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Abstract: In manufacturing organization, one of the mechanisms to minimizemakespan (the total completion time) requires machines
and operations to be in accordance with a specific flow sequence, i.e., each production run has the same processing order. Determining
the specific flow sequence to minimize themakespan is the well-known scheduling problem named permutation flow-shop problem
(PFSP) which has been confirmed to be an NP problem. Hence, numerous researchers have devoted themselves to solve this problem
effectively. However, many studies suffer from high computation complexity. This work suggests a simple exchange local search
heuristic scheme with amended simulated annealing to efficiently solve PFSP.The simple exchange local search is adopted for
generating the solution (product run) to reduce excessive computationcomplexity. Meanwhile, an amended simulated annealing strategy
concerning relative energy change is applied to stable acceptance probability of the hill-climbing. Moreover, a threshold for relative
energy change is designed to prevent divergence. Restated, a simple, stable and low computation complexity scheme is proposed to
handle NP-complete PFSP. Experimental results illustrate that the proposed scheme provides an effective and efficient way to shorten
makespan as required in production lines.
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1 Introduction

Generally, scheduling problems involve the resources
allocation (such as processors or machines) to run a set of
activities (such as jobs, tasks, or processes) satisfying
required constraints and optimizing desired criteria.
Hence, scheduling algorithms must determine a schedule
for a set of processes that satisfies the prerequisite
constraints. There are many classes of real-world
scheduling problems; however, this study concentrates on
the permutation flow shop problem (PFSP), a particular
problem of FSP, in which the processing order of the
activities is always the same for every machine. Restated,
the machines and operations are in accordance with
specific flow sequence, i.e., each production run has the
same processing order. PFPS applications can be found in
a large number of real world environments including
manufacturing, maintenance and warehousing operations,
as well as in healthcare. Flowshop scheduling is common
in a no-wait production line with cyclic scheduling, where
multiple activities enter and leave the production line
during a cycle; this type of system usually has a larger
throughput rate than simpler ones. For example, MPEG-4

macroblock decoding is an application of a permutation
flowshop problem for synchronization in co-processor
systems while implementing tasks with low turnaround
time [1]. A multi-degree cyclic scheduling of a
permutation flowshop with two robots was studied by Che
and Chu [2].

The goal of the scheduling algorithm in solving PFPS is
to minimize themakespan, i.e., the total completion time.
However, the PFSP has been confirmed to be NP-hard [3].
The solution space consists of n! possible solutions for n
activities. However, finding the optimal solution for PFSP
problems with exact algorithms such as the
branch-and-bound method [4,5] is possible, but
impractical when problem size (n) increases. Instead,
many approximation algorithms and heuristics have been
suggested for finding near optimal solutions with less
effort, such as the CDS heuristic [6], the NEH algorithm
[7], etc. However, all of these schemes require a
substantial amount of computational effort to find
solutions that are usually far from optimal. To efficiently
obtain high quality solutions in reasonable time, many
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metaheuristics have been proposed for solving PFSP, in
particular genetic algorithms (GA) [8,9], simulated
annealing (SA) [10], tabu search (TS) [11], ant colony
optimization (ACO) [12,13], and particle swarm
optimization (PSO) [14,15,16], etc. Additionally,
metaheuristics are often integrated with a local search to
enhance the algorithms efficiency. Many of these
metaheuristics may result in acceptable schedules close to
optimal solutions. However, they are often either very
complex to implement or suffer from high computational
complexity. Hence, Ruiz and Sttzle proposed the iterated
greedy (IG) [17] and tried to provide a simple iterated
greedy local search based on NEHT heuristic [7] to
simplify implementation and reduce computational
complexity. Nevertheless, destruction and construction
phases are still needed for each IG iteration. During the
destruction phase,d randomly chosen jobs are removed
from the permutation;d jobs are then inserted back to
finish a complete permutation based on the NEHT
heuristic during the construction phase. Hence, the
complexity of NEHT is stillO(n2m) which is quite time
consuming for large instances.

This study proposes a simple exchange with amended
simulated annealing (SEASA) scheme to reduce the
excessive computational complexity and simplify the
implementation, while the method still generalizes to
other flow-shop variants. The SEASA applies a simple
exchange local search to explore the local neighborhood
of each PFSP solution. As in artificial intelligence, this
local search is easy to integrate into trajectory
meta-heuristics, like simulated annealing, tabu search,
and others. Basically, simulated annealing is a
memory-less operation. Therefore, an amended simulated
annealing strategy is also included to exclude the memory
requirement. Restated, the acceptance criterion of the
hill-climbing in simulated annealing is modified to
stabilize the acceptance probability for PFSP based on
relative energy change instead of energy difference. The
acceptance criterion is the key factor of simulated
annealing which enables the simulated annealing to
escape from local minima. Simulated annealing has
proven to be a good choice to existing algorithms for hard
combinatorial optimization problems.

This study is organized as follows: Section 2 introduces
the definition of the studied PFSP problem. Section 3
presents the details of the proposed scheme, simple
exchange with amended simulated annealing, for solving
PFSP. Section 4 illustrates the simulated cases and
experimental results as well as the effectiveness and
efficiency of the compared to that of other state-of-the-art
schemes. Finally, Section 5 presents the conclusions.

2 Permutation Flow Shop Problem

In this study, a named permutation flow shop problem
(PFSP) [3] is investigated. In PFSP, the processing order
of the activities has to be the same (in accordance with
specific flow sequence) for every machine. The PFSP can
be defined as follows:

•At any time, each machine can only process one activity.
Meanwhile, the set-up times of activities on machines are
included in the processing times.

•A set N = (1,...,n ) is composed ofn independent
activities. And a setM = (1,...,m ) consists of m
independent machines in the system. These n activities
need to be processed on them machines.

•Each activity j ( j ∈ N) which contains m operationso j,k
(k=1,..., m) to be processed with the processing timep j,i
on every machinei (i ∈ M); all of the activities are
non-preemptive and non-segmented. The operationo j,k (k
= 2,..., m) is not allowed to process untilo j,k−1 is
finished.

•All activities should be processed with the same
processing order with a permutation, i.e.,
π={π(1), ...,π(n)} from the fist machine to the last
machine, whereπ(r) indicates therth order processed
activity. Here,π illustrates the solution to the PFSP.

•The target of PFSP is widely defined as obtaining the
minimum makespan. The processing time is critical for
the minimization of themakespan.

For example, imagine a scenario with 3 activities and 5
machines where the processing timep j,i for activity j
processing on machinei is shown in Table 2.1. There are
3! solutions in the solution space. With all possible
permutation sequences of this scenario:S1={1, 2, 3},
S2={1, 3, 2}, S3={2, 1, 3}, S4={2, 3, 1}, S5={3, 1, 2} and
S6={3, 2, 1} as examples, six resulting makespans are
illustrated in Table 2.2.

Table 2.1: Processing time (p j,i) for representative example.
Machine/Activity 1 2 3

1 2 3 4
2 3 1 1
3 1 2 4
4 2 4 2
5 4 2 1

Table 2.2: Possible solutions with differentmakespans
Solution makespan

S1={1,2,3} 17
S2={1,3,2} 19
S3={2,1,3} 17
S4={2,3,1} 20
S5={3,1,2} 18
S6={3,2,1} 21
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Table 2.2 indicates that the S1 and S3 accomplish the
scheduling with shortermakespans. Restated, different
activities processing orders yield differentmakespans.
The objective of this work is to generate a flow sequence
which finds the minimummakespan.

3 Solving PFSP by Simple Exchange with
Simulated Annealing

This section outlines the details of the proposed SEASA
scheme including the procedures of SEASA, exchange
local search and amended simulated annealing. The
procedures of the proposed simple exchange with
simulated annealing (SEASA) for PFSP is summarized in
Figure 3.1.
•Step 1 is the initialization phase. In this work, NEHT
heuristic is applied to generate initial solutionS0.

•At step 2.1, the exchange local search is used for
selecting the candidate solutionS′t from the neighbor ofSt
(solution at iterationt).

•Steps 2.2 through step 2.5 are the amended simulated
annealing process utilized in this study, whereE(St) and
E(S′t) are the related energy values (makespans)
corresponding to solutionsSt andS′t respectively.

•At step 2.3, the variance of energy△E and the relative
energy changerel △E are calculated. The details of the
scheme are as follows.

Fig. 1: The procedures of SEASA.

Initial solution generation. According to the search
mechanism, starting with a good initial state (using some
heuristics such as greedy) would assist the algorithm in
obtaining optimal solutions such as in GA, ACO and
PSO. Meanwhile, a good initial solution would also
facilitate speeding-up convergence. Most studies apply
the initial solution heuristic for improving the initial
solution. There are many heuristics which can be
effectively utilized as initial solution heuristics for PFSP.
NEHT, proposed by Taillard [3], is a variation of NEH
with complexity improvements. Moreover, the NEH looks
to be the best known polynomial-time heuristic in
practice for FSP-class problems. Hence, this study applies
NEHT to obtain the initial solutionS0.

Exchange local search. The local search is a way of
neighbourhood search. Among many local search
schemes, NEH is one famous neighbourhood search
method based on insertion; the computational efficiency
and solution quality of the NEH have been verified [3].
However, the NEH requires a total of[n(n + 1)/2]− 1
schedules, withn of these schedules being complete
sequences. Thus, the time-complexity of the algorithm
rises toO(n3m) [7]. In NEHT, a data structure is applied
to reduce the time-complexity of NEH toO(n2m) [3].
Additionally, a variant of IG includes iterative insertion
neighborhood [17], but the time-complexity is stillO(n2).
Thus, this work applies exchange local search rather than
insertion local search for searching the neighborhood of
an existing solution. Restated, this investigation further
simplifies the neighborhood search operation by a simple
exchange which further reduces the time-complexity to
O(n).

The suggested exchange local search is easy to
implement. Assume that an existing activity processing
order is denoted by the permutation . The exchange
operation switches the activity at theith position and the
activity at the jth position inπ, wherei 6= j, andi, j are
randomly generated. Once a permutationπ is obtained as
a PFSP solution, in the case of:π={π(1),...,π(i−1), π(i),
π(i + 1),..., π( j − 1), π( j), π( j + 1),..., π(n)} is the
permutation before exchange local search is applied; the
new permutationπ ′={π(1),..., π(i− 1), π( j), π(i+ 1),...,
π( j − 1), π(i), π( j + 1),..., π(n)} can be obtained after
applying the exchange operation. Table 3.1 shows an
example of a permutation before exchange local search is
applied and three permutations after exchange local
search is performed fromπ. The operation of this simple
exchange local search is listed as step 2.1 of Figure 3.1.

Amended simulated annealing. The well-known
simulated annealing (SA) algorithm was first proposed for
combinatorial optimization (CO) problems by Kirkpatrick
et al. [18], and it can be classified as a trajectory
metaheuristic. The simulated annealing might (with an
acceptance probability) allow moving to a neighboring
solution with worse quality than the current solution for
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escaping from local minima. Restated, simulated
annealing relies on an acceptance criterion which is
related to an acceptance probability for accepting worse
solutions. This probability decreases as time passes.
There are three phases involved in amended SA as
displayed from steps 2.2 through 2.5 of Figure 3.1.

Table 3.1: Three exchange examples
exchange operation determinedith and jth new permutation

origin π {2,1,3,5,4}
1st (i=3,j=1) {3,1,2,5,4}
2nd (i=3,j=5) {3,1,4,5,2}
3rd (i=5,j=4) {3,1,4,2,5}

•At steps 2.2 and 2.3, the energy value related to the
solution S′t is calculated;E(S′t) is denoted as an energy
function which corresponds to the makespan of the
solution. The variance of energy (△E=E(S′t)- E(St )) and
the relative energy change (rel △E=△E /E(St)) are also
calculated.

•At step 2.4, the acceptance criterion is applied, if the
variance of energyδE is less than zero, theSt would be
replaced byS′t , i.e., S′t is accepted. Otherwise,S′t with
worse quality can be accepted with a probabilityp, where
p is a uniform distributed random number. An acceptance
probability is calculated using the acceptance probability
function which is conventionally defined as in Eq. (1).

Pacp(St ,St
′,Tt) = e−∆E/Tt = e−

E(St
′)−E(St )

Tt (1)

Here,Tt is the cooling temperature of thetth iteration, and
it decreases as the iteration proceeds. Meanwhile, the
acceptance probability decreases as the temperature
decreases based on Eq. (1). A worse solution will be
accepted when the randomly generated numberp is
smaller than the determined acceptance probability (Pacp).
However, in PFSP, the energy correlates with the
makespan of the solution and its scale depends on the
problem scale, and so does the variance of energyδE.
Consequently, the acceptance probability is greatly
affected by the problem scale. Restated, the acceptance
probability is sensitive to the problem scale. In this study,
the δE in the acceptance probability function is replaced
by the relative energy change,rel−∆E as listed in Eqs. (2)
and (3):

rel−∆E =
∆E

E(St)
=

E(St
′)−E(St)

E(St)
(2)

Pacp(St ,St
′,Tt) = e−rel−∆E/Tt (3)

Hence, this acceptance probability is less sensitive to the
problem scale, sincerel−∆E will not dramatically change
with the variation of problem dimensions.
Additionally, to prevent accepting an extremely worse
solution, a thresholdT h based onrel−∆E is included.
When ∆E > 0 with the acceptance probability and

rel−∆E <threshold (T h) are met,St is then accepted as
indicated in step 2.4 of the proposed algorithm in Figure
1. Restated, with the help of the threshold, the suggested
scheme is able to prevent divergence.

•At step 2.5, the temperature cooling schedule follows an
exponential cooling scheme (ECS) with cooling rate as
listed in Eq. (4):

Tt+1 = Tt ×α, α ∈ [0,1] (4)

4 Experiment

To verify the effectiveness of the proposed simple
exchange with simulated annealing scheme (SEASA), the
simulation instances from Taillard [19] were tested.
Taillard generated a set of PFSP scheduling problems
with different combinations of activity (n) and machine
(m), n ∈ {20,50,80, ...,440,470,500} and
m ∈ {5,10,15,20}, and there are 10 instances for each
problem case. The processing time of each activity is
distributed uniformly in the interval [1, 99]. This test suite
is obtainable from http://mistic.heig-vd.ch/taillard/ and
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files
/flowshop2.txt. In this work, simulations based on
computation time were performed and compared with the
state-of-the-art algorithms listed in [17]. The termination
condition (on the basis of computation time) in [17] was
n × (m/2)× 60, and the algorithm was running on an
Athlon XP 1600+ (1400 MHz) system. The proposed
scheme was running on a Pentium-M (1.73 GHz) PC.
Therefore, the computation time of this work was
n × (m/2) × 60 × (1.4/2.4). Additionally, parameter
settings of this simulation are:T0=1, α=0.999,
T h = makespan × 0.005 for n 6 50, otherwise,
T h = makespan × 0.001. The objective of the lower
threshold value for large size problems is to reduce the
acceptance rate of worse solutions in a large solution
space.

The performance is compared with the percentage of
deviation from Taillards upper bound (the lowest known
makespan). Each problem instance was repeated for five
independent trials (R = 5). Instead of choosing the best
trial, the average of the five trials was calculated and all
the 10 instances for every dimension problem (n activities
/ m machines) were averaged. The performance criterion
used for comparison is the average relative percentage
deviation (RPD ) as displayed in Eq. (5) which is defined
in [17].

RPD =
R

∑
i=1

(
Soli −Bestsol

Bestsol
×100%)/R (5)

whereSoli is the makespan of a solution yielded by
any of theR repetitions of the compared algorithms and
Bestsol is the makespan of the optimal solution or upper
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bound solution for Taillards instances. The simulation
results are displayed in Table 4.1 on the basis of
computation times.

As shown in Table 4.1, the proposed scheme is better than
some complex meta-heuristics and worse than the best
IG RSLS (proposed by Ruiz and Sttzle [17], HGA RMA,
PACO, and MMMAS. Although the overall performance
of this study is worse than IGRSLS, HGA RMA, PACO
and M MMAS, it is much simpler than them and hence
very simple and easy to implement.

Moreover, to verify the stability of the proposed scheme,
the relative deviation intervals (Avg Dev, average relative
percentage deviation; and Max Dev, maximum average
relative percentage deviation) are displayed in Table 4.2.
The average and maximal deviations are less than 2.2%
and 5.1%, respectively; hence, the suggested algorithm is
stable for finding solutions. In this work, more than 8500,
3500, 2000, 1000 and 400 schedules (for one instance of
20/20, 50/20, 100/20, 200/20 and 500/20 cases,
respectively) can be yielded by our scheme in one second.
That is, the consumed CPU time to find a feasible
solution for every instance for the largest case (500/20
case) would be less than 2.5 ms. Hence, the proposed
scheme is effective for solving application problems
which are similar to PFSP.

Additionally, the performance of the different algorithms
is compared based on the number of solutions generated.
Each problem instance was tested for five independent
trials, where the best trial was chosen and the 10 different
instances for every problem size were averaged.

Comparisons with the ant colony system (ACS) for
PFSP proposed by Yinget al. [20] were conducted using
20 ants and 5,000 iterations or the lowest bound as
terminating conditions. SEASA was set to terminate
when the number of solutions reached 205,000=100,000,
that is, 100,000 iterations. Meanwhile, comparisons are
made to ACS and ant colony optimization based on
interchange-moves local search (ACS+) [12], where the
ACS+ uses 10 ants and 10 interchange-moves for 5,000
iterations. Thus, the comparison criterion (on the basis of
solutions generated) is computed as the relative
percentage deviation (RPD) as defined above. The
simulation results demonstrate that SEASA has better
performance than the ACS, conventional SA, and ACS+
as shown in Table 4.3.

5 Conclusions

Many applications are an extension of PFSP. However,
PFSP has been confirmed to be an NP problem, thus, this
investigation suggested a strategy named simple exchange
with amended simulated annealing (SEASA) with the
objective of achieving a scheme that it is simple and easy
to implement.

The required computational complexity for constructing
PFSP is reduced toO(n). Meanwhile, an acceptance
criterion design of the amended simulated annealing is
based on the relative energy change which can help
prevent from acceptance probability turbulence.
Additionally, a threshold is introduced to prevent from
accepting undesirable solutions. Moreover, only two
parameters (α and Th) are required to release the
laborious experiment test. The threshold value (Th)
should be low (0.1% of themakespan) for large problems
to reduce the acceptance of poor solutions.

The simulation results exhibit that, despite the simplicity
of the proposed SEASA, SEASA outperforms many
complex metaheuristics. The resulting relative percentage
deviation by applying SEASA is also compared to
state-of-art algorithms (such as Ruiz and Sttzle [17]);
SEASA ranks as the 5th on average results as shown in
Table 4.1. Meanwhile, the maximum relative percentage
deviation is less than 5.1% as indicated in Table 4.2,
indicating the stability of the designed algorithm. Hence,
SEASA is an effective and efficient algorithm to be used
for solving PFSP problems. Moreover, the proposed
scheme is able to find out the lowest makespan for all
instances of 20/5, 50/5 and 100/5 cases as listed in Table
4.3.

SEASA doesnt seem to perform very well on numerous
machine case problems (m more than 50). However, many
real-world problems utilize fewer machines. Still, one
avenue of future work is to improve PFSP for numerous
machine case problem instances.
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Table 4.1: Comparison of different algorithms based on computation time in [17] (deviation%)
n/m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500/20Average

IG RSLS 0.04 0.06 0.03 0 0.56 0.94 0.01 0.2 1.3 0.12 1.26 0.78 0.44
HGA RMA 0.04 0.13 0.09 0.02 0.72 1.28 0.02 0.29 1.66 0.2 1.48 0.96 0.574

PACO 0.21 0.37 0.24 0.01 0.85 1.59 0.03 0.27 2.09 0.27 1.92 1.09 0.75
M MMAS 0.04 0.15 0.06 0.03 1.4 2.18 0.04 0.47 2.59 0.23 2.26 1.15 0.88
This work 0.24 0.88 0.87 0.19 0.76 2.19 0.09 0.65 1.52 0.66 1.43 1.81 0.94

ILS 0.49 0.59 0.36 0.20 1.48 2.20 0.18 0.68 2.55 0.56 2.24 1.25 1.06
GA RMA 0.26 0.73 0.43 0.07 1.71 2.74 0.07 0.62 2.75 0.43 2.31 1.40 1.13
GA REEV 0.62 2.04 1.32 0.21 2.06 3.56 0.17 0.85 3.41 0.55 2.84 1.66 1.61

GA AA 0.94 1.54 1.43 0.36 3.72 4.69 0.32 1.72 4.91 1.27 4.21 2.23 2.28
SA OP 1.09 2.63 2.38 0.52 3.51 4.52 0.30 1.48 4.63 1.01 3.81 2.52 2.37

GA MIT 0.80 2.14 1.75 0.30 3.55 5.09 0.27 1.63 4.87 1.14 4.18 3.34 2.42
NEHT 3.35 5.02 3.73 0.84 5.12 6.26 0.46 2.13 5.23 1.43 4.41 2.24 3.35

GA CHEN 4.15 5.18 4.26 2.03 6.54 7.74 1.35 3.80 8.15 2.76 7.24 4.72 4.83
SPRIT 4.33 6.07 4.44 2.19 6.04 7.63 1.06 3.01 6.74 2.07 4.97 12.58 5.09

Table 4.2: Deviation interval of the proposed scheme (%).
n/m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500/20

Avg Dev 0.24 0.88 0.87 0.19 0.76 2.19 0.09 0.65 1.52 0.66 1.43 1.81
Max Dev 1.33 5.06 4.71 0.71 3.14 4.37 0.77 2.20 4.11 1.95 3.46 2.64

Table 4.3: Comparison of different algorithms based on solutions generated
n/m ACS SA ACS+ SEASA
20/5 1.19 1.27 0.247 0.00
20/10 1.70 1.71 1.225 0.11
20/20 1.60 0.86 1.400 0.10
50/5 0.43 0.78 0.107 0.00
50/10 1.89 1.98 1.432 0.26
50/20 2.71 2.86 2.732 1.39
100/5 0.22 0.56 0.118 0.00
100/10 1.22 1.33 0.874 0.29
100/20 2.22 2.32 2.307 0.87
200/10 0.64 0.83 0.709 0.36
200/20 1.30 1.74 2.011 0.88
500/20 1.68 0.85 1.832 0.97
Average 1.40 1.42 1.250 0.436
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