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Abstract: In this paper, an finite-time synchronization controller is proposed fogémeral chaos model. Compared to other results,

the controller designed is simpler and independent on the nonlinear fandtahaos system. So the finite-time control scheme can be
used in a wide range of chaos system. The simulation results are giverstmiifuthe effectiveness of the finite-time controller and the

applicability to security communication system of this synchronization scheme
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1 Introduction and Chua system. There are some limitations for these
contributions to be applied to the other systems except the

Chaos synchronization has been a focused research topR€ Studied. The other problem for some works is the
during the last decade due to its theoretical and practica?omp!ex controller design. S_ome cont_rollers proposed
applications especially in security communication. Many contain all or parts of the nonlinear function, and then the
schemes and techniques for controlling chaosC!0S€d-l00p error system can be deduced to linear system.
synchronization such as adaptive feedback contred]| This method W|I_I reduce the difficulties of mathematical
state feedback control 5[ 6] and observer-based Proof, meanwhile make the controller too complex
approach 7] etc have been developed. Furthermore, someFompared to systems being controlled. These approaches
attractive results of synchronization and applications in2'€ usually difficult to implement in experiments when
secure communication for a class of chaotic systems havBOSSiPIe-

been reportedl-16. Motivated by the above discussion, in this paper, a
Based on the above results, a large number of chaogimple synchronization controller is proposed for
synchronization schemes are aimed at asymptoticajealizing synchronization in finite time based on the
stability of error synchronization dynamics. From the general chaos system. The structure of the controller is
practical point of view, however, it is more valuable that jndependent on the chaos system, so it can be
the SynChronization ObjeCtive is realized in a finite time. imp|emented in many chaos Systems_ The numerical

Especially in secure communication systems for instancesimulations are given to illustrate the effectiveness.
the range of time during which chaotic systems are out of

synchrony is equivalent to the range of time in which the ~ The rest of the paper is organized as follows. In Section
encoded message/data cannot be recovered or ser®. the finite-time controller is designed to guarantee the
Therefore, the synchronization time optimization is stability of the error system. In Section 3, the simulation
essential for satisfying the requirement of communicationexample is given to illustrate the applicability for setyiri
and this could be done by means of finite-time control-acommunication of the proposed approach. A conclusion is
very promising technique by which we can decide thedrawn in the last section.

settling time flexibly. Some authors have investigated
chaos  synchronization based on finite-time
recently B-16]. However, most of the reported works are
more specific to some systems, such as Lorenz systertimet, while ||x(t)|], := \/f5’°||x(t)||2dt. sgn(+) is denoted

Notations:| denotes the identity matrix of appropriate
dimensions|x(t)|| means the Euclidean vector norm at
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as sign function. diag--) represents a block-diagonal In addition, if D = R" andV(x(t)) is also radially

matrix. unbounded (i.eV(X(t)) — o as x(t) — ), then the
origin is a globally finite-time stable equilibrium of
system (5).

2 The Main Results Theorem 1. The error system (2) can achieve stability

(i.e. the synchronization of the master and slave system (1)
Consider the following master-slave synchronizationis gchieved) in finite timd; by the controller (3), if there

system exists constark > (d+ A M2 /2 > 0, the settling time
M X(t) = Ax(t) + F(x(t)) 1) Ty is determined by
S y(t) = Ay(t) + F(y(1)) + u(t)

where M and S denote the master system and slave 2(V(en)) 2

system with the state vectorgt) € R" and y(t) € R RS dil—a) ° 8)

respectively.A is the constant matrix with appropriate ) ) ) )
dimensions.u(t) = (uy(t),---,Un(t)) is the finite-time ~ WhereA = max{0, Amax}, in hich Amax is the maximum

controller to be designed. eigenvalue of PA+ yl) andy is Lipschitz constant of (),
Defining e(t) = y(t) — x(t), then we have the error constantd >0, a € (0,1) andM > 0 such thaf|e|* < M.
dynamic system as follows Proof: Construct a Lyapunov function candidate as
&(t) = Ae(t) + f(y(t) — f(x(t) +ut) (@ V(e)= (& +&+...+6) ©)
The controller(t) is proposed as:

Taking the time derivative of (t) and substituting (2)
u(t) = —kla (1) sgn(a(t)) 3) and (3) intoV (t) yield
where constank is the controller gain and the constant .

€ (0,1). V(e) = 2(ére1 + &6+ ...&n6n)

Fact 1 According to the features of chaos system, T n
each state of chaos systext) = f(x(t)) is bounded, =2e Ae+2_Z(fi(y)— fi(x)+u)-e
furthermore the error of any two states is bounded too.

From Fact 1 we can get the conclusion that there exists
a constant > 0, such tghat the state of error system (2) s2e Ae+221||f —fiGJl- &l
satisfies|e||? < M.

Assumption 1 The nonlinear functiorf : R* — R" in 72kzi|e,|°’+l
(1) satisfies the following Lipschitz condition:
1£00) = 0| < yllx =%l by virtue of Assumption 1, we have
wherey is a positive scalar. n

Lemma 1 Supposey,a,---,a, and 0< g< 2areall  V(e) < 2e'Ae+ 2e"ye— 2k z lg|@t?
real numbers, then the following inequality holds: vt

2

=2"A+yle— 2kz (\a|)
a/2
|a1\q+|a2|q+~~+|an|q2(a§+a§+~~+aﬁ) . (4 < Amasee— 2k §(|Q‘ )Tl,

Lemma 2% Consider the system
Due to the fact & < 91 < 1 and Lemma 1, we get
x(t) = f(x(1)), f(0)=0xeR’ ®)
wheref : D — R" is continuous on an open neighborhood V(€) < Amaee— 2k(V(e))aTH
D C R". Suppose there exists a continuous differential - L a1
positive-definite functio/ (x(t)) : D — R, real numbers = —(2k—2Amax(V(€)) 2 )(V(e) 7,
p>0,0<n < 1,suchthat
By Theorem 1, we can gét> ( d+AM /2>O

V(x(t)) + pv7(x(t)) <0, ¥x(t) D (6)  then
Then, the origin of system (5) is a locally finite-time
stable equilibrium, and the settling time, depending on the . 1-a 1a atl
initial statex(0) = xo, satisfies V(e) < —(d+AMZ" —Amax(V(e)) 2 )(V(e)) Z (10)
V171 (x0) Next, we will discuss the value of (e) according to
i< p(1—n) ) Amax- There are two possibilities fonax:
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(1) WhenApax < 0, thenA = 0 due to the fact that
A =max{0, Amax}, it yeilds

1-a a+l

V(e) < —(d—Amax(V(€) 2" )(V(e) T
< —d(V(e) T,

(2) WhenAmax > 0, thenA = Apax, One can get

a+l
2

V(€) < —(d+ Amax(M 2 — (V(€)) 2"))(V(e)) "

According to Fact 1, we have the following inequality
n
V(e)= 5 & = [el]* <M, ityields
i=1

. a+l

V(e)<—d(V(e) = (11)

Therefore, no matter what the valuefax is, we can
conclude thaV/ (e) < —d(V(e))“Z", in whichd > 0, a €
(0,1). According to Lemma 2, we can get the conclusion
that the error dynamic can achieve stability in finite time

1-a
and the settling timd@; < 2(V(ep)) > /d(1—a). Hence

the chaos system (2) can synchronize before Iiméd his
completes the proof.

3 Numerical Simulation

In this section, the following Lorenz systems are
considered as master and slave system for the security
communication scheme based on chaos masking scheme.
X1 =a(Xe—X1)
Master systemz Xo = CX1 — X2 — X1X3
X3 = X1X2 — bxg
yi=aly2—y1)+u
Slave system:{ Y2 =cy1 — Y2 — 1Yz + Uz
Y3 =Yy1y2—bys+Us
wherea = 10, b = 8/3, ¢ = 28. We set the initial value
for both chaos systems &g;(0),x2(0),x3(0)) = (1,2,0
and(y1(0),y2(0),y3(0)) = (0,1,2), then the initial value of
error system ige; (0), e2(0),e3(0)) = (-1,-1,2.

As is shown in Figure 1 and 2, the three states of
Lorenz system are bounded independent on the initial
value, ie. Xx(t) € (—20,20), y(t) € (—30,30),

Z(t) € (0,50), so are the error state values. Due to Fact 1
|lel|> < M, we choseM = 7700 for Lorenz system. The
Lipschitz constant is calculated gs= 65.

Then we can getAmax = 147 by calculating the
maximum eigenvalue of (A + yl). Hence, the range of
the controller gain isk > 182, we chosek = 185 for
simulation. Meanwhile, we set the parametdrs 4 and
o = 0.8, by Theorem 1 the settling time is calculated as
T1 < 2.99%. Figure 3 shows that the states of error
dynamic can regulate to zero in short time, less than the
settling timeT;. This implies that the master and slave
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Fig. 1: The three state trajectories of Lorenz system
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Fig. 2. The chaotic attractors of Lorenz system
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Fig. 3: The state trajectories of error system
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chaos systems can synchronize by the finite-time controt Conclusion

scheme proposed very quickly.
Prop ¥ y In this paper, control theory is used to formalize

The initial Sine wave signal can be masked well by thefinite-time chaos synchronization controller. The stapili
master system shown in Figure 4, the transmitted signatriteria is presented for error system based on Lyapunov
looks like noise signal and impossibly attracts attentibn 0 method. Compared to other results, the proposed
intruder. The recovered signal is shown in the bottom halfcontroller is simpler. The numerical simulation results fo
of Figure 5, which is almost the same as the initial Sinelorenz system show the effectiveness of our finite-time
wave signal shown in the top half of the same Figure.  control scheme and its applicability to security

communication system. The scheme provides a safe way
to mask useful information carrying signal.
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