

Applied Mathematics & Information Sciences Letters An International Journal

http://dx.doi.org/10.18576/amisl/120101

Roman and Inverse Roman Domination in Hexagonal **Systems**

M. Kamal Kumar*, Prakash Chandra Mittal, Manisha Gupta, Zulfiqar Zaman and TusharPradip Atole

Department of the Information Technology, Mathematics Section, University of Technology of Applied Sciences, PO Box 74, Postal Code 133, Muscat, Sultanate of Oman

Received: 2 Nov. 2023, Revised: 2 Dec. 2023, Accepted: 12 Dec. 2023

Published online: 1 Jan. 2024

Abstract: In the recent past the field graph theory have grown exponential due to its various application in the real life systems. Among the various sub field in graph theory domination theory in graphs has its special place for its interesting and vast application in networking and other advance field of sciences. Among various types of domination, Roman dominating function is defined as $f:V(G)\to\{0,1,2\}$ satisfying the condition that $\forall u\in V, f(u)=0, \exists v\in V, f(v)=2$ and d(u,v)=1. If V-D contains a Roman dominating function f^1 . Where "D" is the set of all vertices v for which f(v) > 0. Then f^1 is called the Inverse Roman dominating function on a graph G(V,E) with respect to Roman dominating function f, in this paper Roman Domination Number and Inverse Roman Dominating Number in hexagonal system is obtained.

Mathematics Subject Classification: 05C69

Keywords: Domination number, Inverse domination number, Roman domination number.

1 Introduction

A graph is a set of object and the relation between them. Objects and relations between them are represented by nodes and edges denoted as G(V,E). Claude Berge [1] introduced the concept of domination theory in graphs. This concept was introduced in line with the game of chess and its covering pawns. Ore [2] formally published a book on graph theory in which for the first time dominating set and domination number was formally introduced. Next 15 years nothing much has been done in this concept. Only in the year 1977 Cockayne and Hedetniemi [3] published a survey paper using the notation $\gamma(G)$ for domination number which subsequently became the accepted notation. This survey paper seems to have set the motion to modern study of domination theory in graphs. Now there are thousands of research papers on this concept and is steadily growing. Many researchers have defined various types of dominating functions which accounts to be more than 100 different types among them Roman domination function is one.

A British mathematician, Ian Stewart [4] in his article titled "Defend the Roman empire" analyzed Emperor Constantine strategy to defend his empire. Emperor Constantine the great ruled the Roman Empire in 4th

century CE. During this period the empire was under severe attack due to various conflicts both internally and externally. In order to protect his empire the challenge faced by the emperor was to place the limited available legion in a specific location so that the entire empire is secured from the enemy's attack. Hence the emperor came up with an innovative idea to place these four legions to secure eight locations, by placing two legions in a location such that in case of conflict one legion will protect the stationed location and other will protect the adjacent location. Inspired by this article Henning and Hedetniemi [3] formally introduced the concept of Roman dominating function. Dominating function on a G(V,E)graph is defined to be $f: V(G) \to \{0,1,\}$ satisfying the condition that for every vertex $u \in V, f(u) = 0$ is adjacent to at least one vertex $v \in V$ such that f(v) = 1. For a real valued function $f: V \to R$, the weight of the f is $w(f) = \sum_{v \in V} f(v)$. The

domination number denoted by $\gamma(G)$ is the minimum weight among all the dominating function in graph G. Roman Dominating Function (RDF) on a graph

G(V,E) is defined to be function $f:V(G)\to\{0,1,2\}$ satisfying the condition that for every vertex $u \in V$, f(u) = 0 is adjacent to at least one vertex $v \in V$ such that

^{*} Corresponding author e-mail: kamalmvz@gmail.com

f(v) = 2. For a real valued function $f: V \to R$, the weight of the f is $w(f) = \sum_{v \in V} f(v)$. The Roman Domination

Number (RDN) denoted by $\gamma_R(G)$ is the minimum weight among all the RDF in graph G. If V-D contains a Roman dominating function $f^1:V(G)\to\{0,1,2\}$. "D" is the set of vertices v for which f(v)>0. Then f^1 is called the Inverse Roman Dominating Function (IRDF) on a graph G with respect to Roman dominating function f. The Inverse Roman Domination Number (IRDN) denoted by $\gamma_R^1(G)$ is the minimum weight among all the IRDF in graph G.

ReVelle and Rosing studied the deployment of the legions through a form of zero-one integer programming [5]. The assigning of legions location is not the only problem related with Roman domination but also this concept is applicable to many similar problems in the modern world like finding the optimal location of setting up of hospitals, restaurants, fire stations, mobile towers, police stations etc.

Hexagonal systems are widely available in the nature such as primary structure in crystalline solid. Benzenoid hydro carbon, insect eyes, basalt columns, honey comb, snowflakes etc. In modern world various hexagon interconnecting network topology are studied [6,7,8,9,10,11]. The covering area of a cellular network is often visualized and approximated as a hexagonal cell network. For any undefined terms and notations, we refer Harary [12]. For preliminary results we refer [13,14,15,16,17].

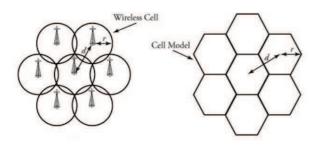


Fig. 1: Cellular networks modelled into a hexagonal system

2 Isomorphic of hexagonal system

Hexagonal system are isomorphic i.e., $H(a \times b) = H(b \times a)$.

Illustration:

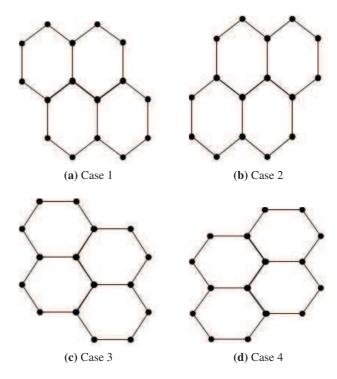


Fig. 2: Isomorphism of Hexagonal Grid $H_{2,2}$

Rotation of case 1 to 90° results in case 4. Rotation of case 1 to 180° results in case 2. Rotation of case 2 to 90° results in case 3. Hence we can conclude that all the above four cases are isomorphic to each other.

3 Labelling of hexagonal system

Hexagonal system is denoted $H_{m,n}$, m hexagonal rows and n hexagonal column. It's also called as Hexagonal Grid with m rows and n columns. For n=1, we have a linear hexagonal chain. The zigzag line with no vertical edges is called horizontal zigzag line. These lines are denoted by L_i , $(1 \le i \le m+1)$. Vertices of L_i , i=1, m+1 are of the form $v_{i,1}, v_{i,2}, \ldots, v_{i,2n}, v_{i,2n+1}$. Otherwisefor each L_i , $2 \le i \le m$ we have the vertices of the form $v_{i,1}, v_{i,2}, \ldots, v_{i,2n+1}, v_{i,2n+2}$. Therefore $H_{m,n}$ has 2(2n+1)+(m-1)(2n+2)=2(mn+m+n) vertices. For $n=2,3,\ldots$ we have double triple hexagonal chain $H_{4,3}$, with 4 hexagonal rows and 3 hexagonal columns is illustrated in Fig. 3.

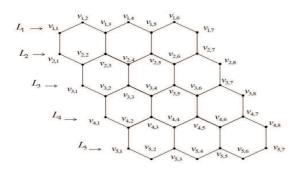


Fig. 3: Labeling for the Hexagonal Grid $H_{4,3}$

4 Main Result

Theorem 4.1. *If* $G = H_{1,n}$, then $\gamma_R(G) = \gamma_R^1(G) = 2n + 2$.

Proof. The vertices are labeled as given in the Fig. 4. The linear chain hexagon has n hexagon. Without loss of generality $f(v_{i,j}) = 2$, i = 1 and i = 2 alternate labeling, j = 2k + 1, $0 \le k \le n$. Hence the cardinality of minimal dominating set is given by |D| = n + 1. Interchanging the value of i = 1 2 as i = 2 1 in the RDFf, we get $f^1(v_{i,j}) = 2$, i = 2 1, $j = 2k + 1, 0 \le k \le n$. Hence the cardinality of minimal inverse dominating set is given by $|D^1| = n + 1$.

Hence
$$|D| = |D^1|$$
, $\gamma_R(G) = \gamma_R^1(G) = 2n + 2$.

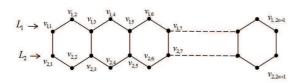


Fig. 4: Labeling for the Hexagonal Grid $H_{1,n}$

Theorem 4.2. *If* $G = H_{2,n}$, then

$$\gamma_{R}(G) = \begin{cases}
2n + 2 + \left\lceil \frac{4n}{3} \right\rceil & n = Odd \\
2n + 2 + \left\lceil \frac{4n+2}{3} \right\rceil & n = Even
\end{cases} and$$

$$\gamma_{R}^{1}(G) = \begin{cases}
2n + 3 + \left\lceil \frac{4n+2}{3} \right\rceil & n = Odd \\
2n + 2 + \left\lceil \frac{4n+2}{3} \right\rceil & n = Even
\end{cases} .$$

Proof. Label the vertices as given in Fig. 5. In a given $H_{m,n}$, if m=2, then the graph is called double hexagon with three levels

Case 1: n is Odd:- L_1 and L_3 has 2n + 1 zig zag vertices whereas L_2 has 2n + 2 zig zag vertices. We split the graph G as $H_{1,n}$ and path graph P_n . Without loss of generality $f(v_{1,2}) = f(v_{2,2}) = 2$, $f(v_{ij}) = 2$, i = 1 and

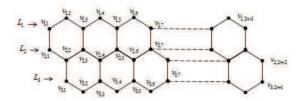


Fig. 5: Labeling for the Hexagonal Grid $H_{2,n}$

i=2 alternate labeling, $j=2k+1,\ 2\leq k\leq n-2$. We have $\gamma_R(H_{1,n})=2n+2$. Now the function f is only for the vertices in L_3 which is a path graph P_n . Since $f(v_{2,2})=f(v_{2,2n+1})=2$, then the path P_n will have 2n vertices. Hence $\gamma_R(P_n)=\left\lceil\frac{2(2n)}{3}\right\rceil=\left\lceil\frac{4n}{3}\right\rceil$. For Inverse Roman domination also $\gamma_R^1(H_{1,n})=2n+2$, whereas now the path P_n will have 2n+1 vertices. This can be considered as $P_1\cup P_{2n+1}$, hence $f(P_1)=1$ and $\gamma_R^1(P_{2n+1})=\left\lceil\frac{2(2n+1)}{3}\right\rceil=\left\lceil\frac{4n+2}{3}\right\rceil$. Hence for n=0 odd is proved.

Case 2: n is even:- similar to the above case we can obtain $\gamma_R(H_{1,n})=2n+2$, P_n will have 2n+1 vertices. Therefore $\gamma_R(G)=\gamma_R^1(G)=2n+2+\left\lceil\frac{4n+2}{3}\right\rceil$.

 $\begin{array}{l} \textbf{Theorem 4.3.} \ If \ G = H_{m,n}, \ then \\ for, \ m \ is \ odd: \ \gamma_R(G) = (m+1)(n+1), \\ \gamma_R^1(G) \leq (m+1)(n+1) + \min(m,n) - 1, \\ for, \ m, n \ even: \ \gamma_R(G) \leq m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil, \\ \gamma_R^1(G) \leq \begin{cases} m(n+1) + 1 + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \cong 0 \ \text{mod} \ 3, \\ m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \neq 0 \ \text{mod} \ 3. \end{cases}$

Proof. Case 1: if m is odd, n = even or odd, then we have total $\frac{m+1}{2}$ linear chain of $H_{1,n}$ for the Roman dominating function f it's found that $\gamma_R(H_{1,n}) = 2n + 1$. Therefore $\left(\frac{m+1}{2}\right) \times 2n + 2$, $\gamma_R(G) = (m+1)(n+1)$.

For Inverse Roman dominating function f^1 . For each $\left(\frac{m+1}{2}\right) \times 2n+2$ linear chain of $H_{1,n}$ in the function f^1 there are m-1 vertices left out. hence $f^1(v_{i,j})=1$. Hence $\gamma_R^1(G) \leq (m+1)(n+1) + \min(m,n) - 1$.

Case 2: if m, n is even, then we have total $\frac{m}{2}$ linear chain of $H_{1,n}$ for the Roman dominating function f also given $\gamma_R(H_{1,n}) = 2n + 1$.

Therefore $\left(\frac{m}{2}\right) \times 2n + 2 = m(n+1)$. The last row is the path with 2n + 1 vertex hence $\left\lceil \frac{4n+2}{3} \right\rceil$. Hence $\gamma_R(G) \leq m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil$. As the last row is a path with 2n+1 vertices. Hence for IRDF with 2n+1 vertex we have the following result

$$\gamma_R^1(G) \le \begin{cases} m(n+1) + 1 + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \cong 0 \mod 3 \\ m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \neq 0 \mod 3. \end{cases}$$

5 Honey Comb

Definition 5.1. $H_C(n)$ is obtained from $H_C(n-1)$ by adding a layer of hexagon to the boundary of $H_C(n-1)$. Hence generating the honey comb graph $H_C(n)$ is a successive repetition of the adding one hexagonal to the boundary. $H_C(1)$, $H_C(2)$ and $H_C(3)$ are given in the below Fig. 6. If $G = H_C(n)$, then $V(G) = 6n^2$ and $E(G) = 9n^2 - 3n$, diameter of $H_C(n) = 4n - 1$.

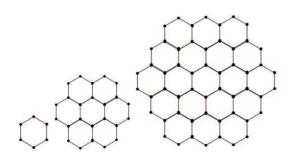


Fig. 6: Honey Comb graph $H_C(1)$, $H_C(2)$ and $H_C(3)$

Theorem 5.1. *If*
$$G = H_C(n)$$
, then $\gamma_R(G) = \gamma_R^1(G) \le 12n^2 - 12n + 4$.

Proof. Given $\gamma_R(H_C(1)) = 4$, rotating the Roman dominating function for f(v) > 0 by 90° we get, $\gamma_R^1(H_C(1)) = 4$. $H_C(n)$ is obtained from $H_C(n-1)$ by adding a layer of hexagon to the boundary of $H_C(n-1)$. Hence the following equations could be obtained as a property of sub graph $H_C(2) = H_C(1) + 6H_C(1)$, the equation is obtained considering the fact that $H_C(2)$ has one $H_C(1)$ in the middle and six $H_C(1)$ in the border of the centre $H_C(1)$. Similarly

$$H_C(3) = H_C(1) + 6H_C(1) + 12H_C(1),$$

 $H_C(4) = H_C(1) + 6H_C(1) + 12H_C(1) + 18H_C(1),$
 $H_C(5) = H_C(1) + 6H_C(1) + 12H_C(1) + 18H_C(1) + 24H_C(1).$ Therefore using the progression formulas, this equation can be generalised as

 $H_C(n) = 1 + \left[\left(\frac{n-1}{2}\right)(6+(n-1)6)\right]H_C(1).$ $\gamma_R(G) = 2n^2 - 12n + 4$. Similarly rotating the Roman dominating function for f(v) > 0 by 90° we get Inverse Roman dominating function.

Also $G = H_C(n)$, has many over lapping vertices of the hexagon, hence we get the upper bound. Hence the result, $\gamma_R(G) = \gamma_R^1(G) \le 12n^2 - 12n + 4$.

The above bound is not strong, hence we find an alternate bound for honey comb graph.

Theorem 5.2. *If*
$$G = H_C(n)$$
, then $\gamma_R(H_C(n)) \le 2 \times \gamma_R(H_{m,n}), \gamma_R^1(H_C(n)) \le 2 \times \gamma_R^1(H_{m,n}).$

Proof. Here we divide the Honey Comb graph $H_C(n)$ into to equal graph by cutting in the middle as shown in the

Fig. 7. This division will be more convenient to find Roman and Inverse Roman domination function. If $H_C(n)$ is divided in the middle and made into two equal parts. Then we have $H_{1,2n-1}$ linear hexagonal chain in the middle, followed by $H_{1,j}$, $k \le j \le 2k-1$, $n \le k \le 2n-1$ linear hexagonal chain above and below. Hence if we consider $H_{n,n}$ is above the middle $H_{1,2n-1}$ linear chain we get lower bound and if we consider $H_{2n-1,2n-1}$ is above the middle $H_{1,2n-1}$ linear chain we will get upper bound. From Theorem 4.3. We had already obtained the result as follows. If $G = H_{m,n}$, then for, m is odd,

$$\begin{array}{l} \gamma_R(G) = (m+1)(n+1), \\ \gamma_R^1(G) = (m+1)(n+1) + \min(m,n) - 1, \\ \text{for,} \quad m,n \quad \text{is} \quad \text{even,} \quad \gamma_R(G) = m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil, \\ \gamma_R^1(G) = \begin{cases} m(n+1) + 1 + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \cong 0 \bmod 3 \\ m(n+1) + \left\lceil \frac{4n+2}{3} \right\rceil, & 2n+1 \neq 0 \bmod 3. \end{cases} \\ \text{Hence} \end{array}$$

 $\gamma_R(H_C(n)) \leq 2 \times \gamma_R(H_{m,n}), \gamma_R^1(H_C(n)) \leq 2 \times \gamma_R^1(H_{m,n}).$

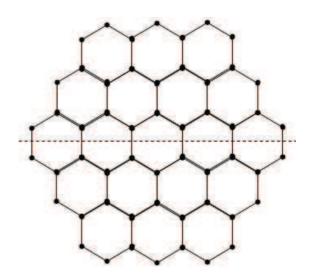


Fig. 7: Honey Comb graph $H_C(3)$

6 Conclusion

The hexagonal systems are one of the most familiar networks available in the nature. The hexagonal system is well known for its stability. In this paper labelling of hexagonal system is obtained in a unique way so that in future study, same kind of labelling could be used. Also Roman and Inverse Roman domination of Hexagonal Grid and Honey Comb graph is obtained. As these are very familiar networks, hence there are lots of scopes of the further research. Finding the application of above work in combating the network threats is still open.

References

- [1] C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.
- [2] O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), (1962).
- [3] M.A. Henning and S.T. Hedetniemi, Discrete Mathematics, **266**, 239–251, (2003).
- [4] I. Steward, Scientific American **281**(6), 136–139, (1999).
- [5] C.S. ReVelle and K.E. Rosing, Amer. Math. Monthly, 107(7), 585–594, (2000).
- [6] Ivan Cimrak and Iveta Jancigova, Computational Blood Cell Mechanics: Road Towards Models and Biomedical Applications, CRC Press, 2018.
- [7] S. Katti, D. Katabi, W. Hu, Rahul and M. Medard, The importance of being opportunistic; practical network coding for wireless environments. 43rd Allerton Annual Conference on Communications, Control and Computing Monticello II, (2005).
- [8] Mihaela Iridon and David W. Matula, Journal of Graph Algorithms and Applications, **6**(4), 373-404, (2002).
- [9] Pei Zheng and M. Ni Lionel, Smart Phone and Next Generation Mobile Computing, Morgan Kaufmann, 2005.
- [10] Samu Alanko, Simon Crevals, Anton Isopoussu, Patric Ostergard and Ville Pettersson, Computing the Domination Number of Grid Graphs, The electronic journal of combinatorics, 18, (2011).
- [11] Y. Wu, P.A. Chou, and S.-Y Kung, Information exchange in wireless networks with network coding and physical-layer broadcast. Technical Report MSR-TR-2004–78. Microsoft Research Redmond WA, (2004).
- [12] Frank Harary, Graph Theory, Addison Wiley, Reading Mass,
- [13] M. Kamal Kumar and L. Sudershan Reddy, Discrete Mathematics Algorithm and Application, 5(3), 1–4, (2013).
- [14] M. Kamal Kumar and R. Murali, International Journal of Computer Application, 4(4), 219–238, (2014).
- [15] M. Kamal Kumar and R. Murali, Study on different parameters of domination theory in graphs. Ph.D. Thesis, Visvesvaraya Technological University, India, (2015).
- [16] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, 41–65, 155–181, (1998).
- [17] H.B. Walikar and L. Sudershan Reddy, Roman domination in special class of graphs. Ph. D. Thesis, Karnatak University, Dharwad, 2008.

M. Kamal Kumar has around 20 years of experience in Academic field, where he had the role of Professor, Researchers, Mentor, Counsellor, Team Leader, Chief Coordinator, Journal Reviewer, consultant and others. Dr. Kamal's interests include Graph theory and

Philosophy. His research contributions have found their ways to various prestigious journals. He has also won several awards and appreciations from prestigious organisations. He is also involved in various Committees such as Curriculum Development, Organizing events, Content Development, E-Learning resources, Online Assessment and Grading. He is also a member in Board of Examiners to adjudicate the thesis, Journal Editorial Board and Board of Studies for various reputed organisations.

Prakash Chandra Mittal

completed his Ph.D. in the field of Game Theory from the University of Rajasthan, Jaipur, India in 2014. His current research interest is in the field of auction theory, mechanism design, social choice theory and graph theory. He is the writer of

4 books (Operations research theory and practice, Mathematical Science, Business Research Methods and Techniques and General Sciences) and 7 research papers in the field of Repeated Game Theory.

Manisha Gupta
Completed her doctorate
in "A study of flow behaviour
of incompressible fluids".
from Dr. B. R. Ambedkar
University, Agra India. She is
a reviewer of several national
and international journals in
the frame of pure and applied
mathematics. She got Best

Paper Award in ICIRSMT, 2021. She has published 2 patent in government and more than 20 papers in international and national journals. Her main research interests are fluid dynamics, heat and mass transfer and transient free convection flow.

Zulfigar Zaman a dedicated Ph. D. scholar at Universiti Tun Hussein Malaysia (UTHM), Onn his completed master's mathematics at the Government College University Lahore, Pakistan. With a keen interest in Graph Theory and Fuzzy Logics,

Zaman's thesis delved into the intricate domain of Inner Product Spaces in Pure Mathematics. His notable contribution to the academic landscape includes the publication of a paper on "Inverse Roman Dominations in Certain Graphs" in the esteemed journal of Bulgaria. Currently contributing his expertise at the University of Technology and Applied Science in Muscat, Sultanate of Oman. He continues to make significant strides in the realm of mathematical research and education.

Tushar Pradip Atole
is a Lecturer at University
of Technology and Applied
Science, Muscat Sultanate
of Oman. Completed
his M. Tech in Industrial
Mathematics with Computer
Application from Nowrosjee
Wadia college, Pune
University in 2010. His

current research interest includes Matroid Theory, Programming in C++ and Python, Graph Theory and Linear Algebra. Worked as an Academic Consultant in Next Education Pvt. Ltd, Telangana, Hyderabad for the short period. Visited several schools in India to implement innovative teaching methods using different Hardware/Software tools.