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Abstract: The presence of Partial Robust M-Regression (PRM) amottigst Bartial Least Squares Regression (PLSR) techniques is
mainly to offer a more robust and efficient method than theteg ones when data face outlier problem. PRM is concetdiierent

from other robust PLSR techniques because it proposed #geusf M-estimator instead of a more commonly used LeastrBgua
(LS) estimator. Recently, there are several efforts amesgarchers to further enhance the PRM performance. Amaosg thethods

are Partial Robust M-Regression (based on Bisquare Weigttdtion) (PRMBS) and Partial Robust M-Regression (baseldampel
Weight Function) (PRMH). These two methods are re-desogndieight based PRMs which differ from the original monotasio
weight based PRM. This study compares the performance of PRSI, PRMBS and PRMH under numerous outlying conditions for
both low and high dimensional data sets. Some analysis btle¢a sets and simulation results in this study show thestoiess and

the effectiveness of the modified PRM methods.

Keywords: Outliers, PLS, PRM, Re-descending Weighting Functions

1 Introduction hand, estimates regression parameters by finding
maximum covariance between latent and response

Partial Least Squares (PLS) method was first introduceqjariaples such that the residuals of predictive model is at
by Herman Wold way back in 196@l] Partial Least  minimum [1].

Squares Regression (PLSR) arose with the intention to
eliminate the problem of multicollinearity in a regression
model. Multicollinearity normally exists when there are
huge number of explanatory variables involved and the
are highly dependent. The presence of multicollinearity
will generally cause inaccuracy in terms of sign and
magnitude of the parameter estimates of a model and thi X . . X .
can lead to incorrect inferences and wrong resulted in masking or swamping effects in the modeling
interpretation.A straight forward solution to this profle processesy.

is to reduce the dimension of the explanatory variables. Several robust PLS methods are therefore
This is normally done by obtaining latent variable, a newrecommended to solve the problem concerning outliers.
variable that has a linear combination with original Among the first to introduce robust PLS aré] who
variables. Principal component analysis (PCA) is amongproposed the usage of an iterative reweighted formulation
the most widely used techniques for dimensionalforinner PLS model. Then5] introduced another robust
reduction. In the context of regression, the application oftechnique for inner PLS in 1995 where least median
principal component method is always referred assquares and repeated median are suggested to be used
Principal Component Regression (PCR). But the problenbesides the iterative reweighted least squares.
with PCR is that there is no assurance that the principalAlternatively, there are also robust methods meant for
components that explain the exploratory variables alsmuter PLS model.q] was the first to propose the method
relatable to the response variables. PLSR, on the otheby using an Iterative Reweighted PLS (IRPLS).

There are several PLS algorithms offered. Among
those common methods are Nonlinear lterative Partial
yLeast Squares (NIPALS) and Statistically Inspired
Modification of the Partial Least Squares (SIMPLS).
These methods, however, can easily be influenced by
gutliers []. Failure in identifying outliers will normally
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[7]lproposed a method that combine methods 4f | with the new regression coefficients and the error

andp], known as lterative Predictors and Objects terms¢q. Note thata < n. The coefficient vector can be

Weighting PLS (IPOW-PLS). There is also another estimated as usual except now RM estimator is used

approach to robust PLS which is covariance based ofnstead of LS estimator. In dealing with vertical outliers

robust estimation. This approach is employed&jywjsing  and leverage points, two types of weight$,andw are

the Stahel-Donoho estimator (SDE). This technique,introduced. The weightef are computed from residuals

however, cannot be applied to high dimensional data as; = y; — xja where

claimed by P]. Therefore, they proposed a robustified

version of the SIMPLS algorithm known as RSIMPLS. w = f(=,c). (3)
The above mentioned robust PLS techniques are all o

based_on Lea§t Squares (LS). e_stimator. In regressiom,ith 0 =MAD(ry, - ,rn) = median; | r; — medianir; | be

analysis, LS is the most efficient estimator if the {he estimated residual scale, and

distribution of error terms is normal. Unfortunately, it is

not guaranteed to have errors with normal distributions all 1

the time. Therefore,9 suggested the use of partial f(ze)= (1+] 2])2

M-estimator (PM) instead of LS for cases involving . . ¢ . .

non-normal error distributions. Apart from that, wherec = 4 is the tuning constant, anflis the weight

M-estimator is also known to be robust against outliers.function known as Fair function. The weightg® are

PRM, as claimed byl[0] outperforms PLS and RSIMPLS computed from the scor@swhere

(4)

in terms of computational cost and statistical properties. It — med 2 (T) |
Even though PRM outperforms other methods, it is we = f( U L1 ,C) (5)
plausible to have some confines since it employs median; || t —medya(T) ||

monotonous Fair weighting function which often does not . - .
weigh large outliers accordinghLl]. The main objective with || | 1S the Euclidean norm aned,1(T) denotes the

of this paper is to evaluate and compare the performanckl:median calculated from score vectors. In order to

of the original PRM (based on Fair weight function) with réduce the negative impact of outliers on the regression
the other two modified PRMs which are PRMBS and model, PRM implemented iterative reweighted partial

PRMH whose methods are based on re—descendinéelaSt squares (IRPLS) algorithm. Observations that are

weight functions. The two methods were discussed in ose to the centre of the data cloud in the predictor and
[17] and [13] respéctively. response spaces will receive a weight close to or equal to

one, while leverage and residual points will get a weight
close to zero. Particularly, PRM algorithm comprises of

2 Partial Robust M-Regression (PRM) the following steps: .
Step 1: Determine the robust starting values for the

Introduction. In general, PRM offers similar technique Weightswi = wjw. _ _

as PLS in terms of dimensionality reduction. The major  Step 2: Execute classical PLS (SIMPLS) on weighted
difference between the two is the type of estimatorsdatawix andwy;. ,

chosen. Principally, PRM uses M-estimator while PLS _ Step 3: Recalculate; from PLS residualsy;‘ from
uses LS estimator. Since M-estimator only cater forPLS scores, and; . , _
vertical outliers, 9] considered Robust M-estimators ~ Step 4: lterate Step 2 and Step 3 until the estimated

(RM) in the formulation of PRM so that it is robust fegression coefficients converge. (i.e., the difference
against both vertical outliers and leverage points. between estimated regression coefficients is smaller than

a certain onset value).
Step 5: Find estimated regression coefficients from the
last step of weighted PLS.

Algorithm. Suppose ann x p data matrix X be the
exploratory variables, and amx 1 data vectoly be the
response variable. The ith observation #f andy is
denoted by andy; respectively. Consider the regression

model .
yi=XB+&, 1<i<n 1) 3 Modified PRM

wheref is a vector of unknown parameters of sigex 1 . . . .
and g is the error terms.PRM does not solve the Re-descending Weight Functions.PRM uses Fair

regression model in (1) directly, but instead it regresseé"'er'ﬁht”ﬁ'fgrJ r];:mﬁt'gn’r ?mni]lon?\;lowct tr):ipe e;rt:qm?tor s:?a;
the y-variables onto partial information of the x-variable comes 1ro uber tamily. Monotonic estimates ofte

using latent regression model. Théatent variables which have computational advantage, but it may lose the

are obtained after mean-centring the data can be Writteﬁopusmess properties in the presence of b‘."ld Ieve(age
in matrix form Tn.n= (tz,- ,tn)’ . The latent regression points in dataset3]. Re-descending type of estimators is
model is then ob'Eained ’as féllows therefore recommended because they can produce better

breakdown point and provide good efficiency under
yi=ta+q@, 1<i<a (2) bounded influence functiobf]. This study considers two
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re-descending weight based modified PRMs, which are
Partial Robust M-Regression (based on Bisquare Weight Bnn ~N(3,1) 9)
Function, PRMBS) 12] and Partial Robust M-Regression

: : . with n be the number of observationsjs the number of
(based on Hampel Weight Function, PRMH}3[ in k .
comparison to the original monotonous weight basedparameters, anti < p . The data matrixo with perfect

PRM. collinearity can then be obtained as follows:

PRMBS and PRMH. Basically, methods in obtaining Xo=TBT (10)
PRMBS and PRMH algorithms are similar to that of the

original PRM. For each method, the robust starting valuesrinally, the output vectoy, can be calculated as

w; need to be calculated. Sineg¢ comprises ofs{ and

WY, equations (3) and (5) are once again referred to obtain Yo = XoBo = TB B (11)
those weights for both algorithms. The only different here

is the weighting function considered in each algorithm.where8y is the true regression coefficient with
For PRMBS, a Tukey Bisquare weighting function is Bo ~ N(3,1). The error terms were fixed to be normally
employed such that the f function in equation (4) is distributed, and different types of outliers were introeldc

substituted by the following equation (6) to data sets by randomly includes x a outliers
(o = 0%,5%,10% 20% ) to the originah observations.
[(1- (%32 ,z<c Then x a observations were generated froNéL0, 0.5)
f(zc) = 0 ¢ 75 ¢ (6) which constitutes a certain percentage of outliers in the
’ samples. The Mean Squared Error (MSE) values of each
with the tuning constard= 4.685. simulation setup were calculated for all methods using
formula written in equation (12). A particular method is
1 Jzl<a considered the best if it produces the lowest MSE value
% ,a<|z|<b which is defined as
R b<|z|<c ") 1 X
ob Tt MSE == 5 (B — fo)? 12
0 ,otherwise mki;(ﬁ Po) (12)

Similarly, for PRMH, another re-descending weight
function which is Hampel weighting function is ;
introduced to the algorithm. Now, equation (4) becomes5 Results and Analysis

the following 1 funftz'oréf‘j shgwr_mén l\tlaquat;]on (;) WIth 1aples 1-4 display simulation results. In the absence of
tuning constants a=2, b=4 and c=8. Note that the WniNg, jiers it can be seen that the performance of all
constants are generally chosen to give reasonably higleods are more or less the same. This is shown in Table

eciency in thg normal case; particularly, it can produc.eﬂ_ In Table 2, results of simulated MSE for data sets with
95-percent eciency when the errors are normal, and stil

oer protection against outlierd9. Once the the robust
starting values were obtained, the remaining procedures
(ie. Steps 2 to 5) in obtaining PRM algorithm are very Table 1: MSE Values for Low and High Dimensional Data with
much follows to complete the process of getting PRMBS No Outliers
and PRMH algorithms.

Low Dimensional

Data High Dimensional Data

4 S|mU|at|0n StUdy SIMPLS 1.497169 1.408529
In this section, the performance of PLS, PRM, PRMBS
and PRMH are compared by means of the statistical PRM 1.485838 1.409266
efficiency of each method through a simulation study.
Each simulation design was set up to consist of low
dimensional datan(= 100, p = 50) and high dimensional
data 6 = 50,p = 100) sets with various outlying
conditions. For each design, 1000 data sets are generatt PRMI
and only univariate responsq € 1) is considered. The
design for univariate response is however can always be
extended to multivariate responses. The experiments for
simulated data were set to be based on the following
conditions: different percentage of outliers im are reported. As
Tnn ~N(3,1) (8) expected, at all levels of contamination in both low and

PRMBS 1.498268 1.408989

1.409036 1.409036
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high dimensional data sets, the classical PLS which is'@ble 3: MSE Values for Low and High Dimensional Data with
SIMPLS, seems to be the least efficient method comparef'fferent Percentage of Outliers in Y

to robust methods. Despite the two newly proposed robus [Low Dimensional Data

PRM methods, the original PRM outperforms those % outliers 5 10 15 20 25
methods when low dimensional data sets are considere( SIMPLS  3.452491 7.872901 1.667845 2.061536 3.799479
Original PRM also performs better than the other two PRM  1.462593 1.590083 1.710465 2.516873 1.412204
robust methods when high dimensional data sets ar¢ PRMBS 1411243 1333443 148748 1.465548 1.403227
considered but only for low levels of contamination (ie; PRMH 1412539 146378 | 1427978 1480731 1.422577

5% and 10% of outliers). On the other hand, PRMBS and , High Dimensional Data

PRMH did better job when greater amount of outliers are % outhiers 3 10 13 20 s

present in such data sets. Results for simulated MSE fo SIMPLS 3420026 22.60026 40.38733 57.8072  21.83068
PRM 1.546828 2.090233 | 2.140008 3.524307 5.364179

PRMBS | 1.518511 1.684201 ! 1.815734 3.002523 3.835838
PRMH 1.527621 1.734916  1.819363 2.6178  3.359234

Table 2: MSE Values for Low and High Dimensional Data with

Different Percentage of Outliers in X Table 4: MSE Values for Low and High Dimensional Data with
Low Dimensional Data Different Percentage of Outliers in Both X and Y Directions
% outliers 5 10 15 20 25 [Low Dimensional Data
SIMPLS  81.22252 133.0187 129.9721 117.285 113.3093 % outliers 5 10 15 20 25
PRM  1.411784 1.321365 4.462443 29.04703 39.88564 SIMPLS | 7.622335  43.03615  57.04251 | 127.9113 | 196.5656
PRMBS 1.410461 1351757 1389804 75.29755 92.28901 PRM  1.536904 1.50333 1.423573  10.56944  1.159602
PRMH  1.262792 1.374391 1320785 69.37077 60.5677 PRMBS | 1.512869 1.500601 1364451  60.05588 & 8.889315
High Dimensional Data PRMH | 1.516554 6.811315 65.44217 | 85.57625 | 129.2603
% outliers 5 10 15 20 25 High Dimensional Data
SIMPLS | 77.7568 | 134.4023 136.3651 128.1005 112.3423 % outliers 5 10 15 20 25
PRM 1.4630  1.9066  76.2601 = 69.6131 72.42998 SIMPLS | 129.3564  30.93684  50.48263  121.7722  173.504
PRMBS = 1.4805 | 72.1007 71.13321 67.9063  122.6722 PRM  1.40997 1.426957 7.432936 2319515 62.1326
PRMH  46.4197 92.6246 87.4993  80.4938 71.61626 PRMBS | 1.409766  1.429526  1.445844 | 1.119283 | 63.53992

PRMH | 1.409585 68.22629 61.52605 | 78.72803 | 90.66833

data sets with outliers iry are displayed in Table 3.

SIMPLS once again cannot uphold its optimum efficiency 6 Numerical Examples.

level when outliers are involved at all levels and in all sets

of data. In earlier discussion where outliers xinare  Finally, we apply all four methods to a couple of real data
considered, we have seen that original PRM outperformsets to further investigate the performance of each. We
PRMBS and PRMH for low dimensional data sets. Now, estimate the performance of each method based on the
the results are no longer the same as outliery ere  bias, standard error of prediction (SEP) and mean squared
considered. PRMBS and PRMH outperform original error (MSE) values. The three criteria are calculated as
PRM at all contamination levels for both low and high follows:

dimensional data sets. Interestingly, PRMH performs bias:} s (yi — 1) (13)
better than PRMBS when amount of outliers are less than i; e

15 percentin low dimensional data sets, whereas PRMBS

outperforms PRMH when such data sets contain greater B 1 ANy 6 a2
amount of outliers. In contrast, PRMH did better job than SEP= n—1 Z' =1'(y—¥i —bias) (14)
PRMBS when dealing with high dimensional data sets

which consist of 20 percent outliers or more and vice 18,

versa. The following Table 4 shows results of simulated MSE =1 I;(y' —%) (15)

MSE values for low and high dimensional data in the . .

presence of outliers in botkandy directions. It can be ~Whereyi is the estimateg; .

seen from the table that for cases where low dimensionaPAC Data. The first data set that we used is a high
data sets are contaminated with low percentage of outliersimensional PAC data. This data is accessible through
(ie: less than 20% outliers), the proposed PRMBSR-package chemometrics. It consists of 209 observations
outperforms other methods. The original PRM is howeverwith 467X-variables and a response y-variable. It
performs better when greater amount of outliers aredescribes polycyclic aromatic compoungs i terms of
considered (ie: 20% or more). In the case of highGC-retention indices of which have been modelled by
dimensional data, PRMBS seems to consistently perfornmolecular descriptorsX()[16]. Reference 17] also used
better than other methods. this data set in their study. As reported it/], this data
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Table 5: Bias, SEP and MSE Values for PAC Data 7 Conclusion
BIAS SEP MSE On the whole, the classical PLS, with SIMPLS algorithm,
loses its optimum efficiency criteria when data sets are
SIMPLS -338.0862 1131717 114570.0 contaminated with outliers at any directions. Simulation

results show that original PRM did well in data sets which
are contaminated with outliers in x. Conversely, when
dealing with contaminated data sets with outliers in vy,
original PRM seems to be less efficient than the modified
PRMBS -0.3621655 1.17488 288.6228 PRMs which are PRMBS and PRMH. When data sets
being contaminated with outliers in both x and y, PRMBS
produced the most consistent results and outperform other
methods in most situations.

PRM 0.8626399 1.275216 340.6148

PRMH 3.028136 1.301496 363.1931
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