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Abstract: Bloch system is mainly employed with attainment of the basicexplanation of relaxationT1 andT2 and nuclear magnetic
resonance (NMR). This equation is said to be the heart of both magnetic resonance imaging (MRI) andNMR spectroscopy. The major
goal of this paper is to obtain an analytical solution of Fractional Nuclear Magnetic Resonance (NMR) flow equations. In this study,
the use of Laplace transform and the Pade approximation has been ascertained to handle the truncated series that were obtained through
the Perturbation Iteration Method for further advancementof the approximation. The fractional derivatives in this work are understood
to be in the Caputo sense. The results achieved through this paper will prove that the algorithm is fit to be used for more general kinds
of fractional differential equations.

Keywords: Magnetic Resonance Imaging (MRI), Laplace transform, Pade Approximation, Fractional Perturbation Iteration
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1 Introduction

NMR establishes the physical base for a huge selection of
technique that is primarily use to study the dynamics of
cells and structure, tissues and entire animals [1]. For
example, Magnetic Resonance Spectroscopy (MRS ) is
used often by chemists for studying bio-molecules and
the analysis of their structure. Also magnetic resonance
imaging is an imperative requirement of radiology
departments in hospitals.MRI scans can form an image
of the structures of soft tissue of human spine and brain
down to a resolution in sub-millimeter, while MRS can
identify individual bio-molecular configurations by a
resolution of sub-nanometer. This vast choice of scale
offers chemists a tool that makes molecular synthesis
more accurate and make physicians to diagnose diseases
and their stages by secure means, such as cancer.
Spectroscopic and imaging information is important for
discovering the molecular basis of abnormal cell growth.
In addition to its use of scrutinizing a unique tumors
reaction to radiation therapy or drug treatments. The usual
definition of nuclear magnetic resonance is “the
phenomenon that makes up the inner workings of
magnetic resonance imaging is presented in form of

vector below by the help of Bloch system [1,2].”

dM
dt
= γ(M×B)−

Mz −Mo

T1
îz−

Mx îx+My îy
T2

(1)

where time changeable magnetization isM(Mx,My,Mz),
stability magnetization isMo, the useful radio frequency
RF is B(Bx,By,Bz), γ is the gyromagnetic ratio, slope and
stationary magnetic fields (Tesla),T1 and T2 shows the
spin lattice relaxation time and spin-spin relaxation time
respectively. In case of homogeneous isotropic substances
with one spin component, the Bloch system is employed
to stipulate the dynamic equilibrium that lies among
outwardly apply interior trial relaxation times and
magnetic fields. This dynamic equilibrium is the base of
many scientific processes, such as image reconstruction,
signal acquisition and pulse sequence design in the case
of MRI, contrast of tissue [3,4,5] etc.

Recently, marvelous development have been made in
the theory and application of the Fractional Differential
Equations. FDE’s are being used more and more to deal
ideal problems in research area as varied in fluid
mechanics, mechanical systems, population dynamics,
continuous-time random walks fiber optics, chaos,
sub-diffusive systems and anomalous diffusive, wave

∗ Corresponding author e-mail:uroosaarshad24@yahoo.com

© 2017 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/sjm/040302


70 M. Khalid et al.: Nonlinear nuclear magnetic resonance model of...

propagation phenomenon and unification of diffusion etc.
Generality of the fractional order Bloch system has been
embarked by numerous groups to provide a reason for the
irregular diffusion and atypical relaxation experiential in
Nuclear Magnetic Resonance study of complex materials
- usually porous composites, gels, biological tissues and
emulsions [6,7,8,9,10,11,12,13].

A commonly found aspect in some complex materials
is a “meso-scopic structure” existing in the range of
macroscopic regimes and the molecular.MRI and NMR
spectroscopy both are dominant tools for experimentation
on inquiring the disordered and structured organization
and dynamics (like transition of phase, diffusion and
permeability of the meso-scopic structures).
Extraordinary resolution of magnetic resonance
microscopy yields macromolecular coalescence, images
of high contrast particle aggregation and separation of
phase. Studies of nuclear magnetic resonance diffusion
provide a direct determination of material’s tortsituoy
plus porosity. Nevertheless, the appliance of these types
of tools and the investigation of the acquired information
are extremely reliant upon the theoretical assumption that
underlies the Bloch system such as the Brownian particle
motion, Gaussian spins dynamics and exponential
relaxation of first order. The dependence goes so far that
these assumptions are valid for an exacting material for a
transition involving phases of dissimilar material,
conventional nuclear magnetic resonance analysis is
legitimate and suitable.

However, collecting experimental proof on complex
materials suggests an atypical dynamic activity. This
anomalous performance apparently reflects the
distributions of multi-scale phenomenon and relaxation
times that sometimes recommend a structure of
fractal-like, nonlocal relations, memory of fading and
age. Ergo, it is estimated that nuclear magnetic resonance
(NMR) and magnetic resonance imaging (MRI) of
complex materials measurements through meso-scopic
configurations or states will display like ? dynamic
behavior and fractional order. The most unanswered
question regarding the “generalized” Bloch system is to
relate the operators of the fractional order at the molecular
to the spin dynamics and macroscopic scale and how to
modify it? From the precession of spin (nanosecond) to
the reorientation of molecular (microsecond) then to the
dephasing of spin?spin (millisecond), up and around to
the relaxation of spin lattice (second) and diffusion.NMR
is a broadly used procedure of experimentation for the
reason that it’s effectiveness in probing time scales.
Nuclear magnetic resonance analysis assigns to each area
of concern (pixel) particular experimental data values for
example correlation coefficient, chemical shift, coefficient
of diffusion, relaxation times (spin?spin and spin?lattice),
by using images or localized spectroscopy. This
procedure works excellently for imaging macroscopic
region that is voxels at the order or for spectroscopy on
untainted samples in unvarying magnetic fields that is 1D
& 2D nuclear magnetic resonance spectra. Nonetheless,

approaching the resolution of imaging into the
meso-scopic regime or microscopic or pulling complex
spectrum from tissues or macroscopic mixtures expose
elementary restrictions in either spectral resolution or
signal-to-noise (S NR).

The application of extremely high field nuclear
magnetic resonance systems of these problems,
regrettably can’t be overcome all the time by taking
further signal averages. The aim of fractional order
nuclear magnetic resonance modeling is to widen the
experimental casement of nuclear magnetic resonance
techniques for time,space and bandwidth. It does not only
simply raise the resolution in system, but appending the
governing equations for the observed phenomena a
fractional order interpretation. The command of fractional
calculus is that, it suitably assimilates into the operator?s
order a fractal set-up of lacunae extend more a diffusion
coefficients or a large distribution of relaxation times.
Such preciseness come at the rate of relinquish the
particular sub compartment value for entity diffusion
constants or relaxation times, but provide the advantage
of capture hierarchical, multi-scale phenomena in time
and space.

This paper introduces a new technique for the
analytical solution of the Bloch System of
fractional-order. It has been arranged as follows: Section
2 outlines the Hybrid Laplace Fractional Perturbation
Pade Transform Method (HLFPPT M). Section 3
demonstrates the application of this method on the
Fractional order Bloch equation obtains of the exact
solution. In the last section, a conclusive summary has
been presented.

2 Research Methodology

In this research, Hybrid Laplace Fractional Perturbation
Pade Transform Method (HLFPPT M) is implemented for
solving Bloch equation of Fractional order.

2.1 Pade Approximate

For any power seriesf (t), the Pade approximate of order
[L,M] is represented byRL,M(t) and is defined as

RL,M(t) =

L
∑

k=0
pktk

1+
M
∑

k=0
qktk

such that f (t)−RL,M(t) =O(tL+M+1)

(2)
By considering only first (L+M + 1) terms of the power
series ofRL,M(t) and f (t). Next correspondence of only
those terms ofRL,M(t) and f (t) of (L + M + 1) is
considered. The coefficientspk andqk is being multiplied
by the denominator ofRL,M(t) and then obtained result is
compared bt the coefficients oftk, for k = 0,1,2, ...,L+M.
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This will yield M simultaneous equations forqk.
min(r−M)
∑

k=1
qkCr−k = −Cr; r = (L + 1, ...,L + M) and L + 1

expression for the pk, k = 0,1,2, ...,L

pk =Ck +
min(k−M)qsCk−s

∑

s=1
= −Cr; k = 0,1,2, ...,L.

2.2 Fractional Perturbation Iteration Algorithm

For any system of fractional differential equation

Gk(Dαt uk,uk, t) = 0, m−1< α ≤ m, t > 0, u ∈ R (3)

Comprising of initial conditions dα
dtα u(t,0) = uk(t),

k = 0,1,2,3, . . . ,m − 1. Eq.(3) can also be given in the
form

Dαt uk+A[u(t)] = 0

where A refers to a general differential operator which
consists of linear operatorL(u) and nonlinear operator
N(u). Dαt is the caputo fractional derivative operator of
order α. Introducing small perturbation parameter in
above equation yield

Dαt uk+ L[u(t)] + ǫN[u(t)] = 0 (4)

By considering the nonlinear term in Eq.(4) as
perturbation, we assume that solution can be presented as
a power series of small perturbation

u = u◦+ ǫu1+ ǫ
2u2+ ǫ

3u3+ ... (5)

By substituting Eq.(5) into Eq.(4) and equating identical
power of ǫ, we attain a number of differential equation,
that can be integrated recursively, to discover the value of
u◦,u1,u2,u3, ...

2.3 Hybrid Laplace Fractional Perturbation
Pade Transforms

Now, the use of Laplace Transform and Pade
approximation is giving to be discussed. There is a need
to deal with the truncated series obtained with the help of
Fractional Perturbation Iteration Algorithm for improving
the approximation. Foremost, the Laplace Transform is
applied to a series solution obtained by the Fractional
Perturbation Iteration technique, then1

ǫ
replacess in the

equation under question. After that, Pade approximation
[2/2] is used with 1

s instead ofǫ. Finally, through the
inverse Laplace Transformation, we attain the modified
approximate solution.

3 Analytical Solution of the Bloch System by
Hybrid Laplace Fractional Perturbation
Pade Transform Method

Modified nonlinear fractional Bloch System that governs
the magnetization evolution:

Dα1
t Mx(t) = ω◦My(t)−

Mx(t)
T2

Dα2
t My(t) = −ω◦Mx(t)−

My(t)

T2
(6)

Dα3
t Mz(t) =

M◦−Mz(t)
T1

with initial conditionsMx(0)= A, My(0)= B, Mz(0)= C.
The complete set of exact solutions for the Bloch System
is presented as:

Mx(t) = exp(
−t
T2

)
(

Acos(ω◦t)+Bsin(ω◦t)
)

My(t) = exp(
−t
T2

)
(

Acos(ω◦t)−Bsin(ω◦t)
)

(7)

Mz(t) = exp(
−t
T1

)(C−M◦)+M◦

Now, by applying Fractional Perturbation Iteration
Algorithm first. For FPIA(1,1), only one correction term
for each variable is considered that is

Mx,n+1(t) = Mx,n(t)+ ǫMc
x,n(t)

My,n+1(t) = My,n(t)+ ǫMc
y,n(t) (8)

Mz,n+1(t) = Mz,n(t)+ ǫMc
z,n(t)

Dα1
t Mx(t)− ǫ

(

ω◦My(t)−
Mx(t)

T2

)

= 0

Dα2
t My(t)− ǫ

(

ω◦Mx(t)−
My(t)

T2

)

= 0 (9)

Dα3
t Mz(t)− ǫ

(M◦ −Mz(t)
T1

)

= 0

With appropriate initial conditions
(

Mx(0),My(0),Mz(0)
)

= (A,B,C). Assuming the solution
of the Bloch system Eq.(6) in the following form

Mx(t) = lim
i→∞

Mx,i(t)

My(t) = lim
i→∞

My,i(t) (10)

Mz(t) = lim
i→∞

Mz,i(t)

ǫ◦ =



















Dα1
t Mx,◦(t) = 0

Dα2
t My,◦(t) = 0

Dα3
t Mz,◦(t) = 0

(11)
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with initial conditionsMx,0(0)= A, My,0(0)= B, Mz,0(0)=
C. Then, the obtained correction term for each iteration are

ǫ1 =















































Dα1
t Mc

x,n(t) = −Dα1
t Mx,n(t)+ω◦My(t)−

Mx(t)
T2

Dα2
t Mc

y,n(t) = −Dα2
t My,n(t)−ω◦Mx(t)−

My(t)

T2

Dα3
t Mc

z,n(t) = −Dα3
t Mz,n(t)+

M◦ −Mz(t)
T1

(12)
with initial condition

(

Mc
x,0(0),Mc

y,0(0),Mc
z,0(0)

)

= (0,0,0)
Let the first solution be

Mx,0(t) = A

My,0(t) = B (13)

Mz,0(t) = C

Mx,1(t) = A+
Btα1ω◦

Γ1+α1
−

Atα1

T2Γ1+α1

My,1(t) = B−
Atα2ω◦

Γ1+α2
−

Btα2

T2Γ1+α2
(14)

Mz,0(t) = C−
Ctα3

T1Γ1+α3
+

M◦tα3

T1Γ1+α3

Mx,2(t) = A+
Btα1ω◦

Γ1+α1
−

At2α1ω2
◦

Γ1+2α1
+

At2α1

T 2
2Γ1+2α1

−

Atα1

T2Γ1+α1
−

2Bt2α1ω◦

T2Γ1+2α1

My,2(t) = B−
Atα2ω◦

Γ1+α2
−

Bt2α2ω2
◦

Γ1+2α2
+

Bt2α2

T 2
2Γ1+2α2

−

Btα

T2Γ1+α2
+

2At2α2ω◦

T2Γ1+2α2
(15)

Mz,2(t) = C+
Ct2α3

T 2
1Γ1+2α3

−
t2α3 M◦

T 2
1Γ1+2α3

−

Ctα3

T1Γ1+α3
+

M◦tα3

T1Γ1+α3

Mx,3(t) = A+
Btα1ω◦

Γ1+α1
−

At2α1ω2
◦

Γ1+2α1
−

Bt3α1ω3
◦

Γ1+3α1
−

At3α1

T 3
2Γ1+3α1

+
At2α1

T 2
2Γ1+2α1

+
3Bt3α1ω◦

T 2
2Γ1+3α1

−

Atα1

T2Γ1+α1
−

2Bt2α1ω◦

T2Γ1+2α1
+

3At3α1ω2
◦

T2Γ1+3α1

My,3(t) = B−
Atα2ω◦

Γ1+α2
−

Bt2α2ω2
◦

Γ1+2α2
+

At3α2ω3
◦

Γ1+3α2
−

Bt3α2

T 3
2Γ1+3α2

+
Bt2α2

T 2
2Γ1+2α2

−
3At3α2ω◦

T 2
2Γ1+3α2

−

Btα2

T2Γ1+α2
+

2At2α2ω◦

T2Γ1+2α2
+

3Bt3α2ω2
◦

T2Γ1+3α2
(16)

Mz,3(t) = C−
Ct3α3

T 3
1Γ1+3α3

+
M◦t3α3

T 3
1Γ1+3α3

+
Ct2α3

T 2
1Γ1+2α3

+

M◦t2α3

T 2
1Γ1+2α3

−
Ctα3

T1Γ1+α3
+

M◦tα3

T1Γ1+α

Three considered iterations are:

Mx(t) = Mx,3(t)

My(t) = My,3(t) (17)

Mz(t) = Mz,3(t)

ConsiderMx(t). Taking Laplace Transform, the following
equation is obtained:

L[Mx(t)] =
A
s
+Bs−1−α1ω◦ −As−1−2α1ω2

◦
−Bs−1−3α1ω3

◦
−

As−1−3α1

T 3
2

+
As−1−2α1

T 2
2

+
3Bs−1−3α1ω◦

T 2
2

−

As−1−α1

T2
−

2Bs−1−2α1ω◦

T2
+

3As−1−2α1ω2
◦

T2
(18)

Using transformations =
1
ǫ

andα1 = 1, we get

L[Mx(t)] = Aǫ +Bǫ2ω◦ −Aǫ3ω2
◦
−Bǫ4ω3

◦
−

Aǫ4

T 3
2

+

Aǫ3

T 3
2

+
3Bǫ4ω◦

T 2
2

−
Aǫ2

T2
−

2Bǫ3ω◦
T2

+
3Aǫ4ω2

◦

T2

(19)

Pade Approximant of [2/2] yields

L[Mx(t)] =
Aǫ+

(A+BT2ω◦)ǫ2

T2

1+
2ǫ
T2
+

(1+T 2
2ω

2
◦
)ǫ2

T 2
2

(20)

Using reverse transformationǫ = 1/s gives

L[Mx(t)] =

A
s
+

(A+BT2ω◦)

T2s2

1+
2

T2s
+

(1+T 2
2ω

2
◦
)

T 2
2 s2

(21)

Now applying Laplace Inverse

Mx(t) = exp(
−t
T2

)
(

Acos(ω◦t)+Bsin(ω◦t)
)

(22)

Similarly applying above procedure toMy(t) andMz(t), set
the following results:

My(t) = exp(
−t
T2

)
(

Acos(ω◦t)−Bsin(ω◦t)
)

Mz(t) = exp(
−t
T1

)(C−M◦)+M◦ (23)
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4 Perspective

In this paper, the method called “Hybrid Laplace
Fractional Perturbation Pade Transform Method
(HLFPPT M)” has been applied adequately for the
derivation of analytical solutions of the nonlinear
Fractional Bloch System. The results yields in this paper
recommend that this algorithm is sufficiently equipped to
be applied on more complex and disordered systems.
Moreover, general kinds of linear and nonlinear
differential equations as well as fractional ones.
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