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Abstract: A new flexible cure rate survival regression is proposed for predicting cancer prognosis, which provides a more realistic

interpretation of the biological mechanism of the event of interest. The new regression predicts breast carcinoma survival in post-

mastectomy women but it can be applied to different types of surgery offered to treat cancer.
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Regression models which study the distribution of
lifetimes have wide applicability in cancer research and
other chronic disease prognosis analyses, where some
explanatory variables in the surgery or pathology report
may be associated with outcomes. The event of interest in
many survival studies or cancer-relapse trials can be the
death of a patient or a tumor recurrence. Nowadays, a
high portion of the patients are expected to be cured and
there exists a vast literature on ‘cure rate models’ or
‘long-term survival models’; for more details see the key
references [1] and [2] or the books by [3] and [4]. Further
statistical regressions in this area are due to [5], [6], [7],
[8], [9], [10], [11], [12], [13] and [14], among others.

Survival data that present a proportion of individuals
in the population who are not susceptible to the event of
interest are generally modeled considering a reasonable
fraction of cured (or survival models with curing rate).
Empirically, this feature can be noted in the Kaplan-Meier
estimate of the survival function which has a right tail at
an approximately constant level and strictly greater than
zero for a considerable period. It is often considered that
“cure” is related to survival beyond five years.

Incorporating a surviving fraction in survival models,
it is almost impossible to verify assumptions related to
latent events, even from biological and/or physical point
of views. The distributional assumptions are debatable.

Accordingly, we consider a general class of distributions,
which includes several plausible distributions.

The article defines a general class of destructive
survival cure rate models, where the initial number of
unobservable event-related competing causes has a power
series distribution, and the probability p of a competing
cause not being eliminated by the initial treatment is
related to a set of covariates. The proposed regression
does not have identifiability problems and it can be
reduced if p = 1 to the survival regression for modeling
lifetime data without cure fraction.

The research examines data collected by [15], where
there are 284 women treated with mastectomy and
axillary lymph node dissection at Memorial
Sloan-Kettering Cancer Center (New York) introduced in
Section 6. The time-event-time data considered in this
study is the time until the patient’s death. The left panel of
Figure 1 reports the overall Kaplan-Meier survival curve
for the treated breast cancer patients. The plateau points
out the presence of cure fraction on the patients, where
about 75% of patients did not die during the period of
study. Some clinical covariates may affect the probability
of cure as shown in Figure 1 (right panel), where the
cumulative hazard function of death depends on the
patient age.
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Fig. 1: (a) Kaplan-Meier curves for the breast carcinoma cohort

data. (b) Cumulative hazard function stratified by age.

The proposed destructive model can in principle be
applied to any pathology, especially in the case of cancer.
The initial risk factors are malignant cells and a random
variable models the number of live malignant cells that
are descendants of a given malignant cell over a period of
time. This assumption was not adopted by [9] on
predicting the cure and recurrence of breast cancer. In
these terms, the new proposal accurately models the total
number of live malignant cells at a specific point in time,
which is more realistic, since all the variables involved
are latent.

The rest of the article is divided into six sections. In
Section 1, a new model is formulated for the time
distribution of the entire population. In Section 2, some
structural properties of the recurrence time for the
non-cured individuals are investigated. Likelihood
inference is addressed in Section 3. A simulation study in
Section 4 reports some statistical properties of the
maximum likelihood estimators (MLEs). In Section 5, the
methodology is illustrated on a breast cancer data set.
Section 6 offers some concluding remarks.

1 The new model

The number of altered cells before an initial treatment is
represented by the random variable (rv) M with a power
series probability mass function (pmf) [16]

P(M = m;θ ) =
am θ m

A(θ )
, m = 1,2, . . . , (1)

where am ≥ 0, θ ∈ (0,s) (s can be ∞) is the the power
parameter and A(θ ) = ∑∞

m=1 am θ m is a finite generator
function.

The binomial, Poisson, geometric and logarithmic are
four important distributions in the class (1).

Let Wj ( j = 1, . . . ,m) (for fixed M = m) denote the
number of living malignant cells that are descendants of
the initiated malignant cell j during some period.

Consider that W1, · · · ,Wm are independent and identically
distributed (iid) rvs with a Bernoulli distribution
(independent of M) with success probability φ , which
indicates the probability of an undestroyed clonogenic
cell. Let N =W1 + · · ·+WM (N ≤ M) be the total number
of altered cells among the M initial cells, which are not
damaged by the treatment [17]. The probability
generating function (pgf) of N is

GN(s) =
A([1−φ +φ s]θ )

A(θ )
, 0 ≤ |s| ≤ 1. (2)

Let Z j ( j = 1, . . . ,N) be the time to the event for the
j-th competing cause. Conditional on N, consider that the
Z j’s are iid rvs with cumulative distribution function (cdf)
F(t) (for t > 0) which do not depend on N. The total
number of competing causes N and the time Z j are not
observable variables. Let T = min(Z1, · · · ,ZN) be the
observable time to the event of interest, where T = ∞ if
N = 0 and P(T = ∞|N = 0) = 1.

The improper survival function ([18], [7]) (under these
conditions) for the entire population is

Spop(t) =
A(θ [1−φF(t)])

A(θ )
. (3)

The cured probability p0 = limt→∞ Spop(t) follows from
(3)

p0 =
A(θ [1−φ ])

A(θ )
> 0. (4)

The density function associated with (3) is

fpop(t) =−S′pop(t) =
A′(θ [1−φF(t)])

A(θ )
φ θ f (t), (5)

where A′(θ ) = dA(θ )/dθ and f (t) = −dS(t)/dt. The
hazard rate function (hrf) corresponding to (5) is

hpop(t) =
A′(θ [1−φF(t)])

A(θ [1−φF(t)])
φ θ f (t).

The model defined by Equations (3), (4) and (5) is called
the destructive power series cure rate (DPSCR) model.

The (proper) survival function for the non-cured
population represented by the rv Tnc, say
Snc(t) = P(T > t |N ≥ 1), is

Snc(t) =
A(θ [1−φF(t)])−A(θ [1−φ ])

A(θ )−A(θ [1−φ ])
, t > 0. (6)

Clearly, Snc(0) = 1 and Snc(∞) = 0.
Equation (3) and the mixture cure rate model ([19],

[1]) are related as

Spop(t) =
A(θ [1−φ ])

A(θ )
+

[
1−

A(θ [1−φ ])

A(θ )

]
Snc(t),

where Snc(t) is given by (6). Thus, Spop(t) is a mixture
cure rate model with cure fraction p0 and survival function
Snc(t).
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Proposition 1.The survival function in (3) is identifiable.

Proof: Let ϑϑϑ 111 = (φ1,θ1,λλλ 111) and ϑϑϑ 222 = (φ2,θ2,λλλ 222) be
such that ϑϑϑ 1 6= ϑϑϑ 222, where λλλ 111 and λλλ 222 are the parameters
in S(·). If Spop(t|ϑϑϑ 111) = Spop(t|ϑϑϑ222) for all t > 0, Equation
(3) gives

A(θ1)

A(θ2)
=

A(θ1[1−φ1F(t|λλλ 1)])

A(θ2[1−φ2F(t|λλλ 2)]))
, ∀t > 0. (7)

Since A(θ ) = ∑∞
m=1 am θ m is a monotone increasing

function in θ and, without loss of generality, say θ1 < θ2,
it follows that A(θ1)/A(θ2) < 1. For φ1 6= φ2 and
λλλ 111 6= λλλ 222, there exists t0 such that
θ1[1−φ1F(t0|λλλ 1)]> θ2[1−φ2F(t0|λλλ 2)], and

A(θ1[1−φ1F(t|λλλ 1)])/A(θ2[1−φ2F(t|λλλ 2)])> 1.

Therefore, the equalities in (7) do not hold, which
completes the proof.

Some properties of the functions (3) and (6) are in the
following remarks.

Remark.For any survival function S(t), equation (3) can be
reduced to

(i)Spop(t) = 1−φ +φS(t) when θ → 0 ,
(ii)Spop(t) is proper when φ → 1,

(iii)Spop(t) = S(t) when φ → 1 and θ → 0.

Remark.For any survival function S(t), it follows from (6)

(i)Snc(t) = S(t) when θ → 0.

1.1 Some special models

Three special cases of the DPSCR model given by (3) are
discussed here.

–If M is a rv having the zero truncated Poisson
distribution, it follows from (3)

Spop(t) =
e−θ φ F(t)− e−θ

1− e−θ
.

Then, the cure fraction is

p0 = lim
t→∞

Spop(t) =
e−θφ − e−θ

1− e−θ
.

The corresponding pdf follows from (5) as

fpop(t) =
θ φ f (t)e−θ φ F(t)

1− e−θ
.

–If M has a geometric distribution, it follows from (3)

Spop(t) =
(1−θ )[1−φF(t)]

1− [1−φ F(t)]θ
.

The cure fraction is p0 = (1 − φ)(1 − θ )[1 − θ (1−
φ)]−1 and the corresponding pdf becomes

fpop(t) = (1−θ )φ f (t){1−θ [1−φF(t)]}−2.
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Fig. 2: Plots of the destructive Poisson (θ = 2). (a) Survival

functions. (b) Hazard functions.
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Fig. 3: Plots of the destructive geometric (θ = 0.2). (a) Survival

functions. (b) Hazard functions.

–If M has the logarithmic distribution,

Spop(t) =
log{1− [1−φ F(t)]θ}

log(1−θ )
.

The cure fraction is p0 = log[1− (1−φ)θ ]/log(1−θ )
and the associated pdf is

fpop(t) =−
φ θ f (t)

log(1−θ ){1−θ [1−φ F(t)]}
.

The plots displayed in Figures 2-4 (left panel) show
different behaviors of the survival functions for the
models defined before. Figures 2-4 (right panel) also
reveal different shapes of the hazard rates for these

models with F(t) = 1 − e−t2 . These plots illustrate the
flexibility afforded by the proposed model.

2 The DPSCR model for the non-cured

population

The DPSCR model contains, as special cases, some known
distributions. Several new ones can be easily generated.
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Fig. 4: Plots of the destructive logarithmic (θ = 0.2). (a) Survival

functions. (b) Hazard functions.

Equation (6) gives the proper survival function for the non-
cured population and the density of Tnc has the form

fnc(t) =
θ φ f (t)A′(θ [1−φ F(t)])

A(θ )−A(θ [1−φ ])
. (8)

2.1 Linear representation

Using the power series for A(θ ) given in Section 2,
A′(θ ) = ∑∞

i=1 bi θ i, where bi = (i+1)ai+1 for i ≥ 0. Then,

A′(θ [1−φ F(t)]) =
∞

∑
i=0

bi θ i
i

∑
j=0

(
i

j

)
(−φ) j F(t) j.

It can be written changing the order of the sums A′(θ [1−

φ F(t)]) = ∑∞
j=0 u j F(t) j, where u j = (−φ) j ∑∞

i= j

(
i
j

)
bi θ i.

Moreover, it follows from (8)

fnc(t) =
∞

∑
j=0

s j h j+1(t), (9)

where h j+1(t) = ( j + 1)F(t) j f (t) is the exponentiated-F

(exp-F) density (with positive support) and power
parameter ( j+ 1) (for j ≥ 0) and

s j =
θ φ u j

( j+ 1)[A(θ )−A(θ [1−φ ])]
.

Hence, the density of Tnc depends on the power series
distribution only through the coefficients s j’s.

The density function of Tnc in (9) is a linear
combination of the exp-F densities and its properties can
be obtained from those of V j+1 having density h j+1(t),
which have been explored in many papers for several F
baselines.

2.2 Moments and generating function

First, the nth raw moment of Tnc follows from (9) and the
monotone convergence theorem. For n ∈ N,

E(T n
nc) =

∞

∑
j=1

s j E(V n
j+1).

The moments of V j+1 follow from the quantile

function (qf) of the baseline F, say QF(u) = F−1(u), as

E(V n
j+1) = ( j+ 1)

∫ 1
0 QF(u)

n u jdu.

The nth incomplete moment of Tnc has the form

mn(y) =
∫ y

0
tn fnc(t)dt =

∞

∑
j=1

( j+ 1)s j

∫ F(y)

0
QF(u)

n u jdu.

The generating function of Tnc, say M(s), follows from
(9) and the monotone convergence theorem as

M(s) =
∞

∑
j=0

s j M j+1(s),

where M j+1(s) is the generating function of V j+1, namely

M j+1(s)=( j+1)
∫∞

0 est F(t) j f (t)dt=( j+1)
∫ 1

0 exp[sQF (u)]u
jdu.

3 Inference

Consider n cancer patients and let Mi be the number of
carcinogenic cells before treatment for the i-th patient
(i = 1, . . . ,n). The Mi’s are assumed to be iid rvs with pmf
(1). Given Mi = mi, let Wi j be independent Bernoulli rvs
(independent of Mi for j = 1, . . . ,mi) with success
probability φ , indicating the presence of the j-th lesion
(or undestroyed clonogenic cells). Let
Ni = Wi1 + · · ·+Wimi

be the total number of altered cells
among the M initial cells (competing causes) not
destroyed by the treatment.

After the tumor is removed in surgery or another
treatment, some carcinogenic cells can stay inside the
body. If one of these cells is activated again, then cancer
returns. Thus, we use the term “promotion time” to refer
to the minimum time for one of the cells to become
active. Furthermore, suppose that Zi1, · · · ,ZiNi

are the iid
unobserved promotion times of the Ni carcinogenic cells
for the i-th subject having proper cumulative distribution
F(·|λλλ ), where λλλ is a vector of parameters. Let
yi = min{Ti,Ci} be the observed time, where
Ti = min{Zi1, · · · ,ZiNi}, Ci is the censoring time, and δi is
the censoring indicator equal to one if yi = Ti and zero
otherwise (a right-censored time).

Consider the systematic component
φi = exp(xxx⊤1iβββ )/[1 + exp(xxx⊤1iβββ)], where βββ is a k × 1
parameter vector to estimate the effects of the covariates
on the proportion of undestroyed clonogenic cells. Also,
based on the proportional hazard function, the covariate
vector xxx2i can be incorporated

h(yi|λλλ) = h0(y|α) exp(xxx⊤2iγγγ), (10)
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where λλλ
⊤ = (α,γγγ⊤), h0(y|α) is the baseline hazard

function, α is a positive scale parameter of the baseline
function and γγγ is a r × 1 vector of unknown coefficients.
Considering the baseline hazard function
h0(y|α) = αyα−1, the Zi j’s have a Weibull density

f (yi|λλλ) = αyα−1
i exp[xxx⊤2iγ − yα

i exp(xxx⊤2iγ)] with cdf

F(yi|λλλ) = 1− exp
[
−αyα

i exp(xxx⊤2iγ)
]
.

Then, the likelihood function for ϑϑϑ = (θ ,α,βββ⊤,γγγ⊤)⊤,
under the Weibull distribution, can be reduced to

L(ϑϑϑ |D) =
n

∏
i=1

{
θA′(θ [1−φiF(yi|α,γγγ)])φi f (yi|α,γγγ)

A(θ [1−φiF(yi|α,γγγ)])

}δi

×

{
A(θ (1−φi)F(yi|α,γγγ))

A(θ )

}
, (11)

where D = (yyy,δδδ ,xxx1,xxx2), yyy = (y1, . . . ,yn)
⊤,

xxx1 = (xxx11, . . . ,xxx1n)
⊤, xxx2 = (xxx21, . . . ,xxx2n)

⊤ and

δδδ = (δ1, . . . ,δn)
⊤.

The log-likelihood function is ℓ(ϑϑϑ) = log[L(ϑϑϑ |D)]
and the components of the score vector U(ϑϑϑ) can be

available from the authors on request. The MLE ϑ̂ϑϑ of ϑϑϑ
can be found by solving the nonlinear equation system
Uθ (ϑϑϑ) = 0, Uα(ϑϑϑ) = 0, Uβ j

(ϑϑϑ) = 0 and Uγ j′
(ϑϑϑ) = 0 in

the statistical software R, whose script is also available
from the authors.

4 Simulation study

We perform a simulation study to examine the precision
of the MLEs in the DPSCR model (3). The number of
causes (Mi) not destroyed for the i-th patient is generated
from a truncated Poisson distribution with θ = 2 (for
i = 1, . . . ,n). Given Mi = mi, the Bernoulli rv Wi j

( j = 1, . . . ,mi) is generated with success probability
φi = exp(β0 + β1xi)/[1 + exp(β0 + β1xi)], where
β0 = −1.0 and β1 = 1.5. The total number of destroyed
causes among the mi initial causes is
Ni = Wi1 + · · ·+Wimi

. Given Ni = ni, the event times Zi j

(for j = 1, . . . ,ni) are generated from a Weibull hazard
function h(zi j|α,γγγ) = αzα−1

i j exp(γ0 + γ1xi), where

α = 2.0, γ0 = 2.0 and γ1 = 1.5. The censoring times are
sampled from the Uniform(0,τ) distribution, where τ is
approximately equal to 56%.

One thousand simulations are run for each sample
size n = 200,400,600 and 1,000 to calculate the average
of the MLEs (AMLE), standard error (SE), bias, root of
mean squared error (RMSE) and empirical coverage
probability (CP) corresponding to the nominal 95%
confidence interval for the parameters. The results are
reported in Table 1. The averages of the estimates
converge to the true parameter values, the RMSEs and
biases decrease and the coverage probabilities become
much closer to the nominal level when n increases, which
show that the estimates are consistent and approximately
normal.

Table 1: Simulation results from the DPSCR model in (3).

n θ α γ0 γ1 β0 β1

200 AMLE 1.412 1.979 1.090 1.988 -0.731 1.672

SE 1.282 0.167 0.292 0.430 0.531 0.38

BIAS -0.588 -0.021 0.090 -0.012 0.269 0.172

RMSE 1.410 0.168 0.305 0.430 0.595 0.420

CP 0.812 0.950 0.931 0.940 0.831 0.961

400 AMLE 1.632 1.982 1.061 1.988 -0.817 1.592

SE 1.180 0.121 0.205 0.290 0.469 0.279

BIAS -0.368 -0.018 0.061 -0.012 0.183 0.092

RMSE 1.235 0.122 0.214 0.291 0.504 0.293

CP 0.902 0.947 0.939 0.941 0.912 0.960

600 AMLE 1.767 1.986 1.043 1.991 -0.875 1.556

SE 1.074 0.100 0.158 0.235 0.413 0.241

BIAS -0.233 -0.014 0.043 -0.009 0.125 0.056

RMSE 1.098 0.101 0.163 0.236 0.431 0.247

CP 0.935 0.957 0.956 0.954 0.955 0.949

1000 AMLE 1.936 1.991 1.024 1.992 -0.949 1.526

SE 0.992 0.075 0.125 0.191 0.370 0.187

BIAS -0.064 -0.009 0.024 -0.008 0.051 0.026

RMSE 0.993 0.076 0.127 0.191 0.373 0.189

CP 0.936 0.958 0.968 0.948 0.960 0.957

5 Application to real data

Consider the survival time (T ) until the patient’s death (in
years) or the censoring time at the end of the study, as
already discussed in Section 1, for application of the new
regression. The data set refers to n = 365 women who
underwent mastectomy mastectomy at Memorial
Sloan-Kettering Cancer Center (New York) between 1976
and 1979 [15]. The immunohistochemistry (IHC) and
hematoxylin and eosin (H&E) stains measure the lymph
node status and the following variables were obtained: yi:
observed time (in years); xi1: age (in years); xi2:
multifocality (0: no, 1:yes); xi3: tumor size (in cm); xi4:
tumor grading (0: I, 1: II, II and lobular); xi5:
lymphovascular invasion (0: no, 1: yes) and xi6: lymph
node status (0: IHC+ IHC- and H&E-, 1: IHC+ and
H&E+).

It is taken xi1 = x1i1 = x2i1, xi2 = x1i2 = x2i2 = · · · =
x1i6 = x2i6 and the systematic components are expressed
as (for i = 1, . . . ,284)

φi =
exp{β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6}

1+exp{β0 +β1xi1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6}

and

h(yi|α,γ) = α yα−1
i ×

exp{γ0 + γ1xi1 + γ2xi2 + γ3xi3 + γ4xi4 + γ5xi5 + γ6xi6} .

We consider a reduced sample of n = 284 patients
(78% of censoring) after deleting patients with
incomplete data and missing observation times. The
Kaplan–Meier estimate in Figure 1 (left panel) by tumor
grading has a well pronounced plateau at the level above
zero according to [2].

Different regressions are compared via the Akaike

information criterion AIC = −2ℓ(ϑ̂ϑϑ) + 2#(ϑϑϑ) and
Schwartz–Bayesian criterion
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Fig. 5: QQ plots.

SBC = −2ℓ(ϑ̂ϑϑ)+ #(ϑϑϑ) log(n), where #(ϑϑϑ) is the number
of estimated parameters. The special models discussed in
Section 1 are fitted to these data.

The selection criteria for three fitted regressions are
given in Table 2. Each point in the QQ plots of the
quantile residuals ([20], [21]) for the destructive Poisson,
geometric and logarithmic models with identity link
function in Figure 5 corresponds to the median of five sets
of ordered residuals. The statistics in Table 2 and these
QQ plots indicate that the destructive geometric cure rate
(DGCR) regression is the best model to fit these data.

Table 2: Selected criteria for the fitted models.

Model ℓ(ϑ̂ϑϑ ) AIC SBC

Poisson -308.314 648.627 707.011

Geometric -307.760 647.520 705.903

Logarithmic -308.154 648.307 706.691

The MLEs for the full model are reported in Table 3.
The estimate of α rejects the exponential distribution (α =
1) for the unobserved failure times.

The effects of the covariates in the probability of
undestroyed causes and short-term survivors can be based
on the likelihood ratio statistic for testing
H0 : γ1 = γ2 = γ3 = γ4 = γ5 = γ6 = β1 = β2 = 0, which
yields wn = 0.179 (p-value=1). Thus, the age,
multifocality, tumor size, tumor grading, lymphovascular
invasion and lymph node status are insignificant for the
probability of undestroyed causes. Similarly, the age and
multifocality do not have significant effects on short-term
survivors. Thus, the MLEs (and their SEs) of the
parameters for the reduced DGCR regression with
significant covariates are reported in Table 4, where the
values of AIC and SBC are 631.699 and 660.891,
respectively. Comparing these numbers with the figures in

Table 3: Results from the fitted DGCR regression.

Parameter MLE SE |MLE| / SE

θ 0.134 0.335 –

α 2.043 0.225 –

γ0 -2.926 1.781 1.643

γ1 0.006 0.019 0.333

γ2 -0.636 0.543 1.172

γ3 0.133 0.238 0.557

γ4 -1.712 1.730 0.990

γ5 -0.666 0.617 1.080

γ6 -0.582 0.444 1.313

β0 -2.854 1.067 2.674

β1 -0.017 0.014 1.209

β2 0.764 0.527 1.450

β3 0.274 0.148 1.850

β4 1.839 0.684 2.688

β5 0.432 0.479 0.903

β6 1.665 0.550 3.026

Table 2, we conclude that the reduced DGCR regression
provides a similar fit to these data.

Table 4: MLEs of the parameters for the reduced DGCR

regression.

Parameter Estimate (est) Standard error (se) |est| / se

θ 0.005 0.076 —

α 1.933 0.205 —

γ0 -4.075 0.463 8.805

β0 -5.216 1.163 4.483

β3 0.391 0.168 2.331

β4 3.165 1.102 2.871

β5 0.719 0.394 1.824

β6 1.900 0.518 3.666

The DGCR regression is now fitted by considering
just one covariate. The empirical and estimated survival
functions for each covariate are displayed in Figures
6 (a), (b), (c). In fact, the reduced DGCR regression
provides a good fit to these data.

The following calculations are for illustrative
purposes. The explanatory variables for four hypothetical
mastectomized women A,B,C and D are given in Table 5.
For example, because of these variables there are different
cure rates and probability of undestroyed causes, namely
0.979 and 0.021 for woman A and 0.227 and 0.772 for
woman D. The right and center panels of Figure 7
display plots of the estimated probabilities of undestroyed
causes and cure rates for four mastectomized women in
terms of characteristics of the tumors by fixing the size.
The plots reveal that the probability of undestroyed
causes increases with increasing size tumor and cure rate
decreases more rapidly with increasing tumor size. The
plots in Figure 7 display some estimated functions for
these women described above.
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Fig. 6: Kaplan-Meier curves and estimated survival functions

stratified by: (a) tumor grading. (b) lymphovascular invasion. (c)

lymph node status.

Table 5: Estimated probability of undestroyed causes and cure

rates for four mastectomized women.
Patient tumor size tumor grade lymphovascular staining p0 φ

A 3.5 0 0 0 0.979 0.021

B 3.5 0 0 1 0.875 0.125

C 3.5 0 1 1 0.772 0.227

D 3.5 1 0 1 0.227 0.772
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Fig. 7: Probability of undestroyed causes (right panel), cure rates

(center) and surviving function (right panel) under the DGCR

model for four mastectomized women.

6 Concluding remarks

We proposed a destructive power series cure rate model
which allows to estimate the proportion of causes not
eliminated by initial treatment (undestroyed causes).
Some compounding regressions are special cases of the
introduced formulation, namely: the destructive Poisson,
logarithmic and geometric cure rate models. The
recurrence time distribution for the entire population was
investigated and some mathematical properties of the
recurrence time for the non-cured individuals are
addressed. The regression model was appropriate to study
the recurrence time and cure fraction of several types of
cancers after surgery. An application was provided to

evaluate the risk of breast cancer recurrence after the
mastectomy by assuming that the promotion times of the
carcinogenic cells followed the Weibull distribution. The
maximum likelihood estimation method provided
consistent estimators of the regression coefficients. We
showed that the tumor size, tumor grading,
lymphovascular invasion and lymph node status are
significant prognostic variables for survival time and
mortality risk in mastectomized women.
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