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Abstract: In this paper, the thin film flow of a power law MHD fluid on a vertical cylinder for a drainage problem has been studied.
The nonlinear differential equation has been derived from the momentum equation by Jeffrey’s approach. Series solutions have been
obtained for velocity, flow rate and thickness of the fluid film by Perturbationmethod. The graphical results for velocity profile and
thickness of the film are discussed and examined for different parameters of interest. Without MHD our problem reduces to well known
Newtonian and power law problem.
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1 Introduction

Especially in materials processing, chemical industry and
biotechnology: In recent years, the flow of
non-Newtonian fluid has gained attention due to its
application in various fields of science, engineering and
technology. It is a fact that the characteristics of
non-Newtonian fluid to flow quite different from the
linear viscous fluid. Thus, the well-known Navier-Stokes
equations are not suitable for describing the behavior of
non-Newtonian fluids. Just as linear viscous liquid, it is
difficult to find a single model that has all the properties
recommend the non-Newtonian fluids. Therefore, many
models have been suggested to characterize the behavior
of non-Newtonian fluid [1,4].
In the category of non-Newtonian fluids the power law
model have been extensively studied because of
mathematical simplicity and widespread industrial
applications. During the last four decades significant
progress has been made in the development of analytical
solution and numerical algorithms of power law fluid flow
problems [5,8].
In our previous work we discussed the theoretical study
of steady flow for lift and drainage of Power law MHD
fluid on a vertical cylinder. The derived governing

nonlinear differential equation has then solved using
Perturbation method [9]. Our main focus in this work is
the study of thin film flow for a non-Newtonian fluid with
MHD fluid properties. In a thin film flow, the fluid is
partially bounded by a solid wall while the other surface
is free to interact with another fluid, e.g., air. There are
three main conditions which form basis for the
formulation of thin films, namely, surface tension,
centrifugal forces and gravitational forces. The analysis
of thin film flow is important for designing chemical
processing equipment. Probably the most striking daily
life examples are rain water running down along a
window and the flow of a paint down a wall. Study of thin
film flows have established significant interest because of
its realistic applications in physical and biological
sciences [10,11]. There are many engineering
applications where thin film flow shows the viscoelastic
effects and MHD was originally applied to astrophysical
and geophysical problems, where it is still very important,
but more recently to the problem of fusion power, where
the application is the creation and containment of hot
plasmas by electromagnetic forces, since material walls
would be destroyed. Astrophysical problems include solar
structure, especially in the outer layers, the solar wind
bathing the earth and other planets, and interstellar
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magnetic fields. The primary geophysical problem is
planetary magnetism, produced by currents deep in the
planet, a problem that has not been solved to any degree
of satisfaction.
In this paper, we investigate the thin film flow down a
vertical cylinder of a power law MHD fluid using
Jeffrey’s approach [12,16] for drainage problem, two
cases are discussed, namely, Newtonian and
non-Newtonian fluid respectively. In Newtonian case we
find the exact solution while in power law series solution
is obtained. To the best of our knowledge the analytical
solution has not been reported elsewhere.

This letter is organized as follows. Section 2 contains
the governing equation of power law fluid model. In
section 3 the problem under consideration is formulated,
section 4 is reserved for the solution of the problem and
section 5 results and discussion. In Section 6 concluding
remarks are given.

2 Basic Equations

The basic equations, governing the flow of
incompressible power law MHD fluid neglecting the
thermal effects, are:

∇.V = 0. (1)

ρ
DV
Dt

= ρf−∇p+divS+(J×B), (2)

wheref is the body force,p is the dynamic pressure,S is
the extra stress tensor. The termDV

Dt denotes the
substantial acceleration consisting of the local derivative
∂V
∂ t and the convective derivative∇.V andJ is the electric
current density, B is the total magnetic field and
B = B0 + b (whereB0 represents the imposed magnetic
field and b denotes the induced magnetic field). In the
absence of displacement currents, the modified Ohm’s
law and Maxwell’s equations [17,20] are,

J = σ [E+V×B]. (3)

divB = 0, ∇×B = µmJ, curlE =−
∂B
∂ t

. (4)

Whereσ is the electrical conductivity, the electric field is
E and magnetic permeability isµm. By Ohm’s law, and
Maxwell’s equations for the development of the magnetic
flux B can be easily obtained. This is known as the
magnetic induction equation to induce the movement of
the electrically conductive fluid applied magnetic fields, a
magnetic field is in a medium. We assume that the total
magnetic fieldB is perpendicular to the velocity fieldV
and the induced magnetic fieldb is negligible as
compared to the applied magnetic fieldB0. In a small
magnetic Reynolds number Since there is no external
electrical field is used, and the polarization is negligible
ionized fluid is the fluid flow to be independent of the

electric field. Under this condition, the
magneto-hydrodynamic force in Equation (2) can be put
into the form,

J×B =−σB2
0V. (5)

As discussed in [5,8], the stress tensor defining a power
law fluid is given by:

S = µe f fA1, (6)

µe f f = η

∣

∣

∣

∣

∣

∣

√

tr(A1
2)

2

∣

∣

∣

∣

∣

∣

n−1

, (7)

and whereη is the coefficient of viscosity andn is the
Power law index. The Rivilin-Ericksen tensor,A1 is
defined by:

A1 = ∇V+(∇V)T . (8)

Remark: On behalf of consequent model forn < 1 the
fluid is ”pseudoplastic” for model or ”shear thinning” for
n> 1 the fluid is ”dilatant” or ”shear-thickening” and for
n= 1 the Newtonian fluid is recovered.

3 Problem Formulation

Consider unsteady, laminar and parallel flow of an
incompressible Power law MHD fluid slowly down an
infinite vertical cylinder. As a result, a thin fluid film of
thicknessh which varies with time adheres to the cylinder
and drains down under the action of gravity. The
geometry of the problem down figure 6.1 shows thatrz−
coordinate system has been chosen such thatr − axis is
normal to the cylinder andz− axis along the cylinder in
downward direction. For simplicity, we assume that the
fluid is non-conducting and the magnetic field is applied
along ther − axis, there is no applied (force) pressure
driving the flow and body force is only due to gravity.
Here we shall pursue a velocity field and a stress field of
the form:

V = [0,0,w(r, t)] , S = S(r, t). (9)

Using equation (9), the continuity equation (1) is
identically satisfied and by using equation (5) the
momentum equation (2) reduces to,
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Fig.1. Geometry of the thin film flow downward to a
vertical cylinder

r-component

0=−
∂ p
∂ r

, (10)

θ -component

0 =−
∂ p
∂θ

, (11)

z-component

ρ
∂w
∂ t

+
∂ p
∂z

=
η
r

∂
∂ r

(

r

∣

∣

∣

∣

∂w
∂ r

∣

∣

∣

∣

n−1 ∂w
∂ r

)

+ρg−σB2
0w(r).

(12)
Equations (10) and (11) implies thatp = p(z) only.
Assume that pressurep is atmospheric pressure i.e.,p is
zero (gauge pressure) everywhere. As we are discussing
the drainage flow problem therefore we take∂w

∂ r positive.
Thus equation (12) reduces to

ρ
∂w
∂ t

=
η
r

∂
∂ r

(

r

(

∂w
∂ r

)n)

+ρg−σB2
0w(r), (13)

Neglecting acceleration term∂w
∂ t which is small compared

gravity except in the initial emptying of the vessel, we get,

1
r

∂
∂ r

(

r

(

∂w
∂ r

)n)

−
σB2

0

η
w(r) =−

ρg
η

, (14)

which is a nonlinear differential equation. The associated
boundary conditions are:

∂w
dr

= 0 at r = R, (15)

w = 0 at r = Rw. (16)

Perturbation solution
We assumeε =

σB2
0

η to be a small parameter and velocity
profilew(r,ε) can be expressed as a power series given by,

w(r,ε)≈ w0+ εw1+ ε2w2+ ... (17)

By using equation (17) into equation (14) and (15) - (16)
and equating coefficients of like powers ofε , we obtain
the following set of problems along with their associated
boundary conditions:zeroth order problem

ε0 :
1
r

d
dr

(

r

(

dw0

dr

)n)

=−
ρg
η

(18)

with boundary condition,

dw0

dr
= 0 at r = R. (19)

w0 = 0 at r = Rw, (20)

First order problem

ε1 :
1
r

d
dr

(

rn

(

dw0

dr

)n−1 dw1

dr

)

−w0 = 0 (21)

with boundary conditions,

dw1

dr
= 0 at r = R. (22)

w1 = 0 at r = Rw, (23)

Here two cases arise:
Case-I:n= 1 (Newtonian fluid)
Case-II:n 6= 1 (power law fluid)

3.1 Solution for Newtonian fluid

3.1.1 Velocity Profile

Zeroth order solution:
The solution of equation (18) by using boundary condition
(19) and (20) is,

w0 =
ρg
4η

[

(

R2
w− r2)+2R2 ln

(

r
Rw

)]

. (24)

First-order solution:
Substituting the zeroth order solution (24), into (21) and
subject to the conditions (22) and (23) is given by

w1 =
ρg
64η

[

4
(

R2
w−2R2) r2− r4+8R2R2

w−3R4
w

+ 4R2
(

3R2−2R2
w−4R2 ln

(

R
Rw

))

ln

(

r
Rw

)

+ 8R2r2 ln

(

r
Rw

)]

. (25)

Thus the solution with perturbation method correct upto
first order is,

w(r) =
ρg
4η

[

(

R2
w− r2)+2R2 ln

(

r
Rw

)]

+
ρgε
64η

[

4
(

R2
w−2R2) r2− r4+8R2R2

w−3R4
w

+ 4R2
(

3R2−2R2
w−4R2 ln

(

R
Rw

))
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ln

(

r
Rw

)

+8R2r2 ln

(

r
Rw

)]

. (26)

It is pointed out that if we set the perturbation parameter
ε = 0 in (26), we recover the solution for the same problem
with a Newtonian fluid without MHD given in [21].

3.1.2 Volume Flow Rate

In dimensional form, the flow rateQ, is given by,

Q=
∫ 2π

0

∫ R

Rw

rw(r)drdθ = 2π
∫ R

Rw

rw(r)dr. (27)

By making use of equation (26) in (27), we obtain,

Q = −
ρgπ
8η

[

(

R2−R2
w

)2
−4R4 ln

(

R
Rw

)

+2R2

(

R2−R2
w

)

−
ε
24

{

6
(

R2
w−2R2)(R4−R4

w

)

−
(

R6−R6
w

)

+3
(

8R2
wR2−3R4

w

)(

R2−R2
w

)

+ 6R2
(

3R2−2R2
w−4R2 ln

(

R
Rw

))

(

2R2 ln

(

R
Rw

)

−
(

R2−R2
w

)

)

+ 3R2
(

4R4ln

(

R
Rw

)

−
(

R4−R4
w

)

)}]

. (28)

3.1.3 Thickness of the fluid film

The volume flow rate in term of continuity equation is
given by,

−
∂Q
∂z

= 2πR
∂R
∂ t

. (29)

Substituting equation (28) in equation (29), after
considerable simplification, we get,

−
∂z
∂ t

= −
ρg
2η

[

(

R2−R2
w

)

−2R2 ln

(

R
Rw

)

−
ε

192
{

192R2R2
w−132R4−60R4

w+24ln

(

R
Rw

)

(

14R4−8R2
wR2−12R4 ln

(

R
Rw

))}]

. (30)

Now integrating equation (30) with respect tot and using
the boundary conditionR(0, t) = Rw, we get the relation
between film thicknesszandt as:

z= −
ρgt
2η

[

(

R2−R2
w

)

−2R2 ln

(

R
Rw

)

−
ε

192
{

192R2R2
w−132R4−60R4

w+24ln

(

R
Rw

)

(

14R4−8R2
wR2−12R4 ln

(

R
Rw

))}]

. (31)

For convex surface, we get,

z= −
ρgtR2

w

2η

[

(

(1+
h

Rw
)2−1

)

−2

(

1+
h

Rw

)2

ln(1

+
h

Rw

)

−
εR2

w

192

{

192

(

1+
h

Rw

)2

−132

(

1+
h

Rw

)4

− 60+24ln

(

1+
h

Rw

)

(

14

(

1+
h

Rw

)4

−8(1

+
h

Rw

)2

−12

(

1+
h

Rw

)4

ln

(

1+
h

Rw

)

)}]

. (32)

and for concave surface we arrive at,

z= −
ρgtR2

w

2η

[

(

(1−
h

Rw
)2−1

)

−2

(

1−
h

Rw

)2

ln(1

−
h

Rw

)

−
εR2

w

192

{

192

(

1−
h

Rw

)2

−132

(

1−
h

Rw

)4

− 60+24ln

(

1−
h

Rw

)

(

14

(

1−
h

Rw

)4

−8(1

−
h

Rw

)2

−12

(

1−
h

Rw

)4

ln

(

1−
h

Rw

)

)}]

. (33)

3.2 Solution for power law fluid fluid

3.2.1 Velocity Profile

Zeroth order solution:
By using binomial series and applying boundary condition
(19) and (20), solution of equation (18) will be,

w0 =
(

ρg
2η

) 1
n
(

∞
∑

i=0

( 1
n
i

) (−1)iR−2i+ 2
n

2i− 1
n+1

(

r2i− 1
n+1−R2i− 1

n+1
)

)

.

(34)
First-order solution:
Making use of the zeroth-order solution (34) into (21), we
acquire,

w1 =
1
n

(

ρg
2η

) 2
n−1 ∞

∑
i=0

∞

∑
j=0

(1
n

i

)(1−n
n

j

)

(−1)i+ j R−2i−2 j+ 4
n−2

2i − 1
n +1









1

2i − 1
n +3















(

r2i+2 j− 2
n+4−R

2i+2 j− 2
n+4

w

)

2i +2 j − 2
n +4

−
R2i− 1

n+3

2 j − 1
n +1

(

r2 j− 1
n+1−R

2 j− 1
n+1

w

)

}

−
R

2i− 1
n+1

w

2















(

r2 j− 1
n+3−R

2 j− 1
n+3

w

)

2 j − 1
n +3
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−
R2

2 j − 1
n +1

(

r2 j− 1
n+1−R

2 j− 1
n+1

w

)

}]

. (35)

Inserting equations (34) and (35) into series (17), one get
the solution of equation (14) of the form:

w =

(

ρg
2η

) 1
n

(

∞

∑
i=0

( 1
n
i

)

(−1)i R−2i+ 2
n

2i− 1
n +1

(

r2i− 1
n+1−R2i− 1

n+1
)

)

+
ε
n

(

ρg
2η

) 2
n−1 ∞

∑
i=0

∞

∑
j=0

( 1
n
i

)( 1−n
n
j

)

(−1)i+ j R−2i−2 j+ 4
n−2

2i− 1
n +1









1

2i− 1
n +3















(

r2i+2 j− 2
n+4−R

2i+2 j− 2
n+4

w

)

2i+2 j − 2
n +4

−
R2i− 1

n+3

2 j − 1
n +1

(

r2 j− 1
n+1−R

2 j− 1
n+1

w

)

}

−
R

2i− 1
n+1

w

2















(

r2 j− 1
n+3−R

2 j− 1
n+3

w

)

2 j − 1
n +3

−
R2

2 j − 1
n +1

(

r2 j− 1
n+1−R

2 j− 1
n+1

w

)

}]

. (36)

Here if we set the perturbation parameter in (36), we
recover the solution of same problem having power law
fluid without MHD effects [22].

3.2.2 Volume Flow Rate

By making use of equation (36) in equation (27), we
obtain,

Q = 2π
(

ρg
2η

) 1
n
[

∞

∑
i=0

(1
n

i

)

(−1)iR−2i+ 2
n

2i − 1
n +1















(

R2i− 1
n+3−R

2i− 1
n+3

w

)

2i − 1
n +3

−
R

2i− 1
n+1

w
(

R2−R2
w

)

2















+
ε
n

(

ρg
2η

) 1
n−1 ∞

∑
i=0

∞

∑
j=0

(1
n

i

)(1−n
n

j

)

(−1)i+ j R−2i−2 j+ 4
n−2

2i − 1
n +1

{

1
(

2i − 1
n +3

)(

2i +2 j − 2
n +4

)









(

R2i+2 j− 2
n+6−R

2i+2 j− 2
n+6

w

)

2i +2 j − 2
n +6

−
R

2i+2 j− 2
n+4

w
(

R2−R2
w

)

2





−
R2i− 1

n+3
(

2i − 1
n +3

)(

2 j − 1
n +1

)









(

R2 j− 1
n+3−R

2 j− 1
n+3

w

)

2 j − 1
n +3

−
R

2 j− 1
n+1

w
(

R2−R2
w

)

2



−
R

2i− 1
n+1

w

2
(

2 j − 1
n +3

)









(

R2 j− 1
n+5−R

2 j− 1
n+5

w

)

2 j − 1
n +5

−
R

2 j− 1
n+3

w
(

R2−R2
w

)

2









+
R

2i− 1
n+1

w R2

2
(

2 j − 1
n +1

)









(

R2 j− 1
n+3−R

2 j− 1
n+3

w

)

2 j − 1
n +3

−
R

2 j− 1
n+1

w
(

R2−R2
w

)

2













 . (37)

3.2.3 Thickness of the fluid film

Simplifying equation (37) after making use of equation
(29), one obtains,

∂z
∂ t

=

(

ρg
2η

) 1
n ∞

∑
i=0

(1
n

i

)

(−1)iR−2i+ 2
n−2

2i − 1
n +1

[

1

2i − 1
n +3

{(

1
n
+3

)

R2i− 1
n+3

−

(

−2i +
2
n

)

R
2i− 1

n+3
w

}

−
R

2i− 1
n+1

w

2
{(

2+
2
n
−2i

)

R2−

(

−2i +
2
n

)

R2
w

}]

+
ε
n

(

ρg
2η

) 2
n−1 ∞

∑
i=0

∞

∑
j=0

(1
n

i

)(1−n
n

j

)

(−1)i+ j R−2i−2 j+ 4
n−2

2i − 1
n +1















(

R2i+2 j− 2
n+5−RR

2i+2 j− 2
n+4

w

)

(

2i − 1
n +3

)(

2i +2 j − 2
n +4

)

+









(

R2 j− 1
n+3−R

2 j− 1
n+3

w

)

2 j − 1
n +3

−
R

2 j− 1
n+1

w
(

R2−R2
w

)

2













RR
2i− 1

n+1
w −R2i− 1

n+2

2 j − 1
n +1



−

(

R2 j− 1
n+2−RR

2 j− 1
n+1

w

)
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



R2R
2i− 1

n+1
w

2
(

2 j − 1
n +1

) −
R2i− 1

n+3
(

2i − 1
n +3

)(

2i − 1
n +1

)





+
R

2i− 1
n+1

w

2
(

2 j − 1
n +3

)

(

R2 j− 1
n+4−RR

2 j− 1
n+3

w

)







. (38)

By integrating equation (38) with respect tot, and then
using the boundary conditionR(0, t) = R, we get the
relation between film thicknessz andt as:
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t. (39)

For a drainage on a convex surface, we get,
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for drainage on concave surface, we arrive at,
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t. (41)
 

 

Fig.2.The effect ofε on velocity profile for Newtonian
MHD fluid for drainage in thin film flow, when

η = 7poise, ρ = 0.78g/cm3, R= 11cm, Rw = 10cm.
 

 

Fig.3. The effect ofRon velocity profile for Newtonian
MHD fluid for drainage in thin film flow, when

η = 7poise, ε = 0.001cm−2, Rw = 10cm, ρ = 0.78g/cm3

 

 

 

Fig.4. The effect ofρ on velocity profile for Newtonian
MHD fluid for drainage in thin film flow, whenR= 11cm,

ε = 0.001cm−2, Rw = 10cm, η = 7poise 

 

 

Fig.5. Velocity profile for Newtonian MHD fluid for
drainage in thin film flow, whenR= 11cm,
ε = 0.0001cm−2, Rw = 10cm, η = 7poise,

ρ = 0.78g/cm3 

 

Fig.6. The effect ofn on velocity profile for power law
MHD fluid, whenR= 11cm, ε = 0.0001cm−2,

Rw = 10cm, η = 7poise, ρ = 0.78g/cm3 

 

Fig.7. The effect ofρ on velocity profile for power law
MHD fluid whenn= 1.7, R= 11cm, ε = 0.001cm−2,

Rw = 10cm, η = 7poise, ρ = 0.78g/cm3
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Fig.8. The effect ofε on velocity profile for power law
MHD fluid, whenn= 1.7, R= 11cm, Rw = 10cm,

η = 7poise, ρ = 0.78g/cm3
 

 

 

Fig.9. The effect ofRon velocity profile for power law
MHD fluid, whenn= 1.7, ε = 0.001cm−2, Rw = 10cm,

η = 7poise, ρ = 0.78g/cm3
 

 

Fig.10. Growth of film thickness for convex surface for
different value oft, for Newtonian MHD fluid, when

η = 7poise, ε = 0.001cm−2 Rw = 10cm,
R= 11cm,ρ = 0.78g/cm3

 

 

Fig.11. Growth of film thickness for concave surface for
different value oft, for Newtonian MHD fluid, when

η = 7poise, ε = 0.001cm−2, Rw = 10cm, R= 11cm,
ρ = 0.78g/cm3.

 

 

 

Fig.12. Growth of film thickness for convex surface for
different value oft, for power law MHD fluid, when

η = 7poise, ε = 0.059cm−2, Rw = 10cm, n= 0.36 and
ρ = 0.138g/cm3.

 

 

Fig.13. Growth of film thickness for concave surface for
different value oft, for power law MHD fluid, when

η = 7poise, ε = 0.059cm−2, Rw = 10cm, n= 0.36 and
ρ = 0.138g/cm3.

4 RESULTS AND DISCUSSION

The analysis determine the effects of power law indexn,
magnetic parameterε, density ρ and R over velocity
profile and growth of film thickness for convex and
concave surfaces of fluid film. The results are given in
figures (2) - (13). The variation of axial velocity forn, ε,
ρ andR for both Newtonian and power law MHD fluid in
case of drainage is displayed in figures (2) - (9). From
figures (2) - (9), we observed, that with an increase inn, ρ
and R, results in increase of velocity profile while the
same decreases with increase inε. The difference of time
t for growth of film thickness of fluid film in figures (10) -
(13) have been plotted where it is observed that the
growth of thickness of fluid film increases for increasing
time t for all Newtonian and power law MHD fluid.

5 CONCLUDING REMARKS

We have presented results in the thin film flow field of a
fluid, which is called the Power law MHD fluid, on a
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vertical cylinder for drainage problem. The resulting
nonlinear differential equation has been solved by
perturbation method, which is effective and reliable
method for the proposed problem. The velocity profile,
flow rate and thickness of the fluid film have been derived
for the title problem.
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