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Abstract: In manufacturing organization, one of the mechanisms to minimaespan (the total completion time) requires machines
and operations to be in accordance with a specific flow sequenceath.peoduction run has the same processing order. Determining
the specific flow sequence to minimize tmakespan is the well-known scheduling problem named permutation flow-shop proble
(PFSP) which has been confirmed to be an NP problem. Hence, nusmesearchers have devoted themselves to solve this problem
effectively. However, many studies suffer from high computation glexity. This work suggests a simple exchange local search
heuristic scheme with amended simulated annealing to efficiently solve HR8Fsimple exchange local search is adopted for
generating the solution (product run) to reduce excessive computatioplexity. Meanwhile, an amended simulated annealing strategy
concerning relative energy change is applied to stable acceptanabpitylof the hill-climbing. Moreover, a threshold for relative
energy change is designed to prevent divergence. Restated, a,sitaple and low computation complexity scheme is proposed to
handle NP-complete PFSP. Experimental results illustrate that the ptbpaiseme provides an effective and efficient way to shorten
makespan as required in production lines.

Keywords. PFSP, metaheuristics, exchange local search, simulated annealing

1 Introduction macroblock decoding is an application of a permutation
. . flowshop problem for synchronization in co-processor

Generally, scheduling problems involve the resourcessystems while implementing tasks with low turnaround

allocation (such as processors or machines) to run a set Qﬁf/ne [1]. A multi-degree cyclic scheduling of a

activities (such as jobs, tasks, or processes) satisfyingermutation flowshop with two robots was studied by Che

required constraints and optimizing desired criteria. ang Chu pJ.

Hence, scheduling algorithms must determine a schedule

for a set of processes that satisfies the prerequisitehe goal of the scheduling algorithm in solving PFPS is
constraints. There are many classes of real-worltig minimize themakespan, i.e., the total completion time.
scheduling problems; however, this study concentrates oRjowever, the PFSP has been confirmed to be NP-I8jrd [
the permutation flow shop problem (PFSP), a particularthe solution space consists of n! possible solutions for n
problem of FSP, in which the processing order of the activities. However, finding the optimal solution for PESP
activities is always the same for every machine. Restatedgroplems with exact algorithms such as the
the machines and operations are in accordance Withranch-and-bound method 4,5] is possible, but
specific flow sequence, i.e., each production run has th@npractical when problem size (n) increases. Instead,
same processing order. PFPS applications can be found ihany approximation algorithms and heuristics have been
a large number of real world environments including syggested for finding near optimal solutions with less
manufacturing, maintenance and warehousing operationsfrort, such as the CDS heuristi6] [ the NEH algorithm

as well as in healthcare. Flowshop scheduling is common 7] etc. However, all of these schemes require a
in a no-wait production line with cyclic scheduling, where sypstantial amount of computational effort to find
multiple activities enter and leave the production line spjytions that are usually far from optimal. To efficiently

during a cycle; this type of system usually has a largeroptain high quality solutions in reasonable time, many
throughput rate than simpler ones. For example, MPEG-4
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metaheuristics have been proposed for solving PFSP, i2 Permutation Flow Shop Problem

particular genetic algorithms (GA)8J9], simulated

annealing (SA) 10], tabu search (TS)1[1], ant colony In this study, a named permutation flow shop problem

optimization (ACO) [2,13], and particle swarm (PFSP) B] is investigated. In PFSP, the processing order

optimization (PSO) 14,15,16], etc. Additionally, of the activities has to be the same (in accordance with

metaheuristics are often integrated with a local search tspecific flow sequence) for every machine. The PFSP can

enhance the algorithms efficiency. Many of thesebe defined as follows:

metaheuristics may result in acceptable schedules close to

optimal solutions. However, they are often either very oAt any time, each machine can only process one activity.

complex to implement or suffer from high computational Meanwhile, the set-up times of activities on machines are

complexity. Hence, Ruiz and Sttzle proposed the iteratedncluded in the processing times.

greedy (IG) L7] and tried to provide a simple iterated

greedy local search based on NEHT heurisfi¢ {o oA set N = (1,..,n ) is composed ofn independent

simplify implementation and reduce computational activities. And a setM = (1,...m ) consists of m

complexity. Nevertheless, destruction and constructionndependent machines in the system. These n activities

phases are still needed for each IG iteration. During theneed to be processed on tienachines.

destruction phasel randomly chosen jobs are removed

from the permutationd jobs are then inserted back to eEach activityj (j € N) which contains m operatiorg x

finish a complete permutation based on the NEHT(k=1,.., m) to be processed with the processing tipje

heuristic during the construction phase. Hence, theon every machind (i € M); all of the activities are

complexity of NEHT is stillO(nm) which is quite time  non- preemptlve and non-segmented. The operat;qgr(k

consuming for large instances. = 2., m) is not allowed to process untijy_1 is
finished.

This study proposes a simple exchange with amended

simulated annealing (SEASA) scheme to reduce thesAll activities should be processed with the same

excessive computational complexity and simplify the processing order with a  permutation, i.e.,

implementation, while the method still generalizes to m={m(1),...,m(n)} from the fist machine to the last

other flow-shop variants. The SEASA applies a simplemachine, wheren( ) indicates ther'" order processed

exchange local search to explore the local neighborhoodictivity. Here,millustrates the solution to the PFSP.

of each PFSP solution. As in artificial intelligence, this

local search is easy to integrate into trajectoryeThe target of PFSP is widely defined as obtaining the

meta-heuristics, like simulated annealing, tabu searchminimum makespan. The processing time is critical for

and others. Basically, simulated annealing is athe minimization of themakespan.

memory-less operation. Therefore, an amended simulated

annealing strategy is also included to exclude the memory-or example, imagine a scenario with 3 activities and 5

requirement. Restated, the acceptance criterion of thenachines where the processing tirpg; for activity j

hill-climbing in simulated annealing is modified to processing on machirigs shown in Table 2.1. There are

stabilize the acceptance probability for PFSP based or8! solutions in the solution space. With all possible

relative energy change instead of energy difference. Thepermutation sequences of this scena$={1, 2, 3},

acceptance criterion is the key factor of simulatedS$={1, 3, 2}, $={2, 1, 3}, $={2, 3, I}, $={3, 1, 2} and

annealing which enables the simulated annealing t6S={3, 2, 1} as examples, six resulting makespans are

escape from local minima. Simulated annealing hasillustrated in Table 2.2.

proven to be a good choice to existing algorithms for hard

combinatorial optimization problems. Table 2.1: Processing timeyj i) for representative example.

Machine/Activity 1 2 3
This study is organized as follows: Section 2 introduces ; g i 11
the definition of the studied PFSP problem. Section 3 3 1 2 a4
presents the details of the proposed scheme, simple 4 5o 4 2
exchange with amended simulated annealing, for solving 5 4 2 1

PFSP. Section 4 illustrates the simulated cases and
experimental results as well as the effectiveness and Table2.2: Possible solutions with differemtakespans

efficiency of the compared to that of other state-of-the-art Solution  makespan

schemes. Finally, Section 5 presents the conclusions. S={12,3 17
$={13,2 19
%={2,1,3 17
S={2,3,1} 20
$={3,1,2 18

S={3,2,1} 21
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Table 2.2 indicates that the S1 and S3 accomplish the Initial solution generation. According to the search

scheduling with shortemakespans. Restated, different
activities processing orders yield differentakespans.

mechanism, starting with a good initial state (using some
heuristics such as greedy) would assist the algorithm in

The objective of this work is to generate a flow sequenceobtaining optimal solutions such as in GA, ACO and

which finds the minimunmakespan.

3 Solving PFSP by Simple Exchange with

Simulated Annealing

PSO. Meanwhile, a good initial solution would also
facilitate speeding-up convergence. Most studies apply
the initial solution heuristic for improving the initial
solution. There are many heuristics which can be
effectively utilized as initial solution heuristics for BP.
NEHT, proposed by Taillard3], is a variation of NEH
with complexity improvements. Moreover, the NEH looks
to be the best known polynomial-time heuristic in

This section outlines the details of the proposed SEASApractice for FSP-class problems. Hence, this study applies
scheme including the procedures of SEASA, exchange@EHT to obtain the initial solutiol%.

local search and amended simulated annealing. The

procedures of the proposed simple exchange withExchange local search. The local search is a way of
simulated annealing (SEASA) for PFSP is summarized inneighbourhood search. Among many local search

Figure 3.1.

schemes, NEH is one famous neighbourhood search

eStep 1 is the initialization phase. In this work, NEHT method based on insertion; the computational efficiency

heuristic is applied to generate initial soluti§

and solution quality of the NEH have been verified]. [
However, the NEH requires a total ¢fi(n+1)/2] — 1

oAt step 2.1, the exchange local search is used forschedules, withn of these schedules being complete

selecting the candidate soluti§hfrom the neighbor of

(solution at iteratiort).

sequences. Thus, the time-complexity of the algorithm
rises toO(n®) [7]. In NEHT, a data structure is applied
to reduce the time-complexity of NEH t®(n®") [3].

eSteps 2.2 through step 2.5 are the amended simulategldditionally, a variant of IG includes iterative insertion

annealing process utilized in this study, whé&g) and
E(S) are the related energy valuesmakespans)

corresponding to solutior§ andS respectively.

oAt step 2.3, the variance of enerdyE and the relative
energy changeel _AE are calculated. The details of the

scheme are as follows.

1. Initialization: =0, temperature T, cooling rate ¢y , initial

solution S; generated by NEHT.
2. Loop
2.1 Simple exchange local search determines the
neighbor of S, as S;° at exchange| stage 7.
2.2 Calculate the energy E(S;’) of 57
2.3 Calculate AE = E(S;")- E(S;), rel AE= AE /E(S;)
2A4IfAE <0
then S, :=5;/.

elseif a random variablep, p <o /T | o U(oa)

and rel AE< threshold (Th)
then S, :=S/
-
2.5 T.,=Txa
2.6 =1+l
3. Until the End condition is satisfied, return S,

Fig. 1: The procedures of SEASA.

neighborhood17], but the time-complexity is stilD(n?).
Thus, this work applies exchange local search rather than
insertion local search for searching the neighborhood of
an existing solution. Restated, this investigation furthe
simplifies the neighborhood search operation by a simple
exchange which further reduces the time-complexity to
o(n).

The suggested exchange local search is easy to
implement. Assume that an existing activity processing
order is denoted by the permutation . The exchange
operation switches the activity at tiif8 position and the
activity at thejt" position in T, wherei # j, andi, j are
randomly generated. Once a permutatiois obtained as

a PFSP solution, in the case a&={m(1),..., (i — 1), (i),

i + 1),..., m(j — 1), r(j), n(j + 1),..., m(n)} is the
permutation before exchange local search is applied; the
new permutationt’={m(1),..., (i — 1), 7(j), m(i +1),...,

n(j — 1), r(i), r«(j + 1),..., (n)} can be obtained after
applying the exchange operation. Table 3.1 shows an
example of a permutation before exchange local search is
applied and three permutations after exchange local
search is performed fromt. The operation of this simple
exchange local search is listed as step 2.1 of Figure 3.1.

Amended simulated annealing. The well-known
simulated annealing (SA) algorithm was first proposed for
combinatorial optimization (CO) problems by Kirkpatrick
et al. [18], and it can be classified as a trajectory
metaheuristic. The simulated annealing might (with an
acceptance probability) allow moving to a neighboring
solution with worse quality than the current solution for
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escaping from local minima. Restated, simulatedrel_AE <threshold Th) are met,S is then accepted as

annealing relies on an acceptance criterion which isindicated in step 2.4 of the proposed algorithm in Figure

related to an acceptance probability for accepting worsel. Restated, with the help of the threshold, the suggested

solutions. This probability decreases as time passes. scheme is able to prevent divergence.

There are three phases involved in amended SA as

displayed from steps 2.2 through 2.5 of Figure 3.1. oAt step 2.5, the temperature cooling schedule follows an
exponential cooling scheme (ECS) with cooling rate as

Table 3.1: Three exchange examples listed in Eq. €):

exchange operation  determinddandj™  new permutation

origin It {21354 Ttri=Texa,ael0,]] 4)
18 (i=3,j=1) {3,1,2,5,4
ond (i=3,j=5) {31,452 _
3d (i=5.,j=4) {31,423 4 Experiment

oAt steps 2.2 and 2.3, the energy value related to theT0 verify the effectiveness of the proposed simple

solution § is calculated;E(S) is denoted as an energy exchange with simulated annealing scheme (SEASA), the
function which corresponds to the makespan of thesmulatlon instances from Taillard1¢| were tested.
solution. The variance of energ\E=E(S)- E(S)) and Taillard generated a set of PFSP scheduling problems

; — with different combinations of activityn) and machine
Lg?chﬁﬁte“ée energy changesl AE=AE /E(S)) are also = =0 T 00 50,80,...,440. 470,500 and

m € {5,10,15,20}, and there are 10 instances for each
if theproblem case. The processing time of each activity is
distributed uniformly in the interval [1, 99]. This test &ii
is obtainable from http://mistic.heig-vd.ch/taillardhch
http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files
e/flowshopz.txt. In this work, simulations based on
computation time were performed and compared with the
state-of-the-art algorithms listed id7]. The termination
condition (on the basis of computation time) /] was
, 2B/ CEE)-ES) nx (m/2) x 60, and the algorithm was running on an
Pacp(S, S Tt) = "=/t =e T (1) Athlon XP 1600+ (1400 MHz) system. The proposed
scheme was running on a Pentium-M (1.73 GHz) PC.

it decreases as the iteration proceeds. Meanwhile, thd "€refore, the computation time of this work was
acceptance probability decreases as the temperatufe (M/2) x 60 x (1.4/2.4). Additionally, parameter
decreases based on Ed).(A worse solution will be Setings of this simulation are:To=1, a=0.999,
accepted when the randomly generated numpeis 1D = makespan x 0.005 for n < 50, otherwise,
smaller than the determined acceptance probabRiy). Th = makespan x 0.001. The objective .Of the lower
However, in PFSP, the energy correlates with thethreshold value for large size pr_oblems is to reduce 'ghe
makespan of the solution and its scale depends on the@cceptance rate of worse solutions in a large solution
problem scale, and so does the variance of endigy ace.

Consequently, the acceptance probability is greatly ‘ . d with th f
affected by the problem scale. Restated, the acceptanc}he. performance is compared with the percentage o
eviation from Taillards upper bound (the lowest known

probability is sensitive to the problem scale. In this study X i
the 5E in the acceptance probability function is replaced Mekespan). Each problem instance was repeated for five

by the relative energy changel AE as listed in Eqgs.2) independent trialsR = 5). Instead of choosing the best

oAt step 2.4, the acceptance criterion is applied,
variance of energE is less than zero, th§ would be
replaced byS, i.e, § is accepted. Otherwise§ with
worse quality can be accepted with a probabifitywvhere

p is a uniform distributed random number. An acceptanc
probability is calculated using the acceptance probabilit
function which is conventionally defined as in Ed).(

Here, T; is the cooling temperature of th® iteration, and

and Q): trial, the average of the five trials was calculated and all
’ the 10 instances for every dimension problenagtivities
AE E(S')-E(S) / m machines) were averaged. The performance criterion
rel_AE = ES) - ES) (2)  used for comparison is the average relative percentage
deviation RPD ) as displayed in Eq5) which is defined
Pan(Sysl7-|-t) _ —rel _AE/T (3) n [17]
Hence, this acceptance probability is less sensitive to the =5 R Solj — Bestgy o
problem scale, sinceel _AE will not dramatically change RPD = e ( Besty x100%/R ®)

with the variation of problem dimensions.

Additionally, to prevent accepting an extremely worse  where Sol; is the makespan of a solution yielded by
solution, a thresholdrh based onrel _AE is included. any of theR repetitions of the compared algorithms and
When AE > 0 with the acceptance probability and Besty, is the makespan of the optimal solution or upper
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bound solution for Taillards instances. The simulation5 Conclusions

results are displayed in Table 4.1 on the basis of

computation times. Many applications are an extension of PFSP. However,
PFSP has been confirmed to be an NP problem, thus, this

As shown in Table 4.1, the proposed scheme is better thamvestigation suggested a strategy named simple exchange

some complex meta-heuristics and worse than the beswith amended simulated annealing (SEASA) with the

IG_RS.s (proposed by Ruiz and Sttzla 7], HGA_RMA, objective of achieving a scheme that it is simple and easy

PACO, and MMMAS. Although the overall performance to implement.

of this study is worse than I®Ss, HGA_RMA, PACO

and MIMMAS, it is much simpler than them and hence The required computational complexity for constructing

very simple and easy to implement. PFSP is reduced t@®(n). Meanwhile, an acceptance
criterion design of the amended simulated annealing is

Moreover, to verify the stability of the proposed scheme,based on the relative energy change which can help

the relative deviation intervals (Avg Dev, average rekativ prevent from acceptance probability turbulence.

percentage deviation; and Max Dev, maximum averageAdditionally, a threshold is introduced to prevent from

relative percentage deviation) are displayed in Table 4.2accepting undesirable solutions. Moreover, only two

The average and maximal deviations are less than 2.2%arameters ¢ and Th) are required to release the

and 5.1%, respectively; hence, the suggested algorithm iaborious experiment test. The threshold valugh)(

stable for finding solutions. In this work, more than 8500, should be low (0.1% of thenakespan) for large problems

3500, 2000, 1000 and 400 schedules (for one instance dab reduce the acceptance of poor solutions.

20/20, 50/20, 100/20, 200/20 and 500/20 cases,

respectively) can be yielded by our scheme in one secondl'he simulation results exhibit that, despite the simplicit

That is, the consumed CPU time to find a feasibleof the proposed SEASA, SEASA outperforms many

solution for every instance for the largest case (500/20complex metaheuristics. The resulting relative percentag

case) would be less than 2.5 ms. Hence, the proposedeviation by applying SEASA is also compared to

scheme is effective for solving application problems state-of-art algorithms (such as Ruiz and SttZA&])

which are similar to PFSP. SEASA ranks as the 5th on average results as shown in
Table 4.1. Meanwhile, the maximum relative percentage

Additionally, the performance of the different algorithms deviation is less than 5.1% as indicated in Table 4.2,

is compared based on the number of solutions generatedhdicating the stability of the designed algorithm. Hence,

Each problem instance was tested for five independenSEASA is an effective and efficient algorithm to be used

trials, where the best trial was chosen and the 10 differenfor solving PFSP problems. Moreover, the proposed

instances for every problem size were averaged. scheme is able to find out the lowest makespan for all
instances of 20/5, 50/5 and 100/5 cases as listed in Table

Comparisons with the ant colony system (ACS) for 4.3.

PFSP proposed by Ying al. [20] were conducted using

20 ants and 5,000 iterations or the lowest bound asSEASA doesnt seem to perform very well on numerous

terminating conditions. SEASA was set to terminate machine case problemsifnore than 50). However, many

when the number of solutions reached 205,000=100,000real-world problems utilize fewer machines. Still, one

that is, 100,000 iterations. Meanwhile, comparisons areavenue of future work is to improve PFSP for numerous

made to ACS and ant colony optimization based onmachine case problem instances.

interchange-moves local search (ACS1p][ where the

ACS+ uses 10 ants and 10 interchange-moves for 5,000

iterations. Thus, the comparison criteriam the basisof A cknowledgement

solutions generated) is computed as the relative

percentage deviationRPD) as defined above. The This work was partly supported by the National Science

simulation results demonstrate that SEASA has betteicouncil, Taiwan, under contract NSC 99-2221-E-167-007.
performance than the ACS, conventional SA, and ACS+

as shown in Table 4.3.
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Table 4.1: Comparison of different algorithms based on computation timé&7h(deviation%)
n/m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500&%@rage
IG_LRS.s 0.04 0.06 0.03 0 0.56 0.94 0.01 0.2 1.3 0.12 1.26 0.78 0.44
HGA_RMA 0.04 0.13 0.09 0.02 0.72 1.28 0.02 0.29 1.66 0.2 1.48 0.96 .5740
PACO 0.21 0.37 0.24 0.01 0.85 1.59 0.03 0.27 2.09 0.27 1.92 9 1.0 0.75
M_-MMAS 0.04 0.15 0.06 0.03 1.4 2.18 0.04 0.47 2.59 0.23 2.26 1.15 0.88
Thiswork 0.24 0.88 087 0.19 0.76 2.19 0.09 0.65 1.52 0.66 1.43 181 4 0.9
ILS 0.49 0.59 036 0.20 148 2.20 0.18 0.68 2.55 0.56 2.24 1.251.06
GALRMA 0.26 0.73 043 0.07 171 2.74 0.07 0.62 2.75 0.43 231 1.40 1.13
GA_REEV 0.62 2.04 132 021 2.06 3.56 0.17 0.85 3.41 0.55 284 616 161
GA_AA 094 154 143 036 3.72 4.69 0.32 1.72 491 1.27 4.21 223 .282
SA OP 1.09 2.683 238 052 351 4.52 0.30 1.48 4.63 1.01 3.81 252 37 2
GAMIT 0.80 2.14 175 030 355 5.09 0.27 1.63 4.87 1.14 4.18 3.34 2.42
NEHT 3.35 5.02 3.73 084 512 6.26 0.46 2.13 5.23 1.43 441 422 335
GACHEN 4.15 5.8 426 2.03 6.54 7.74 1.35 3.80 8.15 2.76 724 2 4.7 483
SPRIT 433 6.07 444 219 6.04 7.63 1.06 3.01 6.74 2.07 497 5812 5.09

Table 4.2: Deviation interval of the proposed scheme (%).
n/m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500/20
AvgDev 0.24 0.88 087 0.19 0.76 219 0.09 0.65 1.52 0.66 1.43 1.81
Max Dev 1.33 5.06 471 071 314 4.37 0.77 2.20 4.11 1.95 3.46 2.64

Table 4.3: Comparison of different algorithms based on solutions generated
n/m ACS SA ACS+ SEASA
20/5 1.19 127 0.247 0.00

20/10 1.70 171 1.225 0.11
20/20 1.60 0.86 1.400 0.10
50/5 0.43 0.78 0.107 0.00
50/10 1.89 198 1432 0.26
50/20 271 286 2.732 1.39
100/5 0.22 056 0.118 0.00
100/10 1.22 133 0.874 0.29
100/20 2.22 2.32 2.307 0.87
200/10 0.64 0.83 0.709 0.36
200/20 1.30 1.74 2.011 0.88
500/20 1.68 0.85 1.832 0.97
Average 140 142 1.250 0.436
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