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1 Introduction

One of the best-known integral inequalities is the
Minkowski inequality, a generalization of the well-known
triangular inequality. The best known formulation is as
follows.

Minkowski inequality. If p ≥ 1 is a real number, and f

and g are functions of class Lp[a1,a2]. Then the following
inequality, on [a1,a2], is satisfied

(

∫

| f + g|pdx

)
1
p

≤

(

∫

| f |pdx

)
1
p

+

(

∫

|g|pdx

)
1
p

.

This inequality, along with Holder’s inequality, the
inequalities of the arithmetic mean and the geometric
mean, have played dominant roles in the theory of
inequalities. Today, it is in very common use, in various
areas, these and other inequalities, hence, it is not
surprising that numerous studies have been carried out
linked to these inequalities and, in recent years, the
subject has generated considerable interest on the part of
many mathematicians, which has turned this area into a
useful and important tool in the current development of
different branches, pure and applied, of mathematics.

The following definitions specify the type of functions
that we will consider in this work (see [1]).

Definition 1. A function ϕ(u) is said to be in Lp[a1,a2] if

(

∫ a2

a1

|ϕ(u)|pdu

)
1
p

< ∞, 1 ≤ p < ∞.

Definition 2. A function ϕ(u) is said to be in Lp,s[a1,a2] if

(

∫ a2

a1

|ϕ(u)|pusdu

)
1
p

< ∞, 1 ≤ p < ∞, s ≥ 0.

On the other hand, we know that fractional calculus,
the calculus with derivatives and integrals of non-integer
order, has been gaining attention in the last 40 years and
has become one of the most active areas in mathematics
today. This has brought about the emergence of new
integral operators that are natural generalizations of the
classical Riemann-Liouville fractional integral. In a
previous work (see [2]). The authors defined a
generalized operator that contains as a particular case
several of those reported in the literature.

Definition 3. The k-generalized fractional

Riemann-Liouville integral of order α with α ∈ R, and

s 6=−1 of an integrable function χ(u) on [0,∞), are given

as follows (right and left, respectively):

sJ
α
k

F,a1+
ϕ(u) =

1

kΓk(α)

∫ u

a1

F(τ,s)ϕ(τ)dτ

[F(u,τ)]1−
α
k

and (1)
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sJ
α
k

F,a2−
ϕ(u) =

1

kΓk(α)

∫ a2

u

F(τ,s)ϕ(τ)dτ

[F(τ,u)]1−
α
k

, (2)

with F(τ,0) = 1, F(u,τ) =
∫ u

τ F(θ ,s)dθ and F(τ,u) =
∫ τ

u F(θ ,s)dθ .

With the functions Γ (see [3–5] and [6]) and Γk defined
by (cf. [7]):

Γ (z) =

∫ ∞

0
τz−1e−τ dτ, ℜ(z)> 0, and (3)

Γk(z) =

∫ ∞

0
τz−1e−τk/k dτ,k > 0. (4)

It is clear that if k → 1, we have Γk(z)→Γ (z), Γk(z) =

(k)
z
k
−1Γ

(

z
k

)

and Γk(z+ k) = zΓk(z). Also, we define the
k-beta function as follows:

Bk(u,v) =
1

k

∫ 1

0
τ

u
k
−1(1− τ)

v
k
−1dτ,

notice that Bk(u,v) =
1
k
B( u

k
, v

k
), and Bk(u,v) =

Γk(u)Γk(v)
Γk(u+v) .

Minkowski’s inequality is one of the inequalities that
has been given the most attention in recent years. To cite
just a few examples, directly linked to fractional operators,
we recommend consulting [1, 8–15] and references cited
therein.

The main purpose of this paper, using the generalized
fractional integral operator of the Riemann-Liouville
type, from Definition 3, is to establish several integral
inequalities of Minkowski type which contain as
particular cases, several of those reported in the literature.

2 Main Results

Our first result provides a Minkowski reverse inequality,
within the generalized operators of Definition 3.

Theorem 1. For k > 0, s 6= −1, α > 0 and p ≥ 1. Let

ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions in [0,+∞)

such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

sJ
α
k

F,a1
ψ p(τ) < ∞ If 0 < m ≤ ϕ(u)

ψ(u) ≤ M for m,M ∈ R
+ and

for all u ∈ [a1,τ], then

( sJ
α
k

F,a1
ϕ p(τ))

1
p +( sJ

α
k

F,a1
ψ p(τ))

1
p ≤ c1(

sJ
α
k

F,a1
(ϕ+ψ)p(τ))

1
p ,

(5)

with c1 =
M(m+1)+(M+1)
(m+1)(M+1)

.

Proof.Using the fact that
ϕ(u)
ψ(u) ≤ M, a1 ≤ u ≤ τ , we get

ϕ(u)≤ M(ϕ(u)+ψ(v))−Mϕ(u)

which is equivalent to

(M+ 1)pϕ p(u)≤ Mp(ϕ(u)+ψ(u))p. (6)

Multiplying both sides of (6) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we

integrate the resulting inequality with respect to u over
(a1,τ), we get

(M+ 1)p

kΓk(α)
sJ

α
k

F,a1
ϕ p(τ)≤

Mp

kΓk(α)
sJ

α
k

F,a1
(ϕ +ψ)p(τ), (7)

thus,

( sJ
α
k

F,a1
ϕ p(τ))

1
p ≤

M

M+ 1
( sJ

α
k

F,a1
(ϕ +ψ)p(τ))

1
p . (8)

On the other hand, as mψ(u)≤ ϕ(u), it follows that

(

1+
1

m

)p

ψ p(u)≤

(

1

m

)p

(ϕ(u)+ψ(u))p. (9)

Now, multiplying both sides of (9) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
,

then we integrate the resulting inequality with respect to u

over (a1,τ), we obtain

( sJ
α
k

F,a1
ψ p(τ))

1
p ≤

1

m+ 1
( sJ

α
k

F,a1
(ϕ +ψ)p(τ))

1
p . (10)

Adding Eqs. (8) and (10), we obtain the result.

Remark.If we consider the kernel F(τ,s) = τs−1, this
theorem becomes Theorem 9 of [1].

Theorem 2. For k > 0, s 6= −1, α > 0 and p ≥ 1. Let

ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions in [0,∞) such

that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and sJ

α
k

F,a1
ψ p(τ)< ∞

If 0 < m ≤ ϕ(u)
ψ(u)

≤ M for m,M ∈ R
+ and for all

u ∈ [a1,τ], then

( sJ
α
k

F,a1
ϕ p(τ))

2
p +( sJ

α
k

F,a1
ψ p(τ))

2
p (11)

≥ c2(
sJ

α
k

F,a1
ϕ p(τ))

1
p ( sJ

α
k

F,a1
ψ p(τ))

1
p ,

with c2 =
(m+1)(M+1)

M+1
− 2.

Proof.Multiplying the equations (8) and (10) we have

(m+ 1)(M+ 1)

M
( sJ

α
k

F,a1
ϕ p(τ))

1
p ( sJ

α
k

F,a1
ψ p(τ))

1
p (12)

≤ ( sJ
α
k

F,a1
(ϕ +ψ)p(τ))

2
p .

Now, using the Minkowski inequality, we obtain

(m+ 1)(M+ 1)

M
( sJ

α
k

F,a1
ϕ p(τ))

1
p ( sJ

α
k

F,a1
ψ p(τ))

1
p (13)

≤ (( sJ
α
k

F,a1
ϕ p(τ))

1
p +( sJ

α
k

F,a1
ψ p(τ))

1
p )2.
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Therefore, we obtain

( sJ
α
k

F,a1
ϕ p(τ))

2
p +( sJ

α
k

F,a1
ψ p(τ))

2
p (14)

≥

(

(m+ 1)(M+ 1)

M
− 2

)

( sJ
α
k

F,a1
ϕ p(τ))

1
p ( sJ

α
k

F,a1
ψ p(τ))

1
p .

Remark.Theorem 10 of [1] is a particular case of the
previous result if we put F(τ,s) = τs−1.

Other inequalities of the Minkowski reverse type are
given in the results that we present below.

Theorem 3. For k > 0, s 6= −1, α > 0 and p,q ≥ 1 and
1
p
+ 1

q
= 1. Let ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions

in [0,∞) such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

sJ
α
k

F,a1
ψ p(τ) < ∞ If 0 < m ≤ ϕ(u)

ψ(u) ≤ M for m,M ∈ R
+ and

for all u ∈ [a1,τ], then

( sJ
α
k

F,a1
ϕ(τ))

1
p ( sJ

α
k

F,a1
ψ(τ))

1
q (15)

≤

(

M

m

)
1
pq

( sJ
α
k

F,a1
ϕ

1
p (τ)ψ

1
q (τ)).

Proof.Since
ϕ(u)
ψ(u)

≤ M, a1 ≤ u ≤ τ , we have

ψ
1
q (u)≥ M

− 1
q ϕ

1
q (u). (16)

Now, multiplying both sides of (16) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
,

then we integrate the resulting inequality with respect to u

over (a1,τ), we obtain

M
− 1

pq ( sJ
α
k

F,a1
ϕ(τ))

1
p ≤ ( sJ

α
k

F,a1
[ϕ

1
p (τ)ψ

1
q (τ)])

1
p . (17)

On the other hand, as mψ(u)≤ ϕ(u), we get

m
1
p ψ

1
p (u)≤ ϕ

1
p (u). (18)

Then, multiplying both sides of (18) by ψ
1
q and using 1

p
+

1
q
= 1, it follows that

m
1
p ψ(u)≤ ϕ

1
p (u)ψ

1
q (u). (19)

Now, multiplying both sides of (19) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
,

then we integrate the resulting inequality with respect to u

over (a1,τ), we have

m
1
pq ( sJ

α
k

F,a1
ψ(τ))

1
q ≤ ( sJ

α
k

F,a1
[ϕ

1
p (τ)ψ

1
q (τ)])

1
q . (20)

Finally, multiplying equations (17) and (20), we obtain the
result.

Theorem 4. For k > 0, s 6= −1, α > 0 and p,q ≥ 1 and
1
p
+ 1

q
= 1. Let ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions

in [0,∞) such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

sJ
α
k

F,a1
ψ p(τ)< ∞. If 0 < m ≤ ϕ(u)

ψ(u) ≤ M for m,M ∈ R
+ and

for all u ∈ [a1,τ], then

sJ
α
k

F,a1
[ϕ(τ)ψ2(τ)] (21)

≤ c3

(

sJ
α
k

F,a1
[ϕ p +ψ p](τ)

)

+ c4

(

sJ
α
k

F,a1
[ϕq +ψq](τ)

)

,

where c3 =
2p−1Mp

p(M+1)p and c4 =
2q−1

q(m+1)q .

Proof.Using ϕ(u) ≤ Mψ(u), we obtain the following
inequality:

(M+ 1)pϕ p(u)≤ Mp(ϕ +ψ)p(u). (22)

Now, multiplying both sides of (22) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we integrate the resulting inequality

with respect to u over (a1,τ), we have

sJ
α
k

F,a1
ϕ p(u)≤

Mp

(M+ 1)p
sJ

α
k

F,a1
(ϕ +ψ)p(τ). (23)

Also, we know that 0 < m ≤ ϕ(u)
ψ(u) , a1 < u < τ , thus we get

(m+ 1)qψq(u)≤ (ϕ +ψ)q(u). (24)

Then, multiplying both sides of (24) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
,

then we integrate the resulting inequality with respect to u

over (a1,τ), we get

sJ
α
k

F,a1
ψq(τ)≤

1

(m+ 1)q
sJ

α
k

F,a1
(ϕ +ψ)q(τ). (25)

Now, using the Young’s inequality, we have

ϕ(u)ψ(u)≤
ϕ p(u)

p
+

ψq(u)

q
. (26)

Then, multiplying both sides of (26) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we integrate the resulting inequality

with respect to u over (a1,τ), it follows that

sJ
α
k

F,a1
(ϕψ)(τ) ≤

1

p
( sJ

α
k

F,a1
ϕ p(τ))+

1

q
( sJ

α
k

F,a1
ψq(τ)).

(27)
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From (23), (25), (27), and the inequality
(u+ v)s ≤ 2s−1(us + vs), s > 1,u,v > 0, we have

sJ
α
k

F,a1
(ϕψ)(τ)≤

1

p
( sJ

α
k

F,a1
ϕ p(τ))+

1

q
( sJ

α
k

F,a1
ψq(τ)) (28)

≤
Mp

p(M+ 1)p
sJ

α
k

F,a1
(ϕ +ψ)p(τ)

+
1

q(m+ 1)q
sJ

α
k

F,a1
(ϕ +ψ)q(τ)

≤
2p−1Mp

p(M+ 1)p
sJ

α
k

F,a1
(ϕ p +ψ p)(τ)

+
2q−1

q(m+ 1)q
sJ

α
k

F,a1
(ϕq +ψq)(τ).

Therefore, the proof is completed.

Theorem 5. For k > 0, s 6= −1, α > 0 and p,q ≥ 1 and
1
p
+ 1

q
= 1. Let ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions

in [0,+∞) such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

sJ
α
k

F,a1
ψ p(τ)<∞ If 0< c<m≤ ϕ(u)

ψ(u)
≤M for c,m,M ∈R

+

and for all u ∈ [a1,τ], then

M+ 1

M− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p (29)

≤ ( sJ
α
k

F,a1
ϕ p(τ))

1
p +( sJ

α
k

F,a1
ψ p(τ))

1
p

≤
m+ 1

m− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p .

Proof.Using the hypothesis 0 < c < m ≤ ϕ(u)
ψ(u)

≤ M, we

obtain the following inequalities:

(ϕ(u)− cψ(u))p

(M− c)p
≤ ψ p(u)≤

(ϕ(u)− cψ(u))p

(m− c)p
(30)

and

(

M

M− c

)p

(ϕ(u)− cψ(u))p (31)

≤ ϕ p(u)≤

(

m

m− c

)p

(ϕ(u)− cψ(u))p.

Now, multiplying both sides of (30) and (31) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we integrate the resulting inequality

with respect to u over (a1,τ), we obtain

1

M− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p (32)

≤ ( sJ
α
k

F,a1
ψ p(τ))

1
p

≤
1

m− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p

and

M

M− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p (33)

≤ ( sJ
α
k

F,a1
ϕ p(τ))

1
p

≤
m

m− c
( sJ

α
k

F,a1
(ϕ(τ)− cψ(τ))p)

1
p .

Then, adding (32) and (33), we obtain the result.

Theorem 6. For k > 0, s 6= −1, α > 0 and p ≥ 1. Let

ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions in [0,+∞)

such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

sJ
α
k

F,a1
ψ p(τ) < ∞. If 0 ≤ a1 ≤ ϕ(u) ≤ A1 and

0 < a2 ≤ ψ(u) ≤ A2 for a1,a2,A1,A2 ∈ R
+ and for all

u ∈ [a1,τ], then

( sJ
α
k

F,a1
ϕ p(τ))

1
p +( sJ

α
k

F,a1
ψ p(τ))

1
p (34)

≤
A1(a1 +A2)+A2(a2 +A1)

(a1 +A2)(a2 +A1)
( sJ

α
k

F,a1
(ϕ(τ)+ψ(τ))p)

1
p .

Proof.Of the hypothesis 0 < a2 ≤ ψ(u)≤ A2 it is followed
that

1

A2

≤
1

ψ(u)
≤

1

a2

. (35)

Multiplying member to member (35) and 0≤ a1 ≤ ϕ(u)≤
A1, we conclude that

a1

A2

≤
ϕ(u)

ψ(u)
≤

A1

a2

. (36)

From (36), we deduce

ϕ p(u)≤

(

A2

a1 +A2

)p

(ψ(u)+ϕ(u))p (37)

and

ψ p(u)≤

(

A1

a2 +A1

)p

(ψ(u)+ϕ(u))p. (38)

Now, multiplying both sides of (37) and (38) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we integrate the resulting inequality

with respect to u over (a1,τ), we have

( sJ
α
k

F,a1
ϕ p(τ))

1
p ≤

(

A2

a1 +A2

)

( sJ
α
k

F,a1
(ϕ(τ)+ψ(τ))p)

1
p

(39)
and

( sJ
α
k

F,a1
ϕ p(τ))

1
p ≤

(

A1

a2 +A1

)

( sJ
α
k

F,a1
(ϕ(τ)+ψ(τ))p)

1
p .

(40)
Finally, adding (39) and (40), we obtain the result.

Theorem 7. For k > 0, s 6= −1, α > 0 and p ≥ 1. Let

ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions in [0,+∞)

such that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ) < ∞ and

c© 2021 NSP
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sJ
α
k

F,a1
ψ p(τ) < ∞ If 0 < m ≤ ϕ(u)

ψ(u) ≤ M for m,M ∈ R
+ and

for all u ∈ [a1,τ], then

1

M
( sJ

α
k

F,a1
[ϕ(τ)ψ(τ)]) (41)

≤
1

(m+ 1)(M+ 1)
( sJ

α
k

F,a1
(ϕ(τ)+ψ(τ))2)

≤
1

m
( sJ

α
k

F,a1
[ϕ(τ)ψ(τ)]).

Proof.Using the hypothesis 0 < m ≤ ϕ(u)
ψ(u) ≤ M, we obtain

the following inequalities:

ψ(τ)(m+ 1)≤ ϕ(u)+ψ(u)≤ ψ(τ)(M + 1) (42)

and

1

M
≤

ψ(u)

ϕ(u)
≤

1

m
. (43)

From (43), it is followed that

ϕ(τ)

(

M+ 1

M

)

≤ ϕ(u)+ψ(u)≤ ϕ(τ)

(

m+ 1

m

)

. (44)

Multiplying member to member (43) and (44), we
conclude that

1

M
[ϕ(τ)ψ(τ)] (45)

≤
1

(m+ 1)(M+ 1)
(ϕ(τ)+ψ(τ))2 ≤

1

m
[ϕ(τ)ψ(τ)].

Now, multiplying both sides of (45) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
,

then we integrate the resulting inequality with respect to u

over (a1,τ), we have the inequality (41).

Theorem 8. For k > 0, s 6= −1, α > 0 and p ≥ 1. Let

ϕ ,ψ ∈ L1,s[a1,τ] be two positive functions in [0,∞) such

that for all τ > a1, sJ
α
k

F,a1
ϕ p(τ)< ∞ and sJ

α
k

F,a1
ψ p(τ)< ∞

If 0 < m ≤ ϕ(u)
ψ(u)

≤ M for m,M ∈ R
+ and for all

u ∈ [a1,τ], then

( sJ
α
k

F,a1
ϕ p(τ))

1
p +( sJ

α
k

F,a1
ψ p(τ))

1
p (46)

≤ 2( sJ
α
k

F,a1
(η p[ϕ(τ),ψ(τ)])

1
p )

with

η [ϕ(τ),ψ(τ)] =

max{(
M

m
+ 1)ϕ(τ)−Mψ(τ),

(m+M)ψ(τ)−ϕ(τ)

m
}

Proof.Of the hypothesis 0<m≤ ϕ(u)
ψ(u)

≤M and a1 ≤ u≤ τ .

we have the following inequalities:

0 < m ≤ M+m−
ϕ(u)

ψ(u)
≤ M (47)

and

0 < m ≤ M+m−
ϕ(u)

ψ(u)
≤ M. (48)

From (47), (48) and remembering that η [ϕ(τ),ψ(τ)] =

max{(M
m
+ 1)ϕ(τ)−Mψ(τ),

(m+M)ψ(τ)−ϕ(τ)
m

}, we deduce

ψ(τ)≤
(m+M)ψ(τ)−ϕ(τ)

m
≤ η [ϕ(τ),ψ(τ)]. (49)

On the other hand, from the hypothesis, it also follows

that 0 < 1
M
≤ ψ(u)

ϕ(u) ≤
1
m

then

1

M
≤

1

M
+

1

m
−

ψ(u)

ϕ(u)
(50)

and
1

M
+

1

m
−

ψ(u)

ϕ(u)
≤

1

m
. (51)

From (50) and (51), we have

1

M
≤

( 1
M
+ 1

m
)ϕ(u)−ψ(u)

ϕ(u)
≤

1

m
, (52)

which implies that

ϕ(u)≤ M

[(

1

M
+

1

m

)

ϕ(u)−ψ(u)

]

≤
M(M+m)ϕ(u)−M2mψ(u)

mM

≤

(

M

m
+ 1

)

ϕ(u)−Mψ(u)

≤ η [ϕ(τ),ψ(τ)].

(53)

By raising both of inequalities (49) and (53) to p, we
obtain

ψ p(τ)≤ η p[ϕ(τ),ψ(τ)] (54)

and
ϕ p(u)≤ η p[ϕ(τ),ψ(τ)]. (55)

Multiplying both sides of (54) and (55) by
F(u,s)

kΓk(α)[F(τ,u)]
1−α

k
, then we integrate the resulting inequality

with respect to u over (a1,τ), we have

( sJ
α
k

F,a1
ψ p(τ))

1
p ≤ ( sJ

α
k

F,a1
(η p[ϕ(τ),ψ(τ)])

1
p ). (56)

and

( sJ
α
k

F,a1
ϕ p(τ))

1
p ≤ ( sJ

α
k

F,a1
(η p[ϕ(τ),ψ(τ)])

1
p ). (57)

Finally, adding inequalities (56) and (57), we conclude the
result (46).

Remark.The previous observations are still valid for
Theorems 3, 4, 5, 6, 7 and 8, containing as particular
cases Theorems 11-16, respectively, of [1].
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3 Conclusions

As we said at the beginning of the work, the generalized
operators of Definition 3 contain, for a proper choice of
kernel F , several well-known integral operators. For
example, let us consider the kernel F(τ,s) = τs, then we
will have successively:

F(u,τ) =
us+1 − τs+1

s+ 1
(58)

(F(u,τ))1− α
k =

[

us+1 − τs+1

s+ 1

]1− α
k

. (59)

Regarding the (k,s)-Riemann-Liouville fractional
integral in Definition 2.1 of [16], analogously, if s ≡ 0 and
k ≡ 1, we obtain the classic Riemann-Liouville operator.
In addition to the previous one, it is clear that our operator
is also a successive generalization of the generalized
integral k-fractional (see [?, 17]) of the Integral
Katugampola (see [18]) of the (k,s)-Riemann-Liouville
fractional integral in Definition 2.1 of [16] of the
Riemann-Liouville k-integral of a function with respect to
another function (a variation of the ψ-integral, see [?, 19])
and the classic Riemann Integral.

It is clear, then, that the results obtained in [?, ?, 20]
achieved within the framework of the Riemann
integral [10], where we worked with the generalized
k-fractional integrals [15], in the framework of integral
Katugampola [8], with the ψ-integral among others, can
be obtained as particular cases of our results.

Obviously, it remains an open problem, the obtaining
of other integral inequalities in this generalized framework
such as Gruss, Chebyshev, Opial, etc.
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