adaptive behaviour and model complexity.

i s D1

Fig. 5: Multiplesimulations of criterion value densities for numbers of clustersin seismic data
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