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Abstract: We present some new oscillation criteria for a class of half-linear seomet neutral dynamic equations with mixed
arguments. An example is given to illustrate the main results.
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1 Introduction mathematics that has recently received a lot of attention.
_ _ ) o Several authors have expounded on various aspects of this
This paper is concerned with oscillation of a second-ordemew theory, see the survey paper by Agarwal et2jlapd

half-linear neutral functional dynamic equation the references cited therein. The books on the subject of
N2 time scales, i.e., measure chain, by Bohner and Peterson

(f(t) ((X(t)+ p1(t)x(N1(t)) + p2(t)x(n2(t))) ) ) [3,4], summarize and organize much of time scale
Fau(OXY(T1(t)) + ()XY (T2(t)) = 0 1) calculus. In recent years, there has been much research

: ) ) activity concerning the oscillation and nonoscillation of
on an arbitrary time scal& unbounded above, wheyeis  go|ytions to different classes of dynamic equations on
a quotient of odd positive integers, p1, P2, di, aNdd2  time scales, we refer the reader to the papers [5-25] and
are real-valued positive rd-continuous functions Bn  the references cited therein. Therein, Agarwal et @l [
Also, we assume thatn:,n, 71,72 © T — T are  candan 7], Erbe et al. §], Sahiner L0}, Saker [L1],
rd-continuous/1(t) <t, ma(t) > t, T1(t) <t 2(t) > t,  gaker et al. 12,13, Saker and O’Reganlf], Tripathy
and lim_eoni(t) = liM o Ti(t) = . Since we are 15 Chen [L6], Zhang and Wang1[7], Wu et al. [L§],
interested in oscillatory behavior, we assume T and it g Thandapani et al2(] studied a class of half-linear
is convenient to assuntg > 0, and define the time scale dynamic equations

interval of the form[tg, ) by [to, %)t := [to,0) N'T.

Setz(t) := x(t) + pa(t)x(N1(t)) + pa(t)x(na(t)). By a M4
solution of (L) we mean a non-trivial real-valued function (r(t) ((X(t) + pa(t)x(na(t))) ) ) +aq ()X (1a(t)) =0,
x € CL[Ty, ), Tx € [to, )T Which has the properties that _ o
zandr(Z) are defined and-differentiable fort € T, where ni(t) <t, and obtained some oscillation results
and satisfies) for t € [Ty, 0)7. The solutions vanishing Under the assumption that
in some neighbourhood of infinity will be excluded from © At
our consideration. A solutiorx of (1) is said to be / Ty = (2)
oscillatory if it is neither eventually positive nor to 1Y(t)
eventually negative; otherwise, it is termed nonoscithato The purpose of this paper is to derive new oscillation

Equation () is called oscillatory if all its solutions are yiteria for (1) in the cases where) holds or
oscillatory.

The study of dynamic equations on time scales, which /'°° At 3)
to

goes back to its founder Hilgerl], is an area of ri/v(t) <®
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In what follows, all functional inequalities are assumed to Since
hold eventually, that is, they are satisfied for allrge (z(t) )A 2 0)m(t) — z(t)m (1)

enough. =] O ()
2(t) my
2 Main results = mt)ma (t) |:r1/y(t)ftt1 %AS (t)] <0,

In this section, using the Riccati transformation techeiqu we find thatz/mis nonincreasing. Hence we have

we establish some oscillation criteria fd) (In the sequel,  x(t) = z(t) — p1(t)x(N1(t)) — p2(t)x(N2(t))

we let > Z(t) — pa(t)z(ne(t)) — p2(t)z(n2(t))
d.(t):=max{0,d(t)}, and d_(t):=max{0,—d(t)}. > (1_ ou(t) — polt) m(rz(zt()t))> 20).

Theorem 2.1. Let (2) hold. Assume that there exists a By virtue of (8), we have
positive real-valued\-differentiable functiond such that WA
for all sufficiently larget; and forty(T) > tg, (r(t)(zA(t)) )7 =

m(nz2(ta(t)))\”
,t - (1= a0 - patra(t) O ) ()
- r(s)(65(s)) m(1(t))
MRS PO G eng |45 @ mina((t))) )"
- ) (1 pa(rat) - pefratt) "
h
e . 2((1). ©)
to): = au(s) (L) ) Define the functions by
m(n2(11(s)) \” : r(H) ()Y
11— — _— t)y:=0(t)——————, teflt . 10
(1= pulra(s) - pelra(e) e o) =30 ZW tepen. 0
+02(9) (na(t2(S)N Y Then w(t) > 0 fort € [t,»)r. The rest of the proof is
(1 B m(n2(72(s similar to that of B, Theorem 2.1], and so is omitted. The
(1= Palra(s) - palralo) " ) sy Sl fo hatof B,
andm is a positive real-valued-differentiable function R’temzi\rk 2.1. The functionmis existent, see, e.gu(t) =
such that Ju g Bs
m(t) Theorem 2.2. Let (2) hold. Assume that there exist
il ] —m?(t) <0 (6)  functionsH, h such that for each fixed, H(t,s) and
MY Jy g AS h(t,s) are rd-continuous with respect tcs on
D={(t,s):t>s>tp} and
and
m(nz(t H(t,t)=0, t>tg, H(t,s)>0, t>s>ty, (11)
andH has a nonpositive continuous-partial derivative
Then () is oscillatory. H4s(t,s) with respect to the second variable and satisfies
Proof. Let x be a nonoscillatory solution ofl]. Without A 5% (s)
loss of generality, we assumx) > 0, x(ni(t)) >0, and ~ — H™(t,;s) —H(t,s) 39(s)
X(1i(t)) > 0 fori = 1,2 andt € [tg, ). In view of (1), we ht,s)
obtain ) y/(v+1)
39(s) (H(t,s)) ; (12

(rOm)N? = —q )X (1(t))

and for all sufficiently large; and forry(T) > ty,
—Qp(t)x(12(t)) <0, te [to,)r. (8) y large; 1(T)y>t

It follows from (2) that there exists & € [to, )t such that l 1 /t S(sH(t.s) f
Z(t) > 0fort € [ty,00)r. By virtue of @), we see that |rtn_>swupH(t7T) T PR EST(S)
h_(t,s))¥*!
_ (9O OO N As—w, (13)
Z(t) = Z(t]_) + ' WAS (y+ 1)Y+16V(S)
> (U A t As wheref is defined as ing), mis a positive real-valued-
>z )/tl r/v(s)’ differentiable function such tha6)and () hold, andd is
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