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Abstract: We present some new oscillation criteria for a class of half-linear second-order neutral dynamic equations with mixed
arguments. An example is given to illustrate the main results.

Keywords: Oscillation, neutral dynamic equation with mixed arguments, time scale

1 Introduction

This paper is concerned with oscillation of a second-order
half-linear neutral functional dynamic equation
(

r(t)
(

(x(t)+ p1(t)x(η1(t))+ p2(t)x(η2(t)))
∆
)γ)∆

+q1(t)x
γ(τ1(t))+q2(t)x

γ(τ2(t)) = 0 (1)

on an arbitrary time scaleT unbounded above, whereγ is
a quotient of odd positive integers,r, p1, p2, q1, andq2
are real-valued positive rd-continuous functions onT.
Also, we assume thatη1,η2,τ1,τ2 : T → T are
rd-continuous,η1(t) ≤ t, η2(t) ≥ t, τ1(t) ≤ t, τ2(t) ≥ t,
and limt→∞ η1(t) = limt→∞ τ1(t) = ∞. Since we are
interested in oscillatory behavior, we assumet0 ∈ T and it
is convenient to assumet0 > 0, and define the time scale
interval of the form[t0,∞)T by [t0,∞)T := [t0,∞)∩T.

Setz(t) := x(t)+ p1(t)x(η1(t))+ p2(t)x(η2(t)). By a
solution of (1) we mean a non-trivial real-valued function
x ∈ C1

rd[Tx,∞)T, Tx ∈ [t0,∞)T which has the properties that
z and r(z∆ )γ are defined and∆ -differentiable fort ∈ T,
and satisfies (1) for t ∈ [Tx,∞)T. The solutions vanishing
in some neighbourhood of infinity will be excluded from
our consideration. A solutionx of (1) is said to be
oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is termed nonoscillatory.
Equation (1) is called oscillatory if all its solutions are
oscillatory.

The study of dynamic equations on time scales, which
goes back to its founder Hilger [1], is an area of

mathematics that has recently received a lot of attention.
Several authors have expounded on various aspects of this
new theory, see the survey paper by Agarwal et al. [2] and
the references cited therein. The books on the subject of
time scales, i.e., measure chain, by Bohner and Peterson
[3,4], summarize and organize much of time scale
calculus. In recent years, there has been much research
activity concerning the oscillation and nonoscillation of
solutions to different classes of dynamic equations on
time scales, we refer the reader to the papers [5–25] and
the references cited therein. Therein, Agarwal et al. [6],
Candan [7], Erbe et al. [8], Şahiner [10], Saker [11],
Saker et al. [12,13], Saker and O’Regan [14], Tripathy
[15], Chen [16], Zhang and Wang [17], Wu et al. [18],
and Thandapani et al. [20] studied a class of half-linear
dynamic equations

(

r(t)
(

(x(t)+ p1(t)x(η1(t)))
∆
)γ)∆

+q1(t)x
γ(τ1(t)) = 0,

where η1(t) ≤ t, and obtained some oscillation results
under the assumption that

∫ ∞

t0

∆ t

r1/γ(t)
= ∞. (2)

The purpose of this paper is to derive new oscillation
criteria for (1) in the cases where (2) holds or

∫ ∞

t0

∆ t

r1/γ(t)
< ∞. (3)
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In what follows, all functional inequalities are assumed to
hold eventually, that is, they are satisfied for allt large
enough.

2 Main results

In this section, using the Riccati transformation technique,
we establish some oscillation criteria for (1). In the sequel,
we let

d+(t) := max{0,d(t)}, and d−(t) := max{0,−d(t)}.

Theorem 2.1. Let (2) hold. Assume that there exists a
positive real-valued∆ -differentiable functionδ such that
for all sufficiently larget1 and forτ1(T )> t1,

limsup
t→∞

∫ t

T

[

δ (s) f (s)−
r(s)(δ ∆

+ (s))
γ+1

(γ +1)γ+1δ γ(s)

]

∆s = ∞, (4)

where

f (s) : = q1(s)

(

m(τ1(s))
m(s)

)γ

·

(

1− p1(τ1(s))− p2(τ1(s))
m(η2(τ1(s)))

m(τ1(s))

)γ

+q2(s)

·

(

1− p1(τ2(s))− p2(τ2(s))
m(η2(τ2(s)))

m(τ2(s))

)γ
,(5)

and m is a positive real-valued∆ -differentiable function
such that

m(t)

r1/γ(t)
∫ t

t1
1

r1/γ (s)
∆s

−m∆ (t)≤ 0 (6)

and

1− p1(t)− p2(t)
m(η2(t))

m(t)
> 0. (7)

Then (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without
loss of generality, we assumex(t) > 0, x(ηi(t)) > 0, and
x(τi(t))> 0 for i = 1,2 andt ∈ [t0,∞)T. In view of (1), we
obtain

(r(t)(z∆ (t))γ)∆ = −q1(t)x
γ(τ1(t))

−q2(t)x
γ(τ2(t))< 0, t ∈ [t0,∞)T. (8)

It follows from (2) that there exists at1 ∈ [t0,∞)T such that
z∆ (t)> 0 for t ∈ [t1,∞)T. By virtue of (8), we see that

z(t) = z(t1)+
∫ t

t1

(r(s)(z∆ (s))γ)1/γ

r1/γ(s)
∆s

≥ r1/γ(t)z∆ (t)
∫ t

t1

∆s

r1/γ(s)
.

Since
(

z(t)
m(t)

)∆
=

z∆ (t)m(t)− z(t)m∆ (t)
m(t)mσ (t)

≤
z(t)

m(t)mσ (t)





m(t)

r1/γ (t)
∫ t

t1
1

r1/γ (s)
∆s

−m∆ (t)



≤ 0,

we find thatz/m is nonincreasing. Hence we have

x(t) = z(t)− p1(t)x(η1(t))− p2(t)x(η2(t))

≥ z(t)− p1(t)z(η1(t))− p2(t)z(η2(t))

≥

(

1− p1(t)− p2(t)
m(η2(t))

m(t)

)

z(t).

By virtue of (8), we have

(r(t)(z∆ (t))γ)∆ ≤−q1(t)

·

(

1− p1(τ1(t))− p2(τ1(t))
m(η2(τ1(t)))

m(τ1(t))

)γ
zγ(τ1(t))

− q2(t)

(

1− p1(τ2(t))− p2(τ2(t))
m(η2(τ2(t)))

m(τ2(t))

)γ

·zγ(τ2(t)). (9)

Define the functionω by

ω(t) := δ (t)
r(t)(z∆ (t))γ

zγ(t)
, t ∈ [t1,∞)T. (10)

Then ω(t) > 0 for t ∈ [t1,∞)T. The rest of the proof is
similar to that of [8, Theorem 2.1], and so is omitted. The
proof is complete.�

Remark 2.1. The functionm is existent, see, e.g.,m(t) =
∫ t

t1
1

r1/γ (s)
∆s.

Theorem 2.2. Let (2) hold. Assume that there exist
functions H, h such that for each fixedt, H(t,s) and
h(t,s) are rd-continuous with respect tos on
D= {(t,s) : t ≥ s ≥ t0} and

H(t, t) = 0, t ≥ t0, H(t,s)> 0, t > s ≥ t0, (11)

and H has a nonpositive continuous∆ -partial derivative
H∆s(t,s) with respect to the second variable and satisfies

− H∆s(t,s)−H(t,s)
δ ∆ (s)
δ σ (s)

=
h(t,s)
δ σ (s)

(H(t,s))γ/(γ+1), (12)

and for all sufficiently larget1 and forτ1(T )> t1,

limsup
t→∞

1
H(t,T )

∫ t

T
[δ (s)H(t,s) f (s)

−
r(s)(h−(t,s))γ+1

(γ +1)γ+1δ γ(s)

]

∆s = ∞, (13)

where f is defined as in (5), m is a positive real-valued∆ -
differentiable function such that (6) and (7) hold, andδ is
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a positive real-valued∆ -differentiable function. Then (1)
is oscillatory.

Proof. From Theorem 2.1, the proof is similar to that of
[8, Theorem 2.2], and hence is omitted. This completes
the proof.�

Theorem 2.3. Let (3) hold and 0≤ p1(t)+ p2(t)≤ p < 1.
Assume that all assumptions of Theorem 2.1 or Theorem
2.2 hold except (2). If for all sufficiently larget1,

∫ ∞

t1

[

1
r(s)

∫ s

t1
[q1(τ)+q2(τ)]∆τ

]1/γ
∆s = ∞, (14)

then every solution of (1) is oscillatory or converges to
zero ast → ∞.

Proof. Let x be a nonoscillatory solution of (1). Without
loss of generality, we assumex(t) > 0, x(ηi(t)) > 0, and
x(τi(t)) > 0 for i = 1,2 andt ∈ [t0,∞)T. In view of (1),
we obtain (8). Then there exists at1 ∈ [t0,∞)T such that
z∆ (t)> 0, or z∆ (t)< 0 for t ∈ [t1,∞)T.

Assume first thatz∆ (t) > 0 for t ∈ [t1,∞)T. As in
Theorem 2.1 or Theorem 2.2, we can obtain the
corresponding contradictions. Assume now thatz∆ (t)< 0
for t ∈ [t1,∞)T. We assert that limt→∞ z(t) = 0. If not,
similar to the proof of [26, Lemma 2], there exist two
constantsk > 0 andl > 0 such that

x(t)≥ kz(t)≥ kl.

By virtue of (8), we have

(r(t)(z∆ (t))γ)∆ = −q1(t)x
γ(τ1(t))−q2(t)x

γ(τ2(t))

≤ −(kl)γ [q1(t)+q2(t)].

Integrating the latter inequality fromt1 to t, we get

r(t)(z∆ (t))γ ≤−(kl)γ
∫ t

t1
[q1(s)+q2(s)]∆s.

Integrating again fromt1 to t, we obtain

z(t)≤ z(t1)− kl
∫ t

t1

[

1
r(s)

∫ s

t1
[q1(τ)+q2(τ)]∆τ

]1/γ
∆s.

Hence by (14), limt→∞ z(t)=−∞, which is a contradiction.
Therefore, limt→∞ z(t) = 0. Then, limt→∞ x(t) = 0 due to
0≤ x(t)≤ z(t). This completes the proof.�

For an application of our results, we give the following
example.

Example 2.1. We consider the second-order neutral
functional dynamic equation
(

x(t)+
1
2

x(η1(t))+
t2

3(η2(t))2 x(η2(t))

)∆∆

+
k1

t
x(τ1(t))+

k2

t
x(τ2(t)) = 0, (15)

wheret ∈ [1,∞)T, τ1(t)≤ t, τ2(t)≥ t, η1(t)≤ t, η2(t)≥ t,
k1 > 0, andk2 > 0. Letm(t) = t2 andδ (t) = 1. Then, every
solution of (15) is oscillatory when using Theorem 2.1.
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(2001).

[4] M. Bohner, A. Peterson.Advances in Dynamic Equations on
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