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Abstract: In this paper, motivated by the interest and relevance dftilngy of tumor growth models, a central point of our invessiign

is the study of the chaotic dynamics and the bifurcationcstimne of Weibull-Gompertz-Fréchet'’s functions: a cla§santinuous-
defined one-dimensional maps. Using symbolic dynamicsnigoks and iteration theory, we established that dependmghe
properties of this class of functions in a neighborhood offarbation pointPsg, in a two-dimensional parameter space, there exists
an order regarding how the infinite number of periodic orbits born: the Sharkovsky ordering. Consequently, the sporeding
symbolic sequences follow the usual unimodal kneading exezps in the topological ordered tree. We verified that uisdene
sufficient conditions, Weibull-Gompertz-Fréchet's ftinos have a particular bifurcation structure: a big barfgrbation pointPsp.
This fractal bifurcations structure is of the so-called Xhwithin-a-box” type, associated to a bof#, where an infinite number of
bifurcation curves issues from. This analysis is done neakie of fold and flip bifurcation curves and symbolic dynaechniques.
The present paper is an original contribution in the frantéved the big bang bifurcation analysis for continuous maps.

Keywords: Weibull-Gompertz-Fréchet’s growth models, symbolic arics, kneading sequences, big bang bifurcation, fold &nd fl
bifurcation curves

This paper is dedicated to the memory of Professorfunction is widely used in several studies. Its application
José Sousa Ramos. is highlighted in gene expression, enzyme Kinetics,
oxygenation of hemoglobin, intensity of photosynthesis
and in the growth of organisms, cells, organs, tissues,
1 Introduction, preliminaries and motivation ~ tumours or populations, among other topics of
investigation, see for exampl@®][ [10], [30], [34], [35]
In the last decades, the study of growth models has beefi"d B7]-
one of the research topics of greatest relevance. Classical In [24], Rocha et al present a new dynamical
growth models such as the logistic, exponential,approach to Weibull-Gompertz-Fréchet’s growth models,
Gompertz, Richards, Von Bertalanffy and Blumberg defined by ordinary differential equations, whose
equations continue to be widely and frequently used withparticular solutions are extreme value distributions of
success to describe several demographic, economi&Veibull, Gompertz and Fréchet type. For more details in
ecological, biological and medical processes. In additionextreme value distribution see for examp®9|[ In that
to these types of models, we can consider all special casesork, the difference equations correspondent to
of the generalized logistic model and also of the Weibull-Gompertz-Fréchet's growth models are
Tsoularis-Wallace-Schaefer model, among other modelénterpreted as non-linear coupling of probabilities, whic
studied, see for exampld 3|, [14], [29], [3]], [36] and  determine Frechetzian, Gompertzian and Weibullzian
references therein. In particular, the Gompertzian growthdynamics, respectively. We remark that the dynamical
model was initially introduced as an actuarial function for study of these growth laws, defined as a family of
the study of aging processes. Nowadays, the Gompertanimodal maps, depends on two biological parameters:
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the intrinsic growth rate of the number of individuals or investigated the chaotic dynamics and the bifurcations
cells and the growth-retardation factor. This structure of Weibull-Gompertz-Fréchet's growth models.
characterization reflects the natural history of theThe purpose of this paper is to present an original

malignant tumour. contribution within the framework of growth models,
The growth models of Weibull type are defined by the simultaneously using techniques of symbolic dynamics
next normalized differential equation, and bifurcations theory.

din() 1 The plan of the work is as follows. In S@cwe
NG -1 consider Weibull-Gompertz-Fréchet's functions and gtud
= c fn(t) (—Inf(t a,witho<—<1, (1 ) . ) - .

dt N() ( N () o @) their dynamical behavior. These families of unimodal
. . . maps are proportional to the right hand side of Egs.

where f_N(t) is the n_ormahz_ed number or size of the andp 0, aspstgted in24. In Legr’nmal are preseﬁ?ed(

pc.)pulla}tlon _?L an arbitrary time> t and to > ?] IS an  gyfficient conditions for the occurrence of stability of the

Initia t|r(;1e.. ef paramet:; IS an II’EI’II’ISIC growth rate or gy eq noint, period doubling, chaos, chaotic semistability

a retardation factor andr Is a shape parameter or & 5,4 pop admissibility of Weibull-Gompertz-Fréchet's

growth-retardation factor. This model has light left tail

and finite right endpoint, see Figa). This ordinary dynamics, dependent on the variation of the intrinsic

. ; ; . . growth rate.
differential equation has a particular real solution, for In Sec3

¢ =1, which is defined by the Weibulla extreme value
distribution, i.e.,

using iteration theory and symbolic
dynamics techniques, the complex dynamical behavior of
these functions is developed and investigated. Such as in
() Sec?2, this different approach allowed us to identify
_Je ift<O : . . . .
fn(t) = : : several population dynamics regimes. This study is
1 ift>0 ; .
completely characterized by the symbolic sequences
On the other hand, in24 are also studied growth associated to the critical point itinerary. In Taldlean be

models of Fréchet type, which are established by the>€€n @ topological order for several symbolic sequences
normalized differential equation and their corresponding topological entropies, depending

on the variation of the growth-retardation factor and of

1 the intrinsic growth rate. See Appendix for details on
dfgt(t) = ¢ fu(t) (—~Infu ()@, with % >0. (2 symbolic dyngmics theory. i

Sec4 is devoted to the study of bifurcation structures

Laws in the extreme value Fréchet domain of attractionof Weibull-Gompertz-Fréchet's functions, in the
for maxima must have infinite right endpoint, and can betwo-dimensionala,r) parameter space. This analysis is
severely heavy-tailed. Its right tail is heavier than in the done in Subsed.1, based on the configurations of the
standard gaussian, which is in the Gumbel domain offold and flip bifurcation curves. In Subdc2we provide
attraction, see Fid(c). A particular real solution of and discuss conditions for the existence of a big bang
Eq.@), for c = 1, is given by the Frécheta extreme  bifurcation point for these families of continuous

value distribution, i.e., functions. Typically, the big bang bifurcations are stafdie
, in the context of piecewise-smooth discontinuous

fa(t) = {Ota _'ft <0 . dynamics. Moreover, this big bang bifurcation point is

€ ift>0 associated to the “box-within-a-box” fractal bifurcatton

structure. However, the sufficient conditions required by

In particular, when% — 0" in Egs.() and @) is  Mira in [17] for the existence of “box-within-a-box”
obtained the Gompertz growth model. This model hasfractal bifurcations structure are not satisfied for
been extensively studied and used for compare dynamicgveibull-Gompertz-Fréchet’s functions throughout a
of tumour growth in several host organisms, see forparameter region. For this reason we consider Conjecture
example 9], [10], [30], [37] and references therein. The 1 to prove Propositionl. In addition to the results
differential equations1) and @) can be considered as obtained by symbolic dynamics techniques in Seto
particular cases of the Hyper-Gompertz growth model,support our study in Se&. we present fold and flip
introduced by Turneet al in 1976, see 34] and [35.  bifurcations curves and a numerical simulation of the
These models are also seen as a generalization djifurcation diagram associated. Finally, in Sgcwe
ecological growth function, or simply generalized discuss our results and provide some relevant conclusions.
Gompertz function.

Presently, the study and treatment of tumors is one of

the most current and worrying problems in biological and .
medical research. In fact, the disease of cancer continu Dynamical approach to growth models of

to be the scourge of humanity; being a leading cause ofVeibull-Gompertz-Fréchet (WGF) type

early death, and resistant to therapies aimed at its

eradication. In this work, motivated by the interest and The aim of this section is to study a dynamical approach
relevance of the study of tumor growth models, weto  Weibull-Gompertz-Fréchet's  growth  models,

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2377-2388 (2015)www.naturalspublishing.com/Journals.asp

2379

1.0

f(x;r,l.‘Z)

(a) Weibull functions(a = 1.2)

1.0 T
f(x;r,2

(b) Gompertz functionga = 2)

1.0

(c) Fréchet functionga = 5)

r=1.68 r=2.71 f(x;r,5)
r=1 r=2.5 r=0.21
08 - |08 r=2. o8
—1. r=2.1
=12 r=2
0.6F r=1.1

0.4

0.2

L L
0.8 0.6 0.8 1.c

Fig. 1: Graphics of the Weibull-Gompertz-Fréchet's (WGF) fuons f (x;r,a) for several parameters values of the intrinsic growth
rate(r) and of the growth-retardation factoas): Weibull functions ato = 1.2 andr = 1.1,1.2,1.3,1.5,1.68; Gompertz functions at
a=2andr=2,2152325271 and Fréchet functions at=5 andr = 0.07,0.1,0.13 0.16,0.21. Remark that some values of the
intrinsic growth rates were chosen in order to illustragersults presented in Takle

verifies:
() S(f(x;r,a)) < 0,¥x € |x1,%[\{c}, with

S(f(xg;r,a)) =S(f(xg;r,a)) =0, Vi< a <2
(i) S(f(x;r,a)) < 0,vx € |x1,1[\{c}, with
S(f(xq;r,a)) =0, Va > 2.

where x is the normalized number of tumour cells or  Remark that in condition (i) ofA5) it is verified that
tumour size,r > 0 is an intrinsic growth rate of the S(f(x;r,a)) > 0, Vx € ]0,x;] U [%,1]. This constraints

number of cells (individual contribution), that cause problems that are analyzed in 8e@n the other
summarizes mutual inhibitions between cells and thehand, in condition (ii) of (A5) it is verified that

competition for nutrients, and it is sometimes viewed as as(f (x;r,a)) > 0, Vx € |0,x(]. In this case, if we restrict
retardation factor, and > 1 is a shape parameter, that is the WGF functions to the interval
sometimes called the growth-retardation factor.
Considering the particular solutions of the differential
equations given by Eqd) and @), we will say that: if  then this failure not disturb the dynamical behavior of this
1< a <2 thenf(xra) are Weibull's functions; if  family of functions, as usual unimodal maps. The
a = 2, thenf(x;r,a) are Gompertz's functions; and if negative Schwarzian derivative ensures a “good” dynamic
a > 2, thenf(x;r,a) are Fréchet's functions. We request pehavior of the models: continuity and monotonicity of
claim particular attention to the diversity and complexity topological entropy, order in the succession of
of these families of functions, which are exemplified in pifurcations, the existence of an upper limit to the number
Fig.1. of stable orbits and the non-existence of wandering

The WGF functions satisfies the following conditions: intervals, [L5] and [33]. See B2] to a topological
(A1) f(xr,a) is continuous of0, 1]; dynamics approach of unimodal maps. The unimodal
(A2) f(x:r,a) has a critical point € |0, 1], wherec = -9 maps theory has prqved to be gseful_ln_many branches of
(A3) f'(xr,a) £ 0,%x € ]0,2[\{c}, f'(c;r,a) = 0 and science. In popqlatlon Qynam|cs, aiming to modgl the

f(c;r,a) < O; growth of a certain species, the use'of these families has
(A4) f(x;r,a) € C3(]0,1]); been frequent. A similar approach is used Ht [23],

< TN . ; [24), [25], [26], [27] and [28].
(AS) the Schwarzian derivative dfixir. ) given by We note that the WGF functions only have one fixed
f7(xra) 3 (f(xra) 2 point, given by
(f/(x;r,a)) ’

ff(xra) 2

designated by Weibull-Gompertz-Fréchet’s functions,
which we will denote by WGF functions. This class of
unimodal maps were firstly defined i24]. Consider the
family of functionsf :]0,1] — [0, 1], defined by

fora)=rx (—Inx)9* (3)

[xl,max{ffl(yl;r,a)}] , with y; = f(xq;r,Q)

S(f(x;r,a)) = Ao — e_ru,o,)ﬂ 4
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The existence of this unique fixed point implies that thesethen]0, 1] is the basin of attraction &% .

growth models do not contemplate directly a region of

extinction, because < |0, 1] andx = 0 is not a fixed point
of the WGF functionsf. However, this issue is debatable

If 273a - 1)]F% <r < [e(a —1)]79, then the
fixed pointA; 4 is not linearly stable. In this case, it is
verified thatf (x;r,a) > x onx €]0,c] and f has no fixed

as we can see ir2fl], where is presented a regression or point at]0,c]. This implies that all the orbits of every
spontaneous extinction region that characterizes growtlx €]0,1[ enters on the intervaf?(c;r,a), f(c;r,a)], after
models of very small tumors, possibly unable to outwit a finite time of iterations. Ad’(x;r,a) < 0 onx €]c, 1],

immune surveillance.
The WGF functions also verify that,

lim f(x;r,a)=rx.
a—1t ( ’ )

(5)

In fact, when we consider the limit cage— 17, we have a

then f maps the interval [c, f(c;r,a)] into
[f2(c;r,a), f(c;r,a)]. On the other hand, considering that
f(x;r,a) > x on x €]0,c], then f maps the interval
[f2(c;r,a),c] into [f2(c;r,a), f(c;r,a)]. Thus,

f([f2(c;r,a), f(cra)]) C [fA(cra), f(cra)l,

degenerated case for this class of functions. This property

will be the subject of study in Set.

.e., the interva[ f2(c;r, a), f(c;r, )] is forward invariant

In the next result we provide sufficient conditions for with basin of attraction0, 1.

the occurrence of stability, period doubling, chaos and

Finally, if r = [e"*(a — 1)]*~9, or in an equivalent

non admissibility of WGF dynamics, dependent on theway, f(c;r,a) = 1, then there is am > 0 such that the

variation of the intrinsic growth rate. This result is
illustrated in Fig2, at the(a,r) parameter plane.

Lemma 1.Let f(x;r,a) be the WGF functions, defined by
Eq.@), with r > 0, a > 1 and satisfying Al) — (A5). It is
verified that:

(i) (Stability region of Aq) ifr < [27%(a —1)]*~9, then
there is a linearly stable fixed point.A € ]0,1[ whose
basin of attraction i0, 1];

(Period doubling and chaotic regions) if
271 (a - 12]1*" <r < [eYa - 1)), then the
interval [f4(c;r,a),f(c;r,a)] is forward invariant
with basin of attractior0, 1];

(iii) (Chaotic semistability curve) if = [e~1(a — 1)]*9,
then]0, 1] is invariant and verifies that

U f"(xra) =10,1]

n>0

(ii)

and
lim
n—oo

for Lebesgue almost everyef0, 1].

1
ﬁ|Df”(x;r,ar)| >0,

Proof. If r < [27Y(a — 1)]*~% and considering that by
definitionr > 0, Eq.Q), then|f'(A.q;r, a)| < 1. Thus, the
fixed pointArq, given by Eq.4), is linearly stable. By
Modified Singer’'s Theorem, se83], the pointA, 4 is the
only linearly stable fixed point if0, 1| and the immediate
basin of A, 4 includes the orbit of the critical point.
Thus, the interval[c, f(c;r,a)] is contained in the
immediate basin of 4. As the pointAr 4 is the only
fixed point in]0,1], this implies thatf(x;r,a) > x on
10,Ar o[- Thus, the interval0, f(c;r,a)] is also contained
in the basin of attraction of . Considering that the
WGF functions f map the interval[f(c;r,a),1] into
10, f2(c;r,a)] and

10, f2(c;r,a)] €]O, f(c;r, )],

maximum size growth of the population is equal to the
critical density. Clearly, the fixed poim 4 is linearly
unstable. Since it is verified thaf’(x;r,a) > 0 on

x €]0,c[, the WGF functions f maps ]0,c| into
10,f(c;r,a)]. Also, since f'(x;r,a) < 0 on

x €lc, f(cr,a)] and f(c;r,a) = 1, f maps|c, f(c;r,a)]
into [0,1]. Hence,]0,1] is invariant, which is called
invariant absorbing segment of level one, s&§.[ To
show that this interval admits complex dynamics it
suffices to check the conditions for which the WGF
functions f on ]0,1] admits an ergodic absolutely

continuous invariant measure, see the theorem presented

in [19]. In fact, the WGF functions satisfyAl) — (A5)
conditions. Also, it is verified thatf?(c;r,a) = 0 and
f(0;r,a) is not defined, then it follows that"(c;r, a) is
not defined forn > 2. Thus, f"(c;r,a) # ¢, ¥n > 2.
Considering that,

lim f'(xr,a) >1 and f?(c;r,a) =0,

x—0F
the Modified Singer Theorem38], implies that the WGF
functions on0, 1] has no attracting periodic points. Thus,
from the theorem presented by Misiurewicz 9] and
Birkhoff’s Ergodic Theorem follows the properties(af ).

We note that similar results to Lemmaare obtained
to Blumberg’s, Richards’ and von Bertalanffy’s growth
models, in 6], [27] and 28], respectively.

Remark.Note that for WGF functiond (x;r,a), whenr
varies monotonically in the intervaD, r[, wherer is such
thatf(c;r, o) =1, there exist a fixed poir; 4 such that its
multiplier (A\ = f’ calculated at the fixed point) decreases
monotonically from+1, and a fixed point witlA which
increases monotonically from1.

Fig.2 shows the bifurcation diagram of WGF
functions f(x;r,a), at (a,r) € ]0,5/x]0,3] parameter
plane. The white region is the spontaneous extinction
region, see RemarB of Sec3. The blue region is the
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done based on symbolic dynamics techniques, see the
Appendix for more details. The complexity of these
models, described by the WGF functions, is displayed as
a function at the(a,r) parameter plane. Different
population dynamics regimes are identified, when the
intrinsic growth rater and the shape parameter or the
growth-retardation phenomenaa are maodified.
Generically, the dynamics of the WGF functions
f(x;r,a), at the two-dimensiondla,r) parameter space,
split in the following categories: stability, period
doubling, chaos, chaotic semistability and non
admissibility.

From the point of view of the population dynamics, a
behavior of stability is defined when a population persists
for intermediate initial densities and otherwise goes
extinct. Theper capitagrowth rate of the population is
greater than one for a subinterval of population densities,
see P3|, [24], [25 and [31]. On the other hand, the
Fig. 2: Bifurcation diagram of WGF functions in théa,r) symbolic dynamics techniques prove to be a good
parameter plane. The white region is the spontaneous &rtinc  alternative to determine an approximation to the stability
region, see Remark3 of Sec3. The blue region is the region. Generically, in thga,r) parameter plane, the
stability region. The region between the blue and the graystability region is characterized by the iterates of the
ones corresponds to period doubling region and chaotiomegi critical point that are always attracted to the positivedixe
(existence region of cycles as shown on top of figure). Thg gra point A4, given by Eq.4). The case wherd\ 4 = ¢

region is the non admissible region. corresponds to the superstability, the poiat, is super
stable or super attractive when it is merging withThus,
we have,

lim f"(c;r,a) =Aq, for 0<r(a) <f(a)
stability region of the fixed poird o, stated in Lemma n-—reo

(1), thatis upper bounded by the curve wherer{a) represents the super stable curve of the cycle

. - - of order 2, given in implicit form byf?(c;r,a) = c. Note

fla) =27 a -1 ©) that the curg\J/er (a)is d?stinct from )t{\e( curve)z(”a), given
The region between the blue and the gray onesPy Ed.6), as stated in Lemmiaygi).
corresponds to period doubling region and chaotic region, Inthe(a,r) parameter plane, the set of the super stable
also stated in Lemma (ii). The period doubling regionis  Or super attractive points defines the super stable curves of
well evidenced, highlighting in particular the cycles of the cycle of orden = 1. In the region before reaching the

order 2 and 4. The chaotic region is upper bounded by thsuper stable curve, the symbolic sequences associated to
curve the critical points orbits are of the tyg@L™. After this

ra)= [e—l(a — 1)]1—0', (7) super stable curve, the symbolic sequences are of the type

. . . CR”, see Tabld. In this parameter region, the topological
as stated in Lemma(iii ). This curve separates the chaotic ntropy off (x:, a) is null, see for examplelp], [16], [24]
region and the non admissible region; itis also designatedy,q pg), v ' B

by semi-stability curve, see als8]]. The gray region is

the no admissible region. At this region the graphic of anyremark.For some applications of these models, such as

WGF function is no longer totally in the invariant $8f1]. tumor growths, it is convenient to consider in the stability

Almost all trajectories off (beasides a hyperbolic set of region a subregion designated by spontaneous extinction

zero measure) leave the interval1] and either escape or tumour regression region, se@4]. This region is

to infinity. The maps under these conditions are not goottharacterized by growths models of very small tumours,

models for tumor or population dynamics. The cum@s)”  possibly unable to outwit immune surveillance. In this

andr(a) are bifurcations curves and are studied in detailyegion, the iterates of the WGF functiorigx;r,a) are

on Sec4. always attracted to a fixed poing sufficiently close to
zero, witha > 1 and

3 Symbolic Dynamics of WGF functions 0<r(a)<ri(a)=(—In(x))*°.

This section is also devoted to the study of the dynamicaln this context, the concept of the fixed poinxg
behavior of the proposed models. However, this study is‘sufficiently close to zero” must be related to the
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Table 1: Topological order: symbolic sequences or kneading seseasociated te-periodic orbit of the critical point, the growth-
retardation factor atr = 1.01,1.021.05,1.1,1.2,1.6,2,3.5,5, and topological entropyh{op(f)) for several values of the intrinsic
growth rate £). Figs1 and4 illustrate graphics of the WGF functions correspondingaims values considered in this table.

k | S0 a=101]a=102] a=105| a=11]a=12 | a=16 | a=2 [a=35]a=5 | hop

2 | CR" 1.05550 | 1.09875 | 1.20879 | 1.36334 | 1.61809 | 2.1914 | 2.2184 | 0.7417 | 0.0946 | 0.000
4 | (CRLR® 1.05648 | 1.10079 | 1.21442 | 1.37606 | 1.64842 | 2.3170 | 2.4342 | 0.9355 | 0.1371| 0.000
8 | (CRLRLR)® | 1.05667 | 1.10119 | 1.21551 | 1.37853| 1.65436 | 2.3421 | 2.4784 | 0.9786 | 0.1474 | 0.000
6 | (CRLF)® 1.05728 | 1.10169 | 1.21690 | 1.38168 | 1.66193| 2.3744 | 2.5356 | 1.0360 | 0.1614 | 0.241
8 | (CRLR)® 1.05728 | 1.10194 | 1.21758 | 1.38323| 1.66565 | 2.3904 | 2.5641 | 1.0654 | 0.1688 | 0.304
5 | (CRLR)® 1.05728 | 1.10245 | 1.21900 | 1.38646 | 1.67344 | 2.4241 | 2.6246 | 1.1294 | 0.1853 | 0.414
3 | (CRD® 1.05747 | 1.10285 | 1.22011 | 1.38899 | 1.67956 | 2.4508 | 2.6730 | 1.1821 | 0.1994 | 0.481
6 | (CRLZRL)® 1.05748 | 1.10288 | 1.22019 | 1.38916 | 1.67997 | 2.4526 | 2.6763 | 1.1858 | 0.2004 | 0.481
5 | (CRLZR)® 1.05758 | 1.10308 | 1.22074 | 1.39042 | 1.68302 | 2.4660 | 2.7007 | 1.2130 | 0.2078 | 0.544
7 | (CRIZR3)® 1.05760 | 1.10323 | 1.22087 | 1.39071 | 1.68372| 2.4691 | 2.7062 | 1.2192 | 0.2095 | 0.562
8 | (CRIR2LR)® | 1.05763 | 1.10317 | 1.22106 | 1.39114 | 1.68458 | 2.4728 | 2.7132 | 1.2270 | 0.2117 | 0.591
® | CRL® 1.05765 | 1.10322 | 1.22114 | 1.39133| 1.68520 | 2.4756 | 2.7182 | 1.2328 | 0.2133| In2

specificity of the tumours growths investigation and in this region also have null topological entropy, see for
clinical therapy. Thus, the spontaneous extinction regionexample 12], [16], [24] and [25].
illustrated in Fig2 is upper bounded by the curve(a), In the chaotic region, the symbolic dynamics is
considering X = 108 The symbolic sequences characterized by iterates of the WGF functioi{s;r, )
associated to the critical point orbits of these maps are othat originate orbits of several types, which already
the type CL”, an aperiodic orbit, and its topological present patterns of chaotic behavior, as stated in Lefhma
entropy keeps null. In Fig.are presented graphics of the (ii). In this region the topological entropy is a
WGF functionsf(x;r,a) at a = 1.01 andr = 0.9 and  non-decreasing function related to the parametemtil
r = 0.5, which illustrate this special case. reaches the maximum value In 2, s&&|[ This result is a
consequence of the negative Schwartzian derivative and is
observed for some parameter values in the last column of
The period doubling region corresponds to the Tablel. In the(a,r) parameter plane, the chaotic region
parameters values in te,r) parameter plane, to which is bounded below by the curve of the intrinsic growth rate
the population size oscillates asymptotically betweBn 2 values where the chaos starts, as discussed i#.SHue
states, witm € N. A cascade of sudden changes provokesupper limit is the curve of the intrinsic growth rate values
the oscillation of the (two possible) values of population for which the chaotic semi-stability curve appears.
size in several limit cycles of period"2 In period In the chaotic semistability curve the dynamical
doubling cascade, the symbolic sequences correspondirfaghavior of the WGF function$(x;r,a) is chaotic and
to the iterates of the critical point are determined by thethis curve is defined by(c;r,a) = 1, given by Eq.{) and
iterationsfzn(c; r,a) = ¢, with ¢ the critical point of stated in Lemmal (iii). The symbolic sequence
f(x;r,a). Analytically, these equations define the associated to the chaotic semistability curve is of the type
super-stability curves of the cycle of ordef.2n the = CRL”, with topological entropy In2, see Table After
(a,r) parameter plane, the period doubling region isthe chaotic region we have a non admissible region. In
bounded below by the curve of the intrinsic growth rate this case, there is no essential extinction region as in the
values where the period doubling stantéq J, given by  cases of existence of Allee effect, s@3][and [26]. The
Eq.(), correspondent to the 2-period symbolic sequencesion admissible region includes the values of the
(CR)®, see Tabld. Usually, the upper limit of this region parameters for which the intrinsic growth rates
is determined using values of intrinsic growth rater), r(a) > r(a), see Eq.X) and Fig2. The graphic of any
corresponding to the first symbolic sequence with nonWGF function is no longer totally in the invariant set
null topological entropy. Commonly, in the numerical |0,1]. The maps under these conditions not already belong
results, the symbolic sequence that identifies theto the studied families of the WGF functions and are not
beginning of chaos i§CRLF)”, a 6-periodic orbit, see good models for populations dynamics.
Table 1, [24] and [25. However, can be identified Table 1 illustrate the application of the iteration
symbolic sequences whose period is less in Sharkovsky’theory and the symbolic dynamics techniques to the WGF
ordering, see 32|, for example the 10-periodic orbit functions. In this table can be seen a topological order for
(CRLF?LRLR)‘”. We remark that the symbolic dynamics several symbolic sequences and their corresponding
techniqgues to determine this upper limit is an topological entropies, depending on the variation of the
approximation as good as we want. The unimodal mapgrowth-retardation factora() and of the intrinsic growth
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rate ). From these numerical results, it was concluded
that exists a monotonicity of the topological entropy and
isentropic curves. This results are also verified in others|
growth models, see for examp4] and [25].

Remark. The numerical values obtained allow us to
establish that wheo — 17" it is verified thatr — 1+, The
symbolic sequences follow the usual unimodal kneading
sequences in the topological ordered tree, 44 [21]

and R2]. Thus, depending on the properties of the WGF
functions in a neighborhood of the point
(o — 17r — 1%), which we will denote byPsg, there
exist an order regarding how the infinite number of
periodic orbits are born: the Sharkovsky ordering][
See p] for the discontinuous case. On the other hand, the
numerical results obtained via the symbolic dynamics are

in agreement with the results given by E).(This  Fig. 3: Bifurcation curves of WGF functions in théa,r)
special behavior in the neighborhood of the pd#g, in parameter planel;, Ay, Az, A4 andAs are the flip bifurcation
the (a,r) parameter plane, is the motivation for the study curves of the cycles of order= 1,2,3,4,5, respectively/Ana is
presented in the next section: a global fractal bifurcationthe bifurcation curve of non admissibility (chaotic serakstity
organization generated by the WGF functions. curve) andPgg is the big bang bifurcation point.

4 Bifurcation structures of WGF functions

The study of bifurcations is made to investigate behaviorsOn the other hand, the flip bifurcation corresponds to the
of the system on the parameter plane in order to knowchange of stability of an ordercycle and the appearance
which cycles are observed to the variation of parametersof an order 2 cycle. Before the bifurcation, the ordar

In Subsed.1 we recall bneﬂy some fundamental CyC|e IS Stable, after the b|furcat|0n, the C.)I‘decy.de '|S.
definitions in bifurcation theory' we will emp'oy the unstable and thechyC|e is stable. At the bifurcation it is

classical fold and flip bifurcations. For more details on Verified that,

bifurcation theory see for examplé&][ [17] and [18]. In ofn
Subseect.2 another kind of bifurcation point is evidenced ——(xj;r,0)=-1, Vj=1,2...,n.
for WGF functions, in the two-dimensionala,r) Ox

parameter space. This point is called big-bang bifurcation
point and is associated with a particular bifurcation

structure. Subset.2 is devoted to the study of this . es relative to a cycle of order are determined as

special type of bifurcation, where we provide and disCusso o, If x e ]0,1[ is a point of an orden cycle that
sufficient conditions for the existence of a big bang gaiisfies the equé\tions

bifurcation point for WGF functions.

Generically, to WGF functions (x;r,a), defined by
Eq.@), withr > 0 anda > 1, the fold and flip bifurcation

n

f(x;r,a) =x and %(x;r,a)zl (8)
4.1 Fold and flip bifurcations of WGF functions _ _
then there exists a solutiog,, such that the fold

In this section we investigate in detail the bifurcation Pifurcation curves relative to a cycle of order N are
structure of the WGF functions, in the two-dimensional 9IV€N byr = ¢n(x ), and are denoted b, On the
(a,r) parameter space. We say that an ordecycle  Otherhand, ik € ]0,1[is such that,

(X1,X2,...,Xn) is stable (or attractive) iff n

f(x;r,a) =x and %(x; ra)=-1 )

——(Xj;r,a)

1, Vi=12,.n
0X < 7VJ &= 7n

ldf"

then exists a solution,, such that the flip bifurcation
curves relative to a cycle of ordere N are given by

Thefold bifurcation corresponds to the appearance of two " Wn(x @), and are denoted b, see some examples

ordern cycles, one stable and the other unstable, when i{

is verified nFig.3.

s veriie In particular, to WGF functions (x;r,a), defined by
afn . Eq.@), with r > 0 anda > 1, the fold bifurcation curve
W(XJ;LG) =1 Vvj=12..n of the fixed point4 4, corresponding to EcBJ for n= 1,
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has no meaning at ther, r) parameter plane. Reason why On the other hand, given the flip bifurcation curve for
for these models does not exist an extinction region. Noten = 1, Eq.(0), consideringa — 1t and vr > 0, the
that the fold bifurcation CUIVA 1), is the bifurcation curve  bifurcation curve/; verifies
which defines the transition between the extinction region
and the stability region, see als2d and [26]. lim ga(xa)= lim 27} a -1 =1",

On the other hand, the flip bifurcation curvé, a1 a—1r

correspondent to E@)(for n =1, i.e., the flip bifurcation  and consequently, we obtain the following value for the
curve of the nonzero stable fixed polky, is defined by respective fixed point

(1-a)1

x=e" and gr(xa) =2 Y(a -1 (10) im fim e —1,

. . . ] . . r—1ta—1t
Note that the flip bifurcation curvd; is the bifurcation

curve which defines the transition between the stability This means that, in this limit case, the flip bifurcation arv
region and the period doubling region, such as established1 and the chaotic semi-stability curviya intersect on
in Lemmal (i) and Eq.6). In Fig:3 is presented in detail the pointhgg = (a — 17,r — 17), as we wished to prove.
some flip bifurcation curves for the WGF functions. See also Fi@.

So, the period doubling region is bounded below by the
flip bifurcation curve/,, of the stable fixed poir&, . The

upper limit of this region is defined by the accumulation 4.2 Big bang bifurcation of WGF functions
value of the flip bifurcation curves of the cycle of order

2", of the stable fixed points nonzero, séd][and [18.  Big bang bifurcations occur typically in the context of
This bifurcation curve is denoted b, from Eq.Q) and  piecewise-smooth discontinuous dynamics, whenever two
considering € ]0,1[ a fixed point, we have, fixed points cross simultaneously the boundary and

become virtual. These kinds of bifurcation points are
evidenced in the two-dimensional parameter space,

) o . characterizing particular regions always associated with
The chaotic region is upper bounded by the chaoticycles of different periods. At our knowledge, this
semistability curve or fullshift curve, as stated in Lemma pifreation point was identified for the first time ig][

1 (i) and EQ.7). This bifurcation curve is denoted by ptthe designation of “big bang” was not given. B t

/naand is given by was proposed that these specific bifurcations be
_ 2. £/ _ designated as big bang bifurcations. For more details
Ma={(a.r) €R*: f(era) =1} about big bang bifurcations see for exam®g [4] [5],
. 2. a1 1—a [8] and references therein. In the cited references it was
= {(a.n eR?:r=(a).¢(a) = [eH(a—1) 11}' shown that there are several types of big bang
. , . (11) . bifurcations, which cause different kinds of bifurcation
Note that this curve defines the transition from the ChaOt'Cscenarios We remark that 26| are given sufficient
region to the non admissible region, see E'.g' . conditions for the occurrence of big bang bifurcations for
In order to discuss the new kind of bifurcations for

. ; : X a class of continuous maps: Blumberg’s functions.
WGF f.unctlon.s, In the next section, the big bang As previously indicated in Sez,.the WGF functions
bifurcation point in the (a,r) parameter plane, the

following property is needed f(x;r,o) satisfy the conditiongAl) — (A5) and Remark

' 2. In particular, it is also verified thaf (x;r,a) are
Property 1.Let f(x;r,a) be the WGF functions, defined continuous with respect to the paramater 0. However,
by Eq.@), with a > 1,r > 0 and satisfying A1) — (A5), as noted |n§|) of.(AS), the Schwaman derivative of the
A1 be the flip bifurcation curve fon = 1, given by ~WGF functions is not negative throughout the interval
r = yu(xa), EQ.(0), and Aya be the semi-stability ]0,1], for the parameters values<l a < 2. See some
curve, given by = Z(a), Eq.(L1). In the limit case, when ~€xamples of graphics of the WGF functiorf¢x;r, a)
a — 17, it is verified that the flip bifurcation curvd; ~ under these conditions at Fg.As is known in other
and the chaotic semi-stability curviaa converge to the  studies, this disturbance alters some of the classical
bifurcation pointPsg = (o — 17, r — 17). properties in the behavior of bifurcations, see for example

[26] and [32. These special characteristics lead us to

Proof. Considering the limit case, whea — 1* and  predict some changes in bifurcation structure of the WGF
vr > 0, in the equation that defines the chaotic functions, restricted to the parameter region
semistability curve\ya, given by Eq.L1), one has

lim Z(a) = e Ya -1t =1".

lim
a—1t a—1t

Neo = Alnm Won (X ).

R={(a,r)eR*:1<a<2r>0}.

Thus, the sufficient conditions required by Mira in
Thus, the convergence of the bifurcation cu\g to the [17] for the existence of “box-within-a-box” fractal
bifurcation pointPsg = (a — 17, r — 17) follows. bifurcations structure are not satisfied for WFG functions,
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Fig. 4: Graphics of the WGF functionsf(x;r,a) at the
degenerated case far= 1.01 andr = 2.5,1.05,1.0050.9,0.5.

(A1) — (A5), A(n), be the fold bifurcation curves, given by
r = ¢n(Xx; a), Eq.@), andA, be the flip bifurcation curves,
given byr = yn(x;a), Eq.©), with all bifurcation curves
relative to a cycle of ordem € N. In the limit case, when
a — 17, it is verified that the fold bifurcation curves
Ay, for n> 1, and the flip bifurcation curved, for

n > 1, intersect on the bifurcation point
Psg = (a0 — 1Tr — 1%), following the
“box-within-a-box” fractal bifurcations structure in the
bOX.Ql.

Proposition 1. Let f(x;r,a) be the WGF functions,
defined by Eqg3), with a > 1, r > 0 and satisfying
(A1) — (A5), An), be the fold bifurcation curves, given by
r=¢n(x a), Eq.@), andA, be the flip bifurcation curves,
given by r= Ynh(x o), EQ.©), with all bifurcation curves
relative to a cycle of order re N. If Conjecturel is
satisfied, then it is verified that in the limit case, when
a — 1%, the point Bg = (o — 17,r — 17) is a big bang
bifurcation point for WGF functions(k;r,a), from which
the fold bifurcation curves\y,,, for n > 1, the flip
bifurcation curvesA,, for n > 1, and the chaotic
semi-stability curve Aya are issuing, following the
“box-within-a-box” fractal bifurcations structure in the

Remark that some values of the intrinsic growth rates wereboxQ;.

chosen in order to illustrate the results presented in Thble

restricted toR. The fractal “box-within-a-box” structure
concerns all types of smooth unimodal maps, with
correctly chosen parameter variation.

Proof.From Eq.4), the WGF functiond (x;r, a) have one
fixed point given by,

Ay — e,r<1—a>*1
a — :

If a — 17, for eachr > O fixed, it is verified that,

(13)

lim f(x;r,a) =rx.
a—1+t ( ’ )

(14)

Nevertheless, an interval of existence of an attractive

limit set at a finite distance can be defined by,
Q; = [0,r;], wherer; =Z(a), vr > 0 andva > 1, (12)

with r] given by Eq.(1). This set is called bo, inside
which occurs all the possible bifurcations of the WGF
functions. We note that the first real positive bifurcation
value is obtained for! = ¢x(x; a), given by Eq.10), and
that the value of fold bifurcation fan = 1 is real negative,
see Fig3. Considering the restriction to the parameter
regionR, the bifurcation curves are limited inferiorly by
the flip bifurcation curve\; and superiorly by the chaotic
semi-stability curve’\ya. However, we can not omit the
restrictions caused hfy) of (A5), which are also reflected
in definitions given by EQ12. Remark that this

Thus, whenor — 17 andr — 17, from Egs.(3) and (4)
the WGF functions are a degenerated case defined by,

fxr =170 - 1%) =x,

and the fixed poin#, 4 converges tox = 1. In this limit
case, the dynamics cannot escape from the intéya)
(besides a hyperbolic set of zero measure), seedFig.
These conditions are sufficient to state the existence of
the big bang bifurcation poirfisg = (a — 1+,r — 17).
Therefore, from Conjecturé and Propertyl the desired
result follows.

So, in the studied parameters regiRnve have a big

bang bifurcation poinPsg with the “box-within-a-box”
fractal bifurcations structure, associated to the b&xe

constraint does not exist far > 2, see also6. where an infinite number of bifurcation curves issue from.

From the above -considerations, the bifurcation Now, we are ready to formulate the concept of big bang
analysis made (from fold and flip bifurcations curves, bifurcation point for the WGF functions, described and
Fig.3, and numerical simulations of the bifurcation characterized on the previous results.

diagram, Fig2) and the behavior of the symbolic - i . )
sequences associated to parameters variation, Tabie Eyefén(;t'g)n 3\/} tlﬁe(; fﬁx,lr, ?)> b(;a ;23 Zﬁ;;ﬁq';gi;‘s_ ?:g;ned

Remark3, allow us to formalize the following conjecture: The point Bg — (@ — 1+.r — 17) is the big bang

bifurcation point of the WGF functions, with a fractal

Conjecture 1. Let f(x;r,a) be the WGF functions, I
structure of “box-within-a-box” type.

defined by EqJ), with 1 < a < 2, r > 0 and satisfying
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5 Conclusions and discussion Consider for each value of the parametes 0, the
orbit of the critical point = e*~%, with a > 1, is given by

The present work is an original contribution to the

knowledge of the dynamical behavior of the class of Or(c) = {XkZXkZ tkcr,a), keNo} (15)

WGF’s continuous functions, which can be used in the

study of tumor growth models. Moreover, we investigated yefined by an iterative process, where

and characterized the bifurcation structure of the WGF

functions: the big bang bifurcation point of the so-called x = f¥(c;r,a) = f¥(x_1;r,a).

“box-within-a-box” type occurs, in the two-dimensional

(a,r) parameter space. The existence of this particularThus, for each value of the intrinsic growth rate is

type of bifurcation is evidenced through the use of considered the orbit of the number of cells when the

symbolic dynamics techniques and bifurcation theory.growth rate is maximum. In order to study the topological

However, such as analyzed in Subde2.and also in  properties of these orbits, we associate to each Oxlfit)

paper R€], the presence of big bang bifurcation points is a sequence of symbols, corresponding to the critical point

associated with loss of negative Schwarzian derivative. jtinerary, denoted byS" = §’s"’s” .. .g" ... with

It is still an open question for which class of maps )
similar results can be obtained. However, it is well known k € No, WhereS(k belqngs to the alphabet = {L.C,R},
that the big bang bifurcations occur in the context of with each symbol defined by

piecewise-smooth discontinuous dynamics, whenever two L if fkcr,a) <c
fixed points cross simultaneously the boundary and

become virtual, see3], [4], [5], [8] and references D_)cif fcra)=c.
therein. Surely in the sequence of the pap28],[ this Sﬁ (cra)
work is also a new contribution in the big bang Rif fX(c;r,a) > ¢

bifurcation analysis for continuous maps. It can be
expected, that the phenomena of big bang bifurcations for  Note that the alphabet is an ordered set of symbols,
continuous-defined one-dimensional maps is directlycorresponding to the intervals of monotonicity and to the
related to the derivative, at a fixed point or in its critical point of the WGF function$(x;r,a). The real line
pre-image, not be defined. order induces naturally an order relation in the alphabet
</, soL < C < R. The space of all symbolic sequences of
the alphabet? is denoted byN.
Acknowledgment The expansive maps admit Markov partitions, whose
existence is implicit in the works of Bowen and Ruelle. In
Research partially sponsored by national funds throughhis study, we consider the existence of Markov partitions,
the Fundacdo Nacional para a Ciéncia e Tecnologiawhich are characterized by the orbit of the critical point
Portugal-FCT, under the project PEst-OE/MAT/UI0006/ of the functionf(x;r,a), see for example22]. Consider
2014, CEAUL and ISEL. the set of points corresponding to theperiodic orbit or
kneading sequence of the critical point

$0 - €Sy e

This set of points determines the Markov partition of the
interval | = [f2(c;r,a), f(c;r,a)] in a finite number of
subintervals, denoted by? = {li,ls,...,lk_1}. The
Appendix: Symbolic dynamics dynamics of the WGF functiong(x;r,a) are completely
characterized by the symbolic sequelse associated to
Symbolic dynamics is a research topic of discretethe critical point itinerary. The WGF function(x;r, o)
dynamical systems which has been widely investigated byand the Markov partitions associated induce subshifts of
Professor Sousa Ramos, by his research group anfinite type whose Markov transition matrices
collaborators. This theory is composed by a set of resultsA = [a;j], (k— 1) x (k— 1), are defined by
methods and techniques, which have a primordial role in
the study of qualitative and quantitative properties of L ifint(Ij) C f(int(li);r,a)
discrete dynamical systems. The topological complexity ajj = (16)
of a dynamical system is usually measured by its
topological entropy. This numerical and topological
invariant is associated to the growth rate of the severalsually, the subshift is denoted §¥ ,0), whereo is a
states of dynamical systems. For more details on thesshift map in;{il defined byo (§S...) = $S3..., with
topics see for examplel]], [12], [15], [16], [2]], [22], Sk-1=1{1,...,k—1} corresponding to thie— 1 subshifts
[32] and references therein. states.

0, otherwise
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