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Abstract: Experts frequently employ three-dimensional arguments to steer decisions in neutrosophic environments. In
explicit cases, parameters are grouped into sub-classes, and the degree of possibility is utilized to appraise the
acceptability of professional opinions for potential outcomes. A multi-attribute decision-making (MADM) process is the
most fitting approach that entails these types of settings. It is indispensable to make sure that the attributes are pertinent
and non-discriminatory so that the decision-making process remains transparent and fair. In this context, the possibility
single-valued neutrosophic hypersoft set (pSVNHSS) is a new hybrid model designed to address the limitations of the
possibility intuitionistic fuzzy set and soft set regarding indeterminacy levels and multi-argument approximation
functions, respectively. This paper introduces the concept of pSVNHSS and integrates it with graph theory to develop a
novel framework called the possibility single-valued neutrosophic hypersoft graph (psvNHSG) for data management
based on pSVNHSS information. First, it reviews basic concepts and set-theoretical operations of psvNHSG using
examples and illustrations. Furthermore, it confers its products, compositions, and related theorems. By combining
pSVNHSS, the derived psvNHSG, the psvNHSG-based incidence matrix, and the score function, an ample MADM
algorithm is suggested for selecting an assistant manager in an organization. The adaptability of this new structure is
evaluated by comparing it with other existing models.

Keywords: Neutrosophic Set; Hypersoft set; Optimization; Neutrosophic Hypersoft Graph; Decision Making.

1 Introduction

Graph theory is the study of graphs and involves examining properties such as connectivity, paths, cycles,
coloring, embedding, and algorithms. It aids in analyzing the structure and behavior of graphs and solving
problems like finding the shortest paths, optimizing resource allocation, and identifying key nodes. However,
uncertainties can arise depending on the context, and the application of the study can introduce various
uncertainties. In graph theory, different sources of uncertainty can be identified. Data uncertainty, which can
arise from incomplete or noisy data, can affect the structure and properties of a graph, affecting the accuracy
of analyses or predictions. Model uncertainty, which is related to the choice of a graph model to represent a
real-world system, can also affect the properties and predictions of the graph. Algorithmic uncertainty, which
can be influenced by input data uncertainties, algorithm choice, and parameters, can affect the performance
and accuracy of graph algorithms. Dynamic uncertainty, which arises from changes in the underlying system,
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limitations of available data, and the modeling approach used to represent the system, can also affect the
graph structure and properties. These uncertainties can significantly impact the accuracy of graph theory
applications. Overall, uncertainties in graph theory are an important consideration in many applications, and
it is important to be aware of these uncertainties and to take them into account when analyzing or modeling
real-world systems using graphs. To cope with such uncertainties, the single-valued neutrosophic graph
(SVNG) idea was developed by Broumi et al. [1] in response to the intuitionistic fuzzy graph’s (IFG) [2]
inadequacy for indeterminacy grade. The single-valued neutrosophic set (SVNS) [3] and conventional graph
theory are joined by the SVNG. As a continuation of their research, Broumi et al. [4] examined the isolation
and homogeneity of SVNG in more detail. Naz et al. [5] covered specific SVNG operations with remarkable
graphical representations. By utilizing the idea of SVNGs, Akram et al. [6] used an algorithmic strategy to
tackle a decision-making problem. Numerous researchers made significant contributions to the creation of
SVNS and its use in numerous academic disciplines. Molodtsov [7] created the soft set (SS) as a
parametrization tool. Thumbakara [8] presented soft graphs. Shah et al. [9] introduced the notions of
neutrosophic soft graphs by integrating neutrosophic soft sets [10] with graph theory. By assigning a
possibility degree to each approximate element of the corresponding structures, Alkhazaleh et al. [11], Bashir
et al. [12], and Karaaslan [13], Husain et al. [14], Noori et al. [15] respectively, characterized possibility fuzzy
soft set (pFSS), possibility intuitionistic fuzzy soft set (pIFSS), and possibility neutrosophic soft set (pNSS).
It is required to group the attributes into their corresponding sub-attributive values in the form of sets in a
variety of real-world settings. Smarandache [16] proposed the notion of the hypersoft set (HSS) to solve the
inadequacy of SSs and to deal with circumstances with multi-argument approximate functions because the
present concept of SSs is insufficient and incompatible with such scenarios. The authors like Musa and Asaad
[17] and Asaad and Musa [18] developed topological structures in HSS environments. Debnath [19] discussed
decision-making applications in intuitionistic HSS environments with interval-type settings. Using hybrids of
HSS and possibility grade settings, Rahman et al. [20,21,22] and Zhao et al. [23] presented decision-making
applications. Sajid et al. [24] evaluated suppliers in the health care industry using cosine similarity measures
of single-valued neutrosophic cubic hypersoft sets. Rahman et al. [25] and Saeed et al. [26] introduced the
notions of picture fuzzy hypersoft graphs and their properties. They also discussed their applications in
recruitment process and micro-enterprise supermarket investment risk assessment, respectively. Saeed et al.
[27] introduced the notions of neutrosophic hypersoft graph (NHSG) and discussed their examples and
applications. Recently Smarandache [28,29,30] introduced some new types of HSSs and discussed their
examples and applications. Similarly, the researchers like Abdullah et al. [31], and Rahman et al. [32] have
made useful contributions in the field of hypersoft sets.
Recently, Rahman et al. [33] introduced 36 novel hybrid set models by integrating the notions of several fuzzy
HSS extensions with fuzzy parameterization and possibility degree setting. They explained each theoretical
context with illustrative examples. Surya and Vimala [34] discussed the pattern recognition using the
similarity measures formulations of complex non-linear Diophantine fuzzy HSS. Subramanian et al. [35]
discussed the medical diagnosis using the integrated approach of fuzzy HSS and weight-based support
vector machine. Hussein et al. [36] investigated several properties of possibility interval valued neutrosophic
hypersoft matrices and formulated the notions for the correlation coefficient. They employed the proposed
notions in human resource management for the recruitment process. Al-Hagery and Abdalla Musa [37]
explored the properties of possibility neutrosophic HSS to enhance the network security using a cyber-attack
detection method based on the proposed model. The following problems cannot be addressed collectively by
any algebraic model, according to careful observation and analysis of previous research works:

1.Sometimes the situations happen when decision-makers appraise diverse alternatives but cannot articulate
their findings with inclusive certainty. Instead, they use single-valued neutrosophic information to signify
their considerations through degrees of truth, indeterminacy, and falsity. This approach permits them to
handle ambiguity, hesitation, and incomplete information that frequently happen in real-world decision-
making, particularly when the selection of alternatives depends on complex or uncertain parameters.

2.Mostly, the circumstances happen when the issue entails multiple correlated parameters that manipulate
the evaluation process, making it indispensable to consider a multi-argument function. This function
permits the approximation of sub-parametric disjoint sets, where each subset corresponds to distinct yet
related parameter combinations. This approach assists detain the complex relationships and dependencies
among parameters, leading to a more precise and inclusive depiction of uncertain or overlapping
information in decision-making or modeling processes.

3.When professionals present their findings as approximations of alternatives, these assessments are
frequently uncertain or imprecise. To decide how acceptable each alternative is, the evaluations must be
quantified through a possibility degree, which measures the degree to which an alternative may be
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Fig. 1: Methodological stages

regarded as suitable. This process assists rank or compares alternatives based on their degree of
acceptability derived from expert opinions.

Since there is no suitable set-theoretic or graph model that can handle all of the aforementioned situations,
therefore, the goal of this study is to provide a novel framework called possibility single-valued neutrosophic
hypersoft graph (psvNHSG), which is capable of handling all such issues collectively. It can easily address the
first issue through its possibility single-valued neutrosophic settings. Similarly, it can address the second and
third issues with its hypersoft settings. It can tackle the fourth one by possibility grade settings.The proposed
model offers greater adaptability by addressing the issues present in current models for managing
uncertainties. It assigns a degree of possibility to each approximate element in its multi-argument
approximation to effectively handle the ambiguous behavior of each element.
The section-wise layout of the remaining paper is as follows: Some essential terms are reviewed in Section 2.1
to help readers understand the main results. Section 2.2 introduces the concepts of psvNHSG and its
properties. Section 2.3 examines some aggregation operations of psvNHSG. Specific products and
compositions of psvNHSG are discussed in Section 2.4 with graphical illustrations and examples. A
decision-making framework is developed in Section 2.5 with an algorithm utilizing psvNHSG aggregations.
Section 2.6 provides a comparison analysis and discussion of the results. Finally, the overall study is
summarized in Section 3, including a brief overview of future scope and limitations.

2 Methodology

This section presents the main methodology of the proposed study. It begins with a review of fundamental
definitions and then examines the main proposed concepts. The Figure 1 presents the different stage involved
in the proposed methodology.

2.1 Elementary Knowledge

To facilitate readers’ better understanding of the main proposed concepts, this section aims to recall some
essential basic definitions from the published literature.

Definition 1.[3]
A SVNS R defined as R = {(û,< AR(û),BR(û),CR(û) >)∣û ∈ U} such that AR(û),BR(û),CR(û) : U → [0,1],
where AR(û),BR(û) and CR(û) represent the grades of membership, indeterminacy and non-membership of û ∈ U
subject to the condition that 0 ≤AR(û) + BR(û) + CR(û) ≤ 3.

Definition 2.[7]
A SS over U is a pair (FS ,E ), which is defined by an approximate mapping FS : E → P(U ) such that FS (ĥ) ⊆ P(U )
where E is a collection of parameters and

Definition 3.[10]
A pair (MNS ,Z) is called a NSS over U , where MFS : Z → N (U ) where Z ⊆ E and N (U ) is the collection of
neutrosophic subsets over U .
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Definition 4.[16]

A HSS over U is a set of objects (W ,H), such that H =

n
i=1

Hi, and Hi are non overlapping sets consisting of sub-

parametric values of parameters ĥi, i = 1,2,3, ...,n, ĥi
≠ ĥj, i ≠ j respectively and W : H→ P(U ). Any HSS is claimed to

be NHSS when P(U ) is substituted by N(U ) (a family consisting of neutrosophic subsets over U ).

2.2 Possibility Single-Valued Neutrosophic Hypersoft Graphs (psvNHSG)

The basic notions of psvNHSG are characterized with the description of graph-based presentations.
Contrasting to available neutrosophic and hypersoft graph frameworks, the suggested structure psvNHSG
concurrently incorporates multi-parameter, multi-sub-attribute structures along with possibility-based truth,
indeterminacy, and falsity components, enabling a more communicative illustration of uncertainty. This
arrangement permits more improved decision-making in environments where both hierarchical parameters
and degrees of possibility are indispensable, which is not addressed in conventional neutrosophic or
hypersoft graph-based approaches. The manuscript has been updated to explicitly emphasize these
discerning aspects and their benefits over existing models. Now A = (V ,E ) will represent as simple graph
where V is a set consisting of vertices and E is consisting of edges, the E is consisting of parameters and the
disjoint sets Qi consisting of sub-parametric values with respect to distinct parameters êi, i = 1,2, ...,n of E.
Also Q = Q1 ⊆Q2 ⊆Q3 ⊆ ... ⊆Qn.
Definition 5.A possibility single-valued neutrosophic set (pSVNS) PN over U is stated as
PN = {(û,<AR(û),BR(û),CR(û)>,∆(û))∣û ∈U} where AR(û), BR(û), CR(û) are uncertain components of SVNS
and ∆ : U → [0,1] with ∆(û) is the possibility degree of û to PN . The collection of all pSVNSs over U is represented by
ΩPN(U ).
The following definition is an extension and motivation of the concept presented by Saeed et al. [27].
Definition 6.A psvNHSG is a 4-tuple A = (A ,Q,Æ,Ξ) where Æ : Q → PN(V ),Ξ : Q → PN(V ⊆ V ) given by
Æ(σ) = Æσ = { (v̂,≺ TÆσ (v̂),IÆσ (v̂),FÆσ (v̂) ≻,µ(v̂)), v̂ ∈ V } and

Ξ(σ) = Ξσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((v̂1, v̂2),⟨
TÆσ (v̂1, v̂2),
IÆσ (v̂1, v̂2),
FÆσ (v̂1, v̂2)

⟩ ,

µÆσ (v̂1, v̂2)), (v̂1, v̂2) ∈ V ⊆ V

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
are pSVNSs over V and V ⊆ V with
TÆσ (v̂1, v̂2) ≤ min{TÆσ (v̂1),TÆσ (v̂2)} , IÆσ (v̂1, v̂2) ≤ min{IÆσ (v̂1),IÆσ (v̂2)} ,
FÆσ (v̂1, v̂2) ≥ max{FÆσ (v̂1),FÆσ (v̂2)} , µÆσ (v̂1, v̂2) ≤ min{µÆσ (v̂1),µÆσ (v̂2)} , (v̂1, v̂2) ∈ (V ⊆ V ) and σ ∈ Q.
Note: The collection of all psvNHSGs is represented by ΩpsvNHSG.

Example 1.Let A = (V ,E ) be a simple graph with V = {v̂1, v̂2, v̂3} and Q1 = {q̂11, q̂12}, Q2 = {q̂21, q̂22} and
Q3 = {q̂31} such that Q = Q1 ⊆ Q2 ⊆ Q3 = {σ1,σ2,σ3,σ4} and TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) =
1,µΞσ (v̂i, v̂j) = 0 (v̂i, v̂j) ∈ V ⊆ V \{(v̂1, v̂2), (v̂2, v̂3), (v̂1, v̂3)}. The Table 1 and Figure 2 presents its numerical
tabular-form and graph-based presentation respectively.

Definition 7.A psvNHSG G =
(
A ,Q ,Æ1,Ξ1) is called a psvNHS-subgraph of A = (A ,Q,Æ,Ξ) if

1.Q ⊆ Q
2.Æ1

σ ⊆ Æ implies TÆ1
σ
(v̂) ≤ TÆσ (v̂),IÆ1

σ
(v̂) ≤ IÆσ (v̂),FÆ1

σ
(v̂) ≥ FÆσ (v̂),µÆ1

σ
(v̂) ≤ µÆσ (v̂)

3.Ξ1
σ ⊆ Ξ implies TΞ1

σ
(v̂) ≤ TΞσ (v̂),IΞ1

σ
(v̂) ≤ IΞσ (v̂),FΞ1

σ
(v̂) ≥ FΞσ (v̂),µΞ1

σ
(v̂) ≤ µΞσ (v̂)

σ ∈ Q .

Example 2.Repeating the Example 1 with Q1 = {α11,α12}, Q2 = {α21} and Q3 = {α31}, Q = Q1 ⊆ Q2 ⊆ Q3 =
{σ1,σ2,σ3}, it gives a new psvNHSG A =

(
A ,Q ,Æ1,Ξ1) which is psvNHS-subgraph of psvNHSG given in

Example 1. Its tabular-form and graph-based presentation are provided in Table 2 and Figure ?? respectively.

Definition 8.A psvNHS-subgraph
(
A ,Q ,Æ1,Ξ1) is called a psvNHS-spanning subgraph of psvNHSG (A ,Q,Æ,Ξ)

when Æ1
σ(v̂) = Æσ(v̂) v̂ ∈ V ,σ ∈ Q.1

Definition 9.A psvNHS-subgraph
(
A ,Q ,Æ1,Ξ1) is called a strong psvNHS-subgraph (SSVNHS-subgraph) of

psvNHSG (A ,Q,Æ,Ξ) when Ξσ(v̂1, v̂2) = Æσ(v̂1)ℑ Æσ(v̂2) for v̂1, v̂2 ∈ V and σ ∈ Q.
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Table 1: Numerical Computation of Example 1 with (a) PN(σ1), (b) PN(σ2), (c) PN(σ3) and (d) PN(σ4)

Æ v̂1 v̂2 v̂3

σ1 (0.2,0.4,0.7,0.2) (0.3,0.6,0.3,0.3) (0,0,1,0)
σ2 (0.1,0.4,0.3,0.2) (0.3,0.4,0.5,0.1) (0,0,1,0)
σ3 (0.1,0.5,0.6,0.3) (0.3,0.3,0.8,0.2) (0.3,0.2,0.5,0.1)
σ4 (0.4,0.2,0.6,0.3) (0.3,0.6,0.5,0.4) (0.4,0.3,0.6,0.2)
Ξ (v̂1, v̂2) (v̂2, v̂3) (v̂1, v̂3)

σ1 (0,0,1,0) (0,0,1,0) (0,0,1,0)
σ2 (0.1,0.3,0.2,0.4) (0,0,1,0) (0,0,1,0)
σ3 (0.1,0.5,0.4,0.3) (0.2,0.4,0.3,0.1) (0,0,1,0)
σ4 (0.2,0.3,0.4,0.6) (0.2,0.5,0.3,0.4) (0.4,0.2,0.7,0.5)

Fig. 2: Geometrical Interpretation of Table 1

Table 2: Tabular-form of Example 2 with (a) PN(σ1), (b) PN(σ2) and (c) PN(σ3)

Æ v̂1 v̂2 v̂3

σ1 (0.1,0.3,0.8,0.1) (0.2,0.3,0.4,0.2) (0,0,1,0)
σ2 (0.1,0.2,0.4,0.1) (0.2,0.3,0.8,0.1) (0,0,1,0)
σ3 (0.1,0.4,0.7,0.2) (0.2,0.2,0.9,0.1) (0.2,0.1,0.6,0.1)
Ξ (v̂1, v̂2) (v̂2, v̂3) (v̂1, v̂3)

σ1 (0,0,1,0) (0,0,1,0) (0,0,1,0)
σ2 (0.1,0.2,0.3,0.1) (0,0,1,0) (0,0,1,0)
σ3 (0.1,0.4,0.5,0.2) (0.1,0.3,0.4,0.1) (0,0,1,0)

2.3 Aggregation Operations of psvNHSG

Some aggregation operations of psvNHSG are investigated and illustrated by graph representations.

Definition 10.The union of two psvNHSGs
A1 =

(
A1,Q1,Æ1,Ξ1), A2 =

(
A2,Q2,Æ2,Ξ2), denoted by A1 ℜ A2, is a psvNHSG A = (A ,Q,Æ,Ξ) such that

Q = Q1 ℜQ2. In this graph,
TÆσ

(v̂) =
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Fig. 3: Graph-based presentation of Table 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TÆ1
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ◦ V2 or
i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ℑ V2 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ◦ V2

TÆ2
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ◦ V1 or
i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ℑ V1 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V2 ◦ V1

max{TÆ1
σ
(v̂),TÆ2

σ
(v̂)}{i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ℑ V2

0, otherwise

&

IÆσ
(v̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IÆ1
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ◦ V2 or
i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ℑ V2 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ◦ V2

IÆ2
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ◦ V1 or
i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ℑ V1 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V2 ◦ V1

max{IÆ1
σ
(v̂),IÆ2

σ
(v̂)}{i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ℑ V2

0, otherwise

&

FÆσ
(v̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FÆ1
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ◦ V2 or
i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ℑ V2 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ◦ V2

FÆ2
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ◦ V1 or
i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ℑ V1 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V2 ◦ V1

min{FÆ1
σ
(v̂),FÆ2

σ
(v̂)}{i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ℑ V2

0, otherwise

&

µÆσ
(v̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µÆ1
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ◦ V2 or
i f σ ∈ Q1 ◦Q2 & v̂ ∈ V1 ℑ V2 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ◦ V2

µÆ2
σ
(v̂)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ◦ V1 or
i f σ ∈ Q2 ◦Q1 & v̂ ∈ V2 ℑ V1 or
i f σ ∈ Q1 ℑQ2 & v̂ ∈ V2 ◦ V1

max{µÆ1
σ
(v̂),µÆ2

σ
(v̂)}{i f σ ∈ Q1 ℑQ2 & v̂ ∈ V1 ℑ V2

0, otherwise

.

Also the neutrosophic components for Ξ are given as follows:

Theorem 1.If A1,A2 ∈ ΩNHSG then A1 ℜA2 ∈ ΩNHSG.

Proof.Consider two psvNHSGs A1 =
(
A1,Q1,Æ1,Ξ1) and A2 =

(
A2,Q2,Æ2,Ξ2). Let A = (A ,Q,Æ,Ξ) be the

union of psvNHSGs A1 and A2 where Q = Q1 ℜQ2.
Now let σ ∈ Q1 ◦Q2 and (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2), then
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TΞσ
(v̂1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TΞ1
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2) or
i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2)

TΞ2
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1) or
i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2)ℑ (V1 ⊆ V1) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1)

max{TΞ1
σ
(v̂1),TΞ2

σ
(v̂1)}{i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2)

0, otherwise

&

IΞσ
(v̂1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IΞ1
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2) or
i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2)

IΞ2
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1) or
i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2)ℑ (V1 ⊆ V1) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1)

max{IΞ1
σ
(v̂1),IΞ2

σ
(v̂1)}{i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2)

0, otherwise

FΞσ
(v̂1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FΞ1
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2) or
i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2)

FΞ2
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1) or
i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2)ℑ (V1 ⊆ V1) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1)

min{FΞ1
σ
(v̂1),FΞ2

σ
(v̂1)}{i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2)

0, otherwise

&

µΞσ
(v̂1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µΞ1
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2) or
i f σ ∈ Q1 ◦Q2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2)

µΞ2
σ
(v̂1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1) or
i f σ ∈ Q2 ◦Q1 & (v̂1, v̂2) ∈ (V2 ⊆ V2)ℑ (V1 ⊆ V1) or

i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V2 ⊆ V2) ◦ (V1 ⊆ V1)

max{µΞ1
σ
(v̂1),µΞ2

σ
(v̂1)}{i f σ ∈ Q1 ℑQ2 & (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2)

0, otherwise

.

TΞσ (v̂1, v̂2) = TΞ1
σ
(v̂1, v̂2) ≤ min{TÆ1

σ
(v̂1),TÆ1

σ
(v̂2)}

= min{TÆσ (v̂1),TÆσ (v̂2)} so
TΞσ (v̂1, v̂2) ≤ min{TÆσ (v̂1),TÆσ (v̂2)} .
Also
IΞσ (v̂1, v̂2) = IΞ1

σ
(v̂1, v̂2) ≤ min{IÆ1

σ
(v̂1),IÆ1

σ
(v̂2)}

= min{IÆσ (v̂1),IÆσ (v̂2)} so
IΞσ (v̂1, v̂2) ≤ min{IÆσ (v̂1),IÆσ (v̂2)} .
Now
FΞσ (v̂1, v̂2) = FΞ1

σ
(v̂1, v̂2) ≥ max{FÆ1

σ
(v̂1),FÆ1

σ
(v̂2)}

= max{FÆσ (v̂1),FÆσ (v̂2)} so
FΞσ (v̂1, v̂2) ≥ max{FÆσ (v̂1),FÆσ (v̂2)} .
Similar results are obtained when σ ∈ Q1 ◦Q2 and
(v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2)
or σ ∈ Q1 ℑQ2 and (v̂1, v̂2) ∈ (V1 ⊆ V1) ◦ (V2 ⊆ V2).
Now if σ ∈ Q1 ℑQ2 and (v̂1, v̂2) ∈ (V1 ⊆ V1)ℑ (V2 ⊆ V2) then
TΞσ (v̂1, v̂2) = max{TΞ1

σ
(v̂1, v̂2),TΞ2

σ
(v̂1, v̂2)}

≤ max{
min{TÆ1

σ
(v̂1),TÆ1

σ
(v̂2)} ,

min{TÆ2
σ
(v̂1),TÆ2

σ
(v̂2)}

}
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Table 3: Tabular form of Example 3

Æ v̂1 v̂2 v̂3

σ1 (0.2,0.3,0.4,0.2) (0.3,0.6,0.8,0.3) (0.3,0.4,0.5,0.3)
σ2 (0.2,0.4,0.8,0.2) (0.2,0.3,0.4,0.2) (0.5,0.7,0.8,0.5)
σ3 (0.6,0.7,0.8,0.6) (0.4,0.5,0.7,0.4) (0.7,0.9,0.9,0.7)
Ξ (v̂1, v̂2) (v̂2, v̂3) (v̂1, v̂3)

σ1 (0.2,0.3,0.6,0.2) (0.2,0.4,0.9,0.2) (0.2,0.3,0.8,0.2)
σ2 (0.2,0.3,0.9,0.2) (0.2,0.2,0.9,0.2) (0.2,0.3,0.8,0.2)
σ3 (0,0,1,0) (0.3,0.4,0.9,0.3) (0.2,0.4,0.9,0.2)

≤ min{
max{TÆ1

σ
(v̂1),TÆ1

σ
(v̂2)} ,

max{TÆ2
σ
(v̂1),TÆ2

σ
(v̂2)}

}

= min{TÆσ (v̂1),TÆσ (v̂2)} .
IΞσ (v̂1, v̂2) = max{IΞ1

σ
(v̂1, v̂2),IΞ2

σ
(v̂1, v̂2)}

≤ max{
min{IÆ1

σ
(v̂1),IÆ1

σ
(v̂2)} ,

min{IÆ2
σ
(v̂1),IÆ2

σ
(v̂2)}

}

≤ min{
max{IÆ1

σ
(v̂1),IÆ1

σ
(v̂2)} ,

max{IÆ2
σ
(v̂1),IÆ2

σ
(v̂2)}

}

= min{IÆσ (v̂1),IÆσ (v̂2)} .
FΞσ (v̂1, v̂2) = min{FΞ1

σ
(v̂1, v̂2),FΞ2

σ
(v̂1, v̂2)}

≥ min{
max{FÆ1

σ
(v̂1),FÆ1

σ
(v̂2)} ,

max{FÆ2
σ
(v̂1),FÆ2

σ
(v̂2)}

}

≥ max{
min{FÆ1

σ
(v̂1),FÆ1

σ
(v̂2)} ,

min{FÆ2
σ
(v̂1),FÆ2

σ
(v̂2)}

}

= max{FÆσ (v̂1),FÆσ (v̂2)} .
µΞσ (v̂1, v̂2) = max{µΞ1

σ
(v̂1, v̂2),µΞ2

σ
(v̂1, v̂2)}

≤ max{
min{µÆ1

σ
(v̂1),µÆ1

σ
(v̂2)} ,

min{µÆ2
σ
(v̂1),µÆ2

σ
(v̂2)}

}

≤ min{
max{µÆ1

σ
(v̂1),µÆ1

σ
(v̂2)} ,

max{µÆ2
σ
(v̂1),µÆ2

σ
(v̂2)}

}

= min{µÆσ (v̂1),µÆσ (v̂2)} . Hence the union A = A1 ℜA2 is psvNHSGs.

Example 3.Let A1 =
(
A1,Q1,Æ1,Ξ1) be a psvNHSG where A1 = (V1,E1) with V1 = {v̂1, v̂2, v̂3} and Q1 = {α11},

Q2 = {α21} and Q3 = {α31,α32,α33} such that Q1 = Q1 ⊆ Q2 ⊆ Q3 = {σ1,σ2,σ3} and
TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) = 1,µΞσ (v̂i, v̂j) = 0
(v̂i, v̂j) ∈ V1 ⊆ V1\{(v̂1, v̂2), (v̂2, v̂3), (v̂1, v̂3)}. Its tabulation is given in Table 3. Also let A2 =

(
A2,Q2,Æ2,Ξ2) be

a psvNHSG where A2 = (V2,E2) with V2 = {v̂3, v̂4, v̂5} and Q3 = {α31,α32}, Q4 = {α41} such that Q5 = {α51}.
Q2 = Q3 ⊆ Q4 ⊆ Q5 = {σ2,σ4} and TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) = 1,µΞσ (v̂i, v̂j) = 0
(v̂i, v̂j) ∈ V2 ⊆ V2\{(v̂3, v̂4), (v̂4, v̂5), (v̂3, v̂5)}. Its tabulation is given in Table 4. Now Let A = A1 ℜ A2 with
Q = Q1 ℜ Q2 and TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) = 1,µΞσ (v̂i, v̂j) = 0
(v̂i, v̂j) ∈ V ⊆ V \{(v̂1, v̂2), (v̂1, v̂3), (v̂2, v̂3), (v̂3, v̂4), (v̂3, v̂5), (v̂4, v̂5)}. Its tabulation is given in Table 5.

Definition 11.The intersection of two psvNHSGs G1 =
(
G1,Q1,Æ1,Ξ1), G2 =

(
G2,Q2,Æ2,Ξ2), denoted by G1 ℑ G2,

is a psvNHSG G = (G ,Q,Æ,Ξ) such that Q = Q1 ℑ Q2,V = V1 ℑ V2. The uncertain parts in this graph, for Æ are
as follows:

TÆσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T 1
Æσ

(v̂) i f σ ∈ Q1 ◦Q2

T 2
Æσ

(v̂) i f σ ∈ Q2 ◦Q1

min{T 1
Æσ

(v̂),T 2
Æσ

(v̂)} i f σ ∈ Q1 ℑQ2
,
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Fig. 4: Graph-based presentation of Table 3

Table 4: Tabular form of psvNHSG A2 =
(
A2,Q2,Æ2,Ξ2) according to Example 3

Æ v̂3 v̂4 v̂5

σ2 (0.3,0.4,0.5,0.3) (0.2,0.3,0.5,0.2) (0.5,0.7,0.8,0.5)
σ4 (0.6,0.8,0.9,0.6) (0.4,0.7,0.9,0.4) (0.4,0.5,0.6,0.4)
Ξ (v̂3, v̂4) (v̂4, v̂5) (v̂3, v̂5)

σ2 (0.2,0.3,0.9,0.2) (0.3,0.4,0.9,0.3) (0,0,1,0)
σ4 (0.2,0.2,0.9,0.2) (0.3,0.3,0.9,0.3) (0.3,0.4,0.9,0.3)

Fig. 5: Graph-based presentation of Table 4

Table 5: Tabular form of A = A1 ℜA2

Æ v̂1 v̂2 v̂3 v̂4 v̂5

σ1 (0.2,0.3,0.4,0.2) (0.3,0.4,0.5,0.3) (0.3,0.6,0.8,0.3) (0,0,1,0) (0,0,1,0)
σ2 (0.2,0.4,0.8,0.2) (0.2,0.3,0.4,0.2) (0.3,0.5,0.5,0.3) (0.2,0.3,0.4,0.2) (0.5,0.7,0.8,0.5)
σ3 (0.6,0.7,0.8,0.6) (0.4,0.5,0.7,0.4) (0.7,0.9,0.9,0.7) (0,0,1,0) (0,0,1,0)
σ4 (0,0,1,0) (0,0,1,0) (0.6,0.8,0.9,0.6) (0.4,0.7,0.9,0.4) (0.4,0.5,0.6,0.4)
Ξ (v̂1, v̂2) (v̂1, v̂3) (v̂2, v̂3) (v̂3, v̂4) (v̂3, v̂5) (v̂4, v̂5)

σ1 (0.2,0.3,0.8,0.2) (0.2,0.3,0.9,0.2) (0.2,0.4,0.9,0.2) (0,0,1,0) (0,0,1,0) (0,0,1,0)
σ2 (0.2,0.3,0.8,0.2) (0.2,0.3,0.9,0.2) (0.2,0.2,0.9,0.2) (0.2,0.3,0.9,0.2) (0.3,0.4,0.9,0.3) (0,0,1,0)
σ3 (0.2,0.4,0.9,0.2) (0,0,1,0) (0.3,0.4,0.9,0.3) (0,0,1,0) (0,0,1,0) (0,0,1,0)
σ4 (0,0,1,0) (0,0,1,0) (0,0,1,0) (0.2,0.2,0.9,0.2) (0.3,0.3,0.9,0.3) (0.3,0.4,0.9,0.3)
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Fig. 6: Graph-based presentation of Table 5

IÆσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I 1
Æσ

(v̂) i f σ ∈ Q1 ◦Q2

I 2
Æσ

(v̂) i f σ ∈ Q2 ◦Q1

min{I 1
Æσ

(v̂),I 2
Æσ

(v̂)} i f σ ∈ Q1 ℑQ2
,

FÆσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F 1
Æσ

(v̂) i f σ ∈ Q1 ◦Q2

F 2
Æσ

(v̂) i f σ ∈ Q2 ◦Q1

max{F 1
Æσ

(v̂),F 2
Æσ

(v̂)} i f σ ∈ Q1 ℑQ2
,

µÆσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ1
Æσ

(v̂) i f σ ∈ Q1 ◦Q2

µ2
Æσ

(v̂) i f σ ∈ Q2 ◦Q1

min{µ1
Æσ

(v̂),µ2
Æσ

(v̂)} i f σ ∈ Q1 ℑQ2
.

The uncertain parts for Ξ are given as follows:

TΞσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T 1
Ξσ
(v̂) i f σ ∈ Q1 ◦Q2

T 2
Ξσ
(v̂) i f σ ∈ Q2 ◦Q1

min{T 1
Ξσ
(v̂),T 2

Ξσ
(v̂)} i f σ ∈ Q1 ℑQ2

,

IΞσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I 1
Ξσ
(v̂) i f σ ∈ Q1 ◦Q2

I 2
Ξσ
(v̂) i f σ ∈ Q2 ◦Q1

min{I 1
Ξσ
(v̂),I 2

Ξσ
(v̂)} i f σ ∈ Q1 ℑQ2

,
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FΞσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F 1
Ξσ
(v̂) i f σ ∈ Q1 ◦Q2

F 2
Ξσ
(v̂) i f σ ∈ Q2 ◦Q1

max{F 1
Ξσ
(v̂),F 2

Ξσ
(v̂)} i f σ ∈ Q1 ℑQ2

,

µΞσ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ1
Ξσ
(v̂) i f σ ∈ Q1 ◦Q2

µ2
Ξσ
(v̂) i f σ ∈ Q2 ◦Q1

min{µ1
Ξσ
(v̂),µ2

Ξσ
(v̂)} i f σ ∈ Q1 ℑQ2

.

Theorem 2.If A1,A2 ∈ ΩNHSG then A1 ℑA2 ∈ ΩNHSG.

Proof.Consider two psvNHSGs A1 =
(
A1,Q1,Æ1,Ξ1) and A2 =

(
A2,Q2,Æ2,Ξ2) as defined in Definition 6. Let

A = (A ,Q,Æ,Ξ) be the intersection of psvNHSGs A1 and A2 where Q = Q1 ℜ Q2 and V = V1 ℑ V2. Let
σ ∈ Q1 ◦Q2 then
TΞσ (v̂1, v̂2) = TΞ1

σ
(v̂1, v̂2) ≤

min{TÆ1
σ
(v̂1),TÆ1

σ
(v̂2)}= min{TÆσ (v̂1),TÆσ (v̂2)} so

TΞσ (v̂1, v̂2) ≤ min{TÆσ (v̂1),TÆσ (v̂2)}
& IΞσ (v̂1, v̂2) = IΞ1

σ
(v̂1, v̂2) ≤

min{IÆ1
σ
(v̂1),IÆ1

σ
(v̂2)}= min{IÆσ (v̂1),IÆσ (v̂2)} so

IΞσ (v̂1, v̂2) ≤ min{IÆσ (v̂1),IÆσ (v̂2)} &
FΞσ (v̂1, v̂2) = FΞ1

σ
(v̂1, v̂2) ≥

max{FÆ1
σ
(v̂1),FÆ1

σ
(v̂2)}

= max{FÆσ (v̂1),FÆσ (v̂2)}
so FΞσ (v̂1, v̂2) ≥ max{FÆσ (v̂1),FÆσ (v̂2)}
& µΞσ (v̂1, v̂2) = µΞ1

σ
(v̂1, v̂2)

≤ min{µÆ1
σ
(v̂1),µÆ1

σ
(v̂2)} = min{µÆσ (v̂1),µÆσ (v̂2)} so

µΞσ (v̂1, v̂2) ≤ min{µÆσ (v̂1),µÆσ (v̂2)}
Similar results are obtained when σ ∈ Q2 ◦Q1

Now if σ ∈ Q1 ℑQ2 then
TΞσ (v̂1, v̂2) = min{TΞ1

σ
(v̂1, v̂2),TΞ2

σ
(v̂1, v̂2)}

≤ min{
min{TÆ1

σ
(v̂1),TÆ1

σ
(v̂2)} ,

min{TÆ2
σ
(v̂1),TÆ2

σ
(v̂2)}

}

≤ min{
min{TÆ1

σ
(v̂1),TÆ2

σ
(v̂2)} ,

min{TÆ1
σ
(v̂1),TÆ2

σ
(v̂2)}

}

= min{TÆσ (v̂1),TÆσ (v̂2)}
IΞσ (v̂1, v̂2) = min{IΞ1

σ
(v̂1, v̂2),IΞ2

σ
(v̂1, v̂2)}

≤ min{
min{IÆ1

σ
(v̂1),IÆ1

σ
(v̂2)} ,

min{IÆ2
σ
(v̂1),IÆ2

σ
(v̂2)}

}

≤ min{
min{IÆ1

σ
(v̂1),IÆ2

σ
(v̂2)} ,

min{IÆ1
σ
(v̂1),IÆ2

σ
(v̂2)}

}

= min{IÆσ (v̂1),IÆσ (v̂2)}
FΞσ (v̂1, v̂2) = max{FΞ1

σ
(v̂1, v̂2),FΞ2

σ
(v̂1, v̂2)}

≥ max{
max{FÆ1

σ
(v̂1),FÆ1

σ
(v̂2)} ,

max{FÆ2
σ
(v̂1),FÆ2

σ
(v̂2)}

}

≥ max{
max{FÆ1

σ
(v̂1),FÆ2

σ
(v̂2)} ,

max{FÆ1
σ
(v̂1),FÆ2

σ
(v̂2)}

}

= max{FÆσ (v̂1),FÆσ (v̂2)}
µΞσ (v̂1, v̂2) = min{µΞ1

σ
(v̂1, v̂2),µΞ2

σ
(v̂1, v̂2)}

≤ min{
min{µÆ1

σ
(v̂1),µÆ1

σ
(v̂2)} ,

min{µÆ2
σ
(v̂1),µÆ2

σ
(v̂2)}

}
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Table 6: Tabular form of psvNHSG A1 =
(
A1,Q1,Æ1,Ξ1) for Example 4

Æ v̂1 v̂2 v̂3

σ1 (0.2,0.3,0.4,0.2) (0.3,0.5,0.6,0.3) (0.2,0.6,0.8,0.2)
σ2 (0.3,0.4,0.8,0.3) (0.5,0.7,0.8,0.5) (0.4,0.5,0.7,0.4)
Ξ (v̂1, v̂2) (v̂2, v̂3) (v̂1, v̂3)

σ1 (0.2,0.2,0.7,0.2) (0.2,0.4,0.9,0.2) (0.2,0.2,0.9,0.2)
σ2 (0.3,0.4,0.8,0.3) (0.4,0.5,0.9,0.4) (0.3,0.4,0.8,0.3)

Fig. 7: Graph-based presentation of Table 6

Table 7: Tabular form of psvNHSG A2 =
(
A2,Q2,Æ2,Ξ2) for Example 4

Æ v̂2 v̂3 v̂4

σ2 (0.4,0.6,0.7,0.4) (0.5,0.6,0.9,0.5) (0.3,0.5,0.7,0.3)
σ3 (0.3,0.5,0.6,0.3) (0.2,0.6,0.8,0.2) (0.2,0.3,0.7,0.2)
Ξ (v̂2, v̂3) (v̂3, v̂4) (v̂2, v̂4)

σ2 (0.2,0.2,0.7,0.2) (0.2,0.4,0.9,0.2) (0.2,0.2,0.9,0.2)
σ3 (0.3,0.4,0.8,0.3) (0.4,0.5,0.9,0.4) (0.3,0.4,0.8,0.3)

≤ min{
min{µÆ1

σ
(v̂1),µÆ2

σ
(v̂2)} ,

min{µÆ1
σ
(v̂1),µÆ2

σ
(v̂2)}

}

= min{µÆσ (v̂1),µÆσ (v̂2)}
Hence the intersection A = A1 ℑA2 is psvNHSGs.

Example 4.Let A1 =
(
A1,Q1,Æ1,Ξ1) be a psvNHSG where A1 = (V1,E1) with V1 = {v̂1, v̂2, v̂3} and Q1,Q2,Q3

are sub-parametric non-overlapping sets w.r.t. distinct attributes α1,α2,α3 where Q1 = {α11}, Q2 = {α21} and
Q3 = {α31,α32}. Q1 = Q1 ⊆ Q2 ⊆ Q3 = {σ1,σ2} and TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) = 1
(v̂i, v̂j) ∈ V1 ⊆ V1\{(v̂1, v̂2), (v̂2, v̂3), (v̂1, v̂3)}. The Table 6 and Figure 7 elaborate its tabular form and
graph-based presentation respectively.
Also let A2 =

(
A2,Q2,Æ2,Ξ2) be a psvNHSG where A2 = (V2,E2) with V2 = {v̂2, v̂3, v̂4} and Q2,Q3,Q4 are

sub-parametric non-overlapping sets w.r.t. distinct attributes α2,α3,α4 where Q2 = {α21}, Q3 = {α31,α32},
Q4 = {α41}. Q2 = Q2 ⊆ Q3 ⊆ Q4 = {σ2,σ3} and TΞσ (v̂i, v̂j) = 0,IΞσ (v̂i, v̂j) = 0,FΞσ (v̂i, v̂j) = 1
(v̂i, v̂j) ∈ V2 ⊆ V2\{(v̂2, v̂3), (v̂3, v̂4), (v̂2, v̂4)}. Its tabular form and graph-based presentation are provided in
Table 7 and Figure 8 respectively. Consider A = A1 ℑ A2 with Q = Q1 ℑ Q2. Its tabular form and
graph-based presentation are stated in Table 8 and Figure 9 respectively.

Definition 12.The compliment A =
(
A ,Q,F,G

)
of SSVNHS-subgraph A = (A ,Q,Æ,Ξ) with

Ξσ(v̂1, v̂2) = Æσ(v̂1)ℑ Æσ(v̂2) where
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Fig. 8: Graph presentation of Table 7

Table 8: Tabular form of psvNHSG A = A1 ℑA2

Æ v̂2 v̂3

σ1 (0.3,0.5,0.6,0.3) (0.2,0.6,0.8,0.2)
σ2 (0.4,0.6,0.8,0.4) (0.4,0.5,0.9,0.4)
σ3 (0.3,0.5,0.6,0.3) (0.2,0.6,0.8,0.2)
Ξ (v̂2, v̂3)

σ1 (0.2,0.4,0.9,0.2)
σ2 (0.3,0.5,0.9,0.3)
σ3 (0.2,0.5,0.9,0.2)

Fig. 9: Graph-based presentation of Table 8
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1.Q = Q
2.TÆσ (v̂) = TÆσ (v̂),IÆσ (v̂) = IÆσ (v̂),FÆσ (v̂) = FÆσ (v̂),µÆσ (v̂) = µÆσ (v̂) v̂ ∈ V

3.TÆσ (v̂1, v̂2) =

{min{TÆσ (v̂1),TÆσ (v̂2)} i f TΞσ (v̂1, v̂2) = 0
0 otherwise ,

IÆσ (v̂1, v̂2) =

{min{IÆσ (v̂1),IÆσ (v̂2)} i f IΞσ (v̂1, v̂2) = 0
0 otherwise ,

FÆσ (v̂1, v̂2) =

{max{FÆσ (v̂1),FÆσ (v̂2)} i f FΞσ (v̂1, v̂2) = 0
0 otherwise ,

µÆσ (v̂1, v̂2) =

{min{µÆσ (v̂1),µÆσ (v̂2)} i f µΞσ (v̂1, v̂2) = 0
0 otherwise .

2.4 Composition and Products of psvNHSG

Definition 13.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E1) and

A 2 = (V2,E2). Let A = A 1 ⊆P A 2 where A = (Æ,Ξ,Q1 ⊆ Q2) and (Æ = Æ1 ⊆ Æ2,Ξ = Ξ1 ⊆ Ξ2) is pSVNHSS
over V = V1 ⊆ V2, Ξ = (Ξ1 ⊆ Ξ2,Q1 ⊆Q2) is pSVNHSS over E = {((ϱ̂, ς̂1), (ϱ̂, ς̂2))∣ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2}
ℜ {((ϱ̂1, ς̂), (ϱ̂2, ς̂))∣ς̂ ∈ V2, (ϱ̂1, ϱ̂2) ∈ E1} and Ξ = (Æ,Ξ,Q1 ⊆Q2) are psvNHSGs where as

1.TÆ(γ,ζ) (ϱ̂, ς̂) = TÆ1(γ) (ϱ̂) ′TÆ2(t) (ς̂) ,
IÆ(γ,ζ) (ϱ̂, ς̂) = IÆ1(γ) (ϱ̂) ′IÆ2(t) (ς̂) ,
FÆ(γ,ζ) (ϱ̂, ς̂) = FÆ1(γ) (ϱ̂) ∞ FÆ2(t) (ς̂) ,
µÆ(γ,ζ) (ϱ̂, ς̂) = µÆ1(γ) (ϱ̂) ′ µÆ2(t) (ς̂) (ϱ̂, ς̂) ∈ V , (s, t) ∈ Q1 ⊆Q2.

2.TΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

TÆ1(γ) (ϱ̂) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

IÆ1(γ) (ϱ̂) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

FÆ1(γ) (ϱ̂) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

µÆ1(γ) (ϱ̂) ′ µΞ2(ζ) (ς̂1, ς̂2) , ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2.
3.TΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =

TÆ2(ζ) (ς̂) ′TΞ1(γ) (ϱ̂1, ϱ̂2) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
IÆ2(ζ) (ς̂) ′IΞ1(γ) (ϱ̂1, ϱ̂2) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
FÆ2(ζ) (ς̂) ′FΞ1(γ) (ϱ̂1, ϱ̂2) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
µÆ2(ζ) (ς̂) ′ µΞ1(γ) (ϱ̂1, ϱ̂2) , ς̂ ∈ V2, (ϱ̂1, ϱ̂2) ∈ E1

(γ,ζ) ∈ Q1 ⊆Q2, W(γ,ζ) = W1(γ)⊆ W2(ζ) are psvNHSGs of A .

Example 5.Let A 1 = (V1,E1) be a simple graph with V1 = {ϱ̂1, ϱ̂2, ϱ̂3} and E1 = {ϱ̂1ϱ̂2, ϱ̂1ϱ̂3, ϱ̂2ϱ̂3} and Q1,Q2,Q3
are sub-parametric non-overlapping sets w.r.t. distinct attributes α1,α2,α3 where Q1 = {α11}, Q2 = {α21,α22}
and Q3 = {α31}. Q1 = Q1 ⊆ Q2 ⊆ Q3 = {ω̂1, ω̂2}. A 1 = {(W1,Q1)} = {(W1(ω̂1)), (W1(ω̂2))} is psvNHSG
which is stated in Table 9. Let A 2 = (V2,E2) be a simple graph with V2 = {ς̂1, ς̂2, ς̂3, ς̂4},
E2 = {ς̂1ς̂2, ς̂1ς̂3, ς̂1ς̂4, ς̂3ς̂4} and Q1,Q2,Q3 are sub-parametric non-overlapping sets w.r.t. distinct attributes
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Table 9: Tabular form of psvNHSG A 1 =
(
A ,Q1,Æ1,Ξ1) Example 5 demonstrated in Fig. 10

Æ ϱ̂1 ϱ̂2 ϱ̂3

ω̂1 (0.3,0.5,0.7,0.3) (0.5,0.6,0.8,0.5) (0.5,0.6,0.8,0.5)
ω̂2 (0.4,0.6,0.8,0.4) (0.5,0.6,0.7,0.5) (0.6,0.5,0.4,0.6)

Ξ (ϱ̂1, ϱ̂2) (ϱ̂1, ϱ̂3) (ϱ̂2, ϱ̂3)

ω̂1 (0.3,0.4,0.5,0.3) (0.2,0.3,0.6,0.2) (0.3,0.4,0.5,0.3)
ω̂2 (0.3,0.5,0.6,0.3) (0.3,0.4,0.5,0.3) (0,0,1,0)

Fig. 10: Graph-based presentation of Table 9 with (a): W(ω̂1), (b): W(ω̂2)

Table 10: psvNHSG A 2 =
(
A ,Q2,Æ2,Ξ2) Example 5 demonstrated in Fig.11

Æ ς̂1 ς̂2 ς̂3 ς̂4

ω̂3 (0.5,0.6,0.4,0.5) (0.4,0.5,0.2,0.4) (0.4,0.6,0.9,0.4) (0.6,0.4,0.5,0.6)
ω̂4 (0.5,0.6,0.9,0.5) (0.7,0.4,0.8,0.7) (0.5,0.5,0.6,0.5) (0.8,0.3,0.7,0.8)

Ξ (ς̂1, ς̂2) (ς̂1, ς̂3) (ς̂1, ς̂4) (ς̂2, ς̂3) (ς̂2, ς̂4) (ς̂3, ς̂4)

ω̂3 (0.3,0.4,0.4,0.3) (0.3,0.4,0.6,0.3) (0,0,1,0) (0,0,1,0) (0,0,1,0) (0.3,0.3,0.6,0.3)
ω̂4 (0.4,0.5,0.7,0.4) (0.3,0.4,0.6,0.3) (0.4,0.3,0.6,0.4) (0,0,1,0) (0,0,1,0) (0,0,1,0)

α1,α2,α3 where Q1 = {α11}, Q2 = {α21,α22} and Q3 = {α31}. Q2 = Q1 ⊆ Q2 ⊆ Q3 = {ω̂3, ω̂4} .
A 2 = {(W2,Q2)} = {(W2(ω̂3)), (W2(ω̂4))} is psvNHSG which is depicted in Table 10.
A = A 1 ⊆P A 2 = (W,Q1 ⊆Q2) where
Q1 ⊆Q2 = {(ω̂1, ω̂3), (ω̂2, ω̂3), (ω̂1, ω̂4), (ω̂2, ω̂4)}. Here W(ω̂1, ω̂3) = W1(ω̂1)⊆P W2(ω̂3),
W(ω̂2, ω̂3) = W1(ω̂2)⊆P W2(ω̂3), W(ω̂1, ω̂4) = W1(ω̂1)⊆P W2(ω̂4) and W(ω̂2, ω̂4) = W1(ω̂2)⊆P W2(ω̂4)
for convenience we will write (ϱ̂p, ς̂q) = ∂̂pq for p = 1,2,3 and q = 1,2,3,4 also
TΞω̂

(∂̂i, ∂̂j) = 0,IΞω̂
(∂̂i, ∂̂j) = 0,FΞω̂

(∂̂i, ∂̂j) = 1

(∂̂pq) ∈ V ⊆ V \

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∂̂11, ∂̂12), (∂̂11, ∂̂13), (∂̂11, ∂̂21), (∂̂11, ∂̂31), (∂̂12, ∂̂22),
(∂̂12, ∂̂32), (∂̂13, ∂̂23), (∂̂13, ∂̂33), (∂̂13, ∂̂14), (∂̂14, ∂̂24),
(∂̂14, ∂̂34), (∂̂21, ∂̂22), (∂̂21, ∂̂23), (∂̂21, ∂̂31), (∂̂22, ∂̂32),
(∂̂23, ∂̂24), (∂̂23, ∂̂33), (∂̂24, ∂̂34), (∂̂31, ∂̂32), (∂̂31, ∂̂33),
(∂̂33, ∂̂34)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
psvNHSG of W(ω̂1, ω̂3) = W1(ω̂1)⊆P W2(ω̂3), is given in Table 11.

Theorem 3.The cartesian product of two psvNHSGs is psvNHSG.

Definition 14.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1 ∥P A 2 be cross product A 1 and A 2 where A = (Æ,Ξ,Q1 ⊆ Q2) is pSVNHSS over
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Fig. 11: Graph-based presentation of Table 3 with (c): W(ω̂3), (d): W(ω̂4)

Table 11: psvNHSG W(ω̂1, ω̂3) = W1(ω̂1)⊆P W2(ω̂3) of A = A 1 ⊆P A 2 Example 5 demonstrated in Fig. 12

Æ ∂̂11 ∂̂12 ∂̂13 ∂̂14 ∂̂21 ∂̂22

(ω̂1, ω̂3) (0.3,0.5,0.7,0.3) (0.3,0.5,0.7,0.3) (0.3,0.5,0.9,0.3) (0.3,0.4,0.7,0.3) (0.5,0.6,0.8,0.5) (0.4,0.5,0.8,0.4)

Æ ∂̂23 ∂̂24 ∂̂31 ∂̂32 ∂̂33 ∂̂34

(ω̂1, ω̂3) (0.4,0.6,0.9,0.4) (0.5,0.4,0.8,0.5) (0.5,0.6,0.8,0.5) (0.4,0.5,0.8,0.4) (0.4,0.6,0.9,0.4) (0.5,0.4,0.8,0.5)

Ξ (∂̂11, ∂̂12) (∂̂11, ∂̂13) (∂̂11, ∂̂21) (∂̂11, ∂̂31) (∂̂12, ∂̂22) (∂̂12, ∂̂32)

(ω̂1, ω̂3) (0.3,0.4,0.7,0.3) (0.3,0.4,0.7,0.3) (0.3,0.4,0.5,0.3) (0.5,0.6,0.8,0.5) (0.3,0.4,0.5,0.3) (0.2,0.3,0.6,0.2)

Ξ (∂̂13, ∂̂33) (∂̂13, ∂̂14) (∂̂14, ∂̂24) (∂̂14, ∂̂34) (∂̂21, ∂̂22) (∂̂21, ∂̂23)

(ω̂1, ω̂3) (0.2,0.3,0.9,0.2) (0.3,0.3,0.7,0.3) (0.3,0.3,0.6,0.3) (0.2,0.3,0.6,0.2) (0.3,0.4,0.8,0.3) (0.3,0.4,0.8,0.3)

Ξ (∂̂22, ∂̂32) (∂̂23, ∂̂24) (∂̂23, ∂̂33) (∂̂24, ∂̂34) (∂̂31, ∂̂32) (∂̂31, ∂̂33)

(ω̂1, ω̂3) (0.3,0.4,0.5,0.3) (0.3,0.3,0.8,0.3) (0.3,0.4,0.9,0.3) (0.3,0.4,0.5,0.3) (0.3,0.4,0.8,0.3) (0.3,0.4,0.8,0.3)

Ξ (∂̂13, ∂̂23) (∂̂21, ∂̂31) (∂̂33, ∂̂34)

(ω̂1, ω̂3) (0.3,0.4,0.9,0.3) (0.3,0.4,0.5,0.3) (0.3,0.3,0.8,0.3)

V = V1 ⊆ V2, Ξ = (Ξ1 ∥P Ξ2,Q1 ⊆ Q2) is pSVNHSS over E = {((ϱ̂1, ς̂1), (ϱ̂2, ς̂2))∣(ϱ̂1, ϱ̂2) ∈ E1, (ς̂1, ς̂2) ∈ E2} and
Ξ = (Ξ1 ∥P Ξ2,Q1 ⊆Q2) are psvNHSGs where as

1.TÆ(γ,ζ) (ϱ̂, ς̂) = TÆ1(γ) (ϱ̂) ′TÆ2(t) (ς̂) ,
IÆ(γ,ζ) (ϱ̂, ς̂) = IÆ1(γ) (ϱ̂) ′IÆ2(t) (ς̂) ,
FÆ(γ,ζ) (ϱ̂, ς̂) = FÆ1(γ) (ϱ̂) ∞ FÆ2(t) (ς̂) ,
µÆ(γ,ζ) (ϱ̂, ς̂) = µÆ1(γ) (ϱ̂) ′ µÆ2(t) (ς̂) (ϱ̂, ς̂) ∈ V , (s, t) ∈ Q1 ⊆Q2.

2.TΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = TΞ1(γ) (ϱ̂1, ϱ̂2) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = IΞ1(γ) (ϱ̂1, ϱ̂2) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = FΞ1(γ) (ϱ̂1, ϱ̂2) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µΞ2(ζ) (ς̂1, ς̂2) , ϱ̂1, ϱ̂2 ∈ E1, (ς̂1, ς̂2) ∈ E2

(ϱ̂, ς̂) ∈ Q1 ⊆Q2, W(γ,ζ) = W1(γ) ∥P W2(ζ) are psvNHSGs of A .

Theorem 4.The cross product of two psvNHSGs is psvNHSG.

Definition 15.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1 |P A 2 be lexicographic product A 1 and A 2 where A = (Æ,Ξ,Q1 ⊆ Q2) is pSVNHSS
over V = V1 ⊆ V2, Ξ = (Ξ1 |P Ξ2,Q1 ⊆ Q2) is pSVNHSS over

© 2026 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 15, No. 1, 69-96 (2026) / www.naturalspublishing.com/Journals.asp 85

Fig. 12: The graph-based presentation of W(ω̂1, ω̂3) = W1(ω̂1)⊆P W2(ω̂3)

E = {((ϱ̂, ς̂1), (ϱ̂, ς̂2))∣ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2}ℜ {((ϱ̂1, ς̂1), (ϱ̂2, ς̂2))∣(ϱ̂1, ϱ̂2) ∈ E1, (ς̂1, ς̂2) ∈ E2}
and Ξ = (Ξ1 |P Ξ2,Q1 ⊆Q2) are psvNHSGs where as

1.TÆ(γ,ζ) (ϱ̂, ς̂) = TÆ1(γ) (ϱ̂) ′TÆ2(t) (ς̂) ,
IÆ(γ,ζ) (ϱ̂, ς̂) = IÆ1(γ) (ϱ̂) ′IÆ2(t) (ς̂) ,
FÆ(γ,ζ) (ϱ̂, ς̂) = FÆ1(γ) (ϱ̂) ∞ FÆ2(t) (ς̂) ,
µÆ(γ,ζ) (ϱ̂, ς̂) = µÆ1(γ) (ϱ̂) ′ µÆ2(t) (ς̂) (ϱ̂, ς̂) ∈ V , (s, t) ∈ Q1 ⊆Q2.

2.TΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) = TÆ1(γ) (ϱ̂) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) = IÆ1(γ) (ϱ̂) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) = FÆ1(γ) (ϱ̂) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) = µÆ1(γ) (ϱ̂) ′ µΞ2(ζ) (ς̂1, ς̂2) , ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2.

3.TΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = TΞ1(γ) (ϱ̂1, ϱ̂2) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = IΞ1(γ) (ϱ̂1, ϱ̂2) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = FΞ1(γ) (ϱ̂1, ϱ̂2) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) = µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µΞ2(ζ) (ς̂1, ς̂2) , (ϱ̂1, ϱ̂2) ∈ E1, (ς̂1, ς̂2) ∈ E2.

Here (ϱ̂, ς̂) ∈ Q1 ⊆Q2, W(γ,ζ) = W1(γ) |P W2(ζ) are psvNHSGs of A .

Theorem 5.The lexicographical product of two psvNHSGs is psvNHSG.

Definition 16.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1 ⟩P A 2 be strong product of A 1 and A 2 where A = (Æ,Ξ,Q1 ⊆Q2) is pSVNHSS over
V = V1 ⊆ V2, Ξ = (Ξ1 ⟩P Ξ2,Q1 ⊆ Q2) is pSVNHSS over
E = {((ϱ̂, ς̂1), (ϱ̂, ς̂2))∣ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2}ℜ {((ϱ̂1, ς̂), (ϱ̂2, ς̂))∣(ϱ̂1, ϱ̂2) ∈ E1, ς̂ ∈ V2}
ℜ {((ϱ̂1, ς̂1), (ϱ̂2, ς̂2))∣(ϱ̂1, ϱ̂2) ∈ E1, (ς̂1, ς̂2) ∈ E2} and Ξ = (Ξ1 ⟩P Ξ2,Q1 ⊆Q2) are psvNHSGs where as

1.TÆ(γ,ζ) (ϱ̂, ς̂) = TÆ1(γ) (ϱ̂) ′TÆ2(t) (ς̂) ,
IÆ(γ,ζ) (ϱ̂, ς̂) = IÆ1(γ) (ϱ̂) ′IÆ2(t) (ς̂) ,
FÆ(γ,ζ) (ϱ̂, ς̂) = FÆ1(γ) (ϱ̂) ∞ FÆ2(t) (ς̂) ,
µÆ(γ,ζ) (ϱ̂, ς̂) = µÆ1(γ) (ϱ̂) ′ µÆ2(t) (ς̂) (ϱ̂, ς̂) ∈ V , (s, t) ∈ Q1 ⊆Q2.

2.TΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

TÆ1(γ) (ϱ̂) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

IÆ1(γ) (ϱ̂) ′IΞ2(ζ) (ς̂1, ς̂2) ,
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FΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

FÆ1(γ) (ϱ̂) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

µÆ1(γ) (ϱ̂) ′ µΞ2(ζ) (ς̂1, ς̂2) , ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2.
3.TΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =

TΞ1(γ) (ϱ̂1, ϱ̂2) ′TÆ2(ζ) (ς̂) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
IΞ1(γ) (ϱ̂1, ϱ̂2) ′IÆ2(ζ) (ς̂) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
FΞ1(γ) (ϱ̂1, ϱ̂2) ∞ FÆ2(ζ) (ς̂) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µÆ2(ζ) (ς̂) , (ϱ̂1, ϱ̂2) ∈ E1, ς̂ ∈ V2.

4.TΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

TΞ1(γ) (ϱ̂1, ϱ̂2) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

IΞ1(γ) (ϱ̂1, ϱ̂2) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

FΞ1(γ) (ϱ̂1, ϱ̂2) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µΞ2(ζ) (ς̂1, ς̂2) , (ϱ̂1, ϱ̂2) ∈ E1, (ς̂1, ς̂2) ∈ E2.

Here (ϱ̂, ς̂) ∈ Q1 ⊆Q2, W(γ,ζ) = W1(γ) ⟩P W2(ζ) are psvNHSGs of A .

Theorem 6.The strong product of two psvNHSGs is psvNHSG.

Definition 17.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1[A 2] be composition of A 1 and A 2 where A = (Æ,Ξ,Q1 ⊆ Q2) is pSVNHSS over
V = V1 ⊆ V2, Ξ = (Ξ1 ⊆ Ξ2,Q1 ⊆ Q2) is pSVNHSS over
E = {((ϱ̂, ς̂1), (ϱ̂, ς̂2))∣ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2}ℜ {((ϱ̂1, ς̂), (ϱ̂2, ς̂))∣(ϱ̂1, ϱ̂2) ∈ E1, ς̂ ∈ V2}
ℜ {((ϱ̂1, ς̂1), (ϱ̂2, ς̂2))∣(ϱ̂1, ϱ̂2) ∈ E1, ς̂1 ≠ ς̂2} and Ξ = (Ξ1 ⊆ Ξ2,Q1 ⊆Q2) are psvNHSGs where as

1.TÆ(γ,ζ) (ϱ̂, ς̂) = TÆ1(γ) (ϱ̂) ′TÆ2(t) (ς̂) ,
IÆ(γ,ζ) (ϱ̂, ς̂) = IÆ1(γ) (ϱ̂) ′IÆ2(t) (ς̂) ,
FÆ(γ,ζ) (ϱ̂, ς̂) = FÆ1(γ) (ϱ̂) ∞ FÆ2(t) (ς̂),
µÆ(γ,ζ) (ϱ̂, ς̂) = µÆ1(γ) (ϱ̂) ′ µÆ2(t) (ς̂) (ϱ̂, ς̂) ∈ V , (s, t) ∈ Q1 ⊆Q2.

2.TΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

TÆ1(γ) (ϱ̂) ′TΞ2(ζ) (ς̂1, ς̂2) ,
IΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

IÆ1(γ) (ϱ̂) ′IΞ2(ζ) (ς̂1, ς̂2) ,
FΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

FÆ1(γ) (ϱ̂) ∞ FΞ2(ζ) (ς̂1, ς̂2) ,
µΞ(γ,ζ) ((ϱ̂, ς̂1) , (ϱ̂, ς̂2)) =

µÆ1(γ) (ϱ̂) ′ µΞ2(ζ) (ς̂1, ς̂2) , ϱ̂ ∈ V1, (ς̂1, ς̂2) ∈ E2.
3.TΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =

TΞ1(γ) (ϱ̂1, ϱ̂2) ′TÆ2(ζ) (ς̂) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
IΞ1(γ) (ϱ̂1, ϱ̂2) ′IÆ2(ζ) (ς̂) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
FΞ1(γ) (ϱ̂1, ϱ̂2) ∞ FÆ2(ζ) (ς̂) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂) , (ϱ̂2, ς̂)) =
µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µÆ2(ζ) (ς̂) , (ϱ̂1, ϱ̂2) ∈ E1, ς̂ ∈ V2.
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4.TΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

TΞ1(γ) (ϱ̂1, ϱ̂2) ′TÆ1(ζ) (ς̂2) ′TÆ2(ζ) (ς̂1) ,
IΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

IΞ1(γ) (ϱ̂1, ϱ̂2) ′IÆ1(ζ) (ς̂2) ′IÆ2(ζ) (ς̂1) ,
FΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

FΞ1(γ) (ϱ̂1, ϱ̂2) ′FÆ1(ζ) (ς̂2) ′FÆ2(ζ) (ς̂1) ,
µΞ(γ,ζ) ((ϱ̂1, ς̂1) , (ϱ̂2, ς̂2)) =

µΞ1(γ) (ϱ̂1, ϱ̂2) ′ µÆ1(ζ) (ς̂2) ′ µÆ2(ζ) (ς̂1) , (ϱ̂1, ϱ̂2) ∈ E1 and ς̂1 ≠ ς̂2.

Here (γ,ζ) ∈ Q1 ⊆Q2, W(γ,ζ) = W1(γ)[W2(ζ)] are psvNHSGs of A .

Theorem 7.The composition of two psvNHSGs is psvNHSG.

Definition 18.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1 ℜ A 2 be the union of A 1 and A 2 where A = (Æ,Ξ,Q1 ℜ Q2) is pSVNHSS over
V = V1 ℜ V2, Ξ = (Ξ1 ℜ Ξ2,Q1 ℜ Q2) is pSVNHSS over E = E1 ℜ E2 where for ϱ̂, ς̂ ∈ V , PSVN-components are
stated as

1.TÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

TÆ1(ω̂) (ς̂)
TÆ2(ω̂) (ς̂)

TÆ1(ω̂) (ς̂) ∞ TÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

IÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IÆ1(ω̂) (ς̂)
IÆ2(ω̂) (ς̂)

IÆ1(ω̂) (ς̂) ∞ IÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

FÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

FÆ1(ω̂) (ς̂)
FÆ2(ω̂) (ς̂)

FÆ1(ω̂) (ς̂) ′FÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

µÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µÆ1(ω̂) (ς̂)
µÆ2(ω̂) (ς̂)

µÆ1(ω̂) (ς̂) ∞ µÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

2.TΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

TΞ1(ω̂) (ϱ̂ς̂)
TΞ2(ω̂) (ϱ̂ς̂)

TΞ1(ω̂) (ϱ̂ς̂) ∞ TΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

IΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IΞ1(ω̂) (ϱ̂ς̂)
IΞ2(ω̂) (ϱ̂ς̂)

IΞ1(ω̂) (ϱ̂ς̂) ∞ IΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

FΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

FΞ1(ω̂) (ϱ̂ς̂)
FΞ2(ω̂) (ϱ̂ς̂)

FΞ1(ω̂) (ϱ̂ς̂) ′FΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

µΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µΞ1(ω̂) (ϱ̂ς̂)
µΞ2(ω̂) (ϱ̂ς̂)

µΞ1(ω̂) (ϱ̂ς̂) ∞ µΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
.

Definition 19.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A = A 1 ℑ A 2 be the intersection of A 1 and A 2 where A = (Æ,Ξ,Q1 ℜ Q2) is pSVNHSS over
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V = V1 ℑ V2, Ξ = (Ξ1 ℜ Ξ2,Q1 ℜQ2) is pSVNHSS over E = E1 ℑ E2 where for ϱ̂, ς̂ ∈ V , PSVN-components can be
given by

1.TÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

TÆ1(ω̂) (ς̂)
TÆ2(ω̂) (ς̂)

TÆ1(ω̂) (ς̂) ′TÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

IÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IÆ1(ω̂) (ς̂)
IÆ2(ω̂) (ς̂)

IÆ1(ω̂) (ς̂) ′IÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

FÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

FÆ1(ω̂) (ς̂)
FÆ2(ω̂) (ς̂)

FÆ1(ω̂) (ς̂) ∞ FÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

µÆω̂
(ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µÆ1(ω̂) (ς̂)
µÆ2(ω̂) (ς̂)

µÆ1(ω̂) (ς̂) ′ µÆ2(ω̂) (ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

2.TΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

TΞ1(ω̂) (ϱ̂ς̂)
TΞ2(ω̂) (ϱ̂ς̂)

TΞ1(ω̂) (ϱ̂ς̂) ′TΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

IΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

IΞ1(ω̂) (ϱ̂ς̂)
IΞ2(ω̂) (ϱ̂ς̂)

IΞ1(ω̂) (ϱ̂ς̂) ′IΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

FΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

FΞ1(ω̂) (ϱ̂ς̂)
FΞ2(ω̂) (ϱ̂ς̂)

FΞ1(ω̂) (ϱ̂ς̂) ∞ FΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
,

µΞω̂
(ϱ̂ς̂) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

µΞ1(ω̂) (ϱ̂ς̂)
µΞ2(ω̂) (ϱ̂ς̂)

µΞ1(ω̂) (ϱ̂ς̂) ′ µΞ2(ω̂) (ϱ̂ς̂)

; ω̂ ∈ Q1 ◦Q2

; ω̂ ∈ Q2 ◦Q1

; ω̂ ∈ Q1 ℑQ2
.

Definition 20.For two psvNHSGs A 1 =
(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and

A 2 = (V2,E2). Let A =A 1
/

A 2 be the join of A 1 and A 2 where A = (Æ1
/

Æ2,Ξ1
/

Ξ2,Q1 ℜQ2) is pSVNHSS

over V = V1 ℜ V2, Ξ = (Ξ1
/

Ξ2,Q1 ℜQ2) is pSVNHSS over E = E1 ℜ E2 where

1.(Æ1
/

Æ2,Q1 ℜQ2) = (Æ1,Q1)ℜ (Æ2,Q2).

2.(Ξ1
/

Ξ2,Q1 ℜQ2) = (Ξ1,Q1)ℜ (Ξ2,Q2), i f ϱ̂ς̂ ∈ E1 ℜ E2.

when ω̂ ∈ Q1 ℑQ2 and ϱ̂ς̂ ∈ E and uncertain parts are
T

Ξ1
/

Ξ2(ω̂)
(ϱ̂ς̂) = min{TÆ1(ω̂) (ϱ̂ς̂) ,TÆ2(ω̂) (ϱ̂ς̂)},

I
Ξ1

/
Ξ2(ω̂)

(ϱ̂ς̂) = min{IÆ1(ω̂) (ϱ̂ς̂) ,IÆ2(ω̂) (ϱ̂ς̂)},
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F
Ξ1

/
Ξ2(ω̂)

(ϱ̂ς̂) = min{FÆ1(ω̂) (ϱ̂ς̂) ,FÆ2(ω̂) (ϱ̂ς̂)},

µ
Ξ1

/
Ξ2(ω̂)

(ϱ̂ς̂) = min{µÆ1(ω̂) (ϱ̂ς̂) ,µÆ2(ω̂) (ϱ̂ς̂)}.

Definition 21.The complement A c = (A c,Qc,Æc,Ξc) of
psvNHSG A = (A ,Q,Æ,Ξ) is a psvNHSG for which ϱ̂, ς̂ ∈ V and ω̂ ∈ Q and it satisfies the following conditions

1.Qc = Q.
2.Æc(ω̂) = Æ(ω̂).
3.TΞc(ω̂) (ϱ̂, ς̂) = TÆ(ω̂) (ϱ̂) ′TÆ(ω̂) (ς̂) ◦TΞ(ω̂) (ϱ̂, ς̂).
4.IΞc(ω̂) (ϱ̂, ς̂) = IÆ(ω̂) (ϱ̂) ′IÆ(ω̂) (ς̂) ◦IΞ(ω̂) (ϱ̂, ς̂).
5.FΞc(ω̂) (ϱ̂, ς̂) = FÆ(ω̂) (ϱ̂) ′FÆ(ω̂) (ς̂) ◦FΞ(ω̂) (ϱ̂, ς̂).
6.µΞc(ω̂) (ϱ̂, ς̂) = µÆ(ω̂) (ϱ̂) ′ µÆ(ω̂) (ς̂) ◦ µΞ(ω̂) (ϱ̂, ς̂).

Definition 22.If A c = A where A = (A ,Q,Æ,Ξ) is a psvNHSG, then A is self complementary.

Definition 23.If Ξ(ω̂) is PSVNH-graph of A , ω̂ ∈ Q, then it is complete with
TΞ(ω̂) (ϱ̂ς̂) = min{TÆ(ω̂) (ϱ̂) ,TÆ(ω̂) (ς̂)},

IΞ(ω̂) (ϱ̂ς̂) = min{IÆ(ω̂) (ϱ̂) ,IÆ(ω̂) (ς̂)},

IΞ(ω̂) (ϱ̂ς̂) = min{IÆ(ω̂) (ϱ̂) ,IÆ(ω̂) (ς̂)},

µΞ(ω̂) (ϱ̂ς̂) = min{µÆ(ω̂) (ϱ̂) ,µÆ(ω̂) (ς̂)}.

Definition 24.A psvNHSG A = (A ,Q,Æ,Ξ) is strong psvNHSG if Ξ(ω̂) is SSVNH-graph of A , ω̂ ∈ Q.

Theorem 8.For strong psvNHSGs
A 1 =

(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and A 2 = (V2,E2), then A 1[A 2], their

composition is strong psvNHSG.

Theorem 9.For strong psvNHSGs
A 1 =

(
A 1,Q1,Æ1,Ξ1) and A 2 =

(
A 2,Q2,Æ2,Ξ2) w.r.t. A 1 = (V1,E2) and A 2 = (V2,E2), then A 1 ⊆P A 2, their

cartesian product is strong psvNHSG.

Definition 25.The complement A c = (A c,Qc,Æc,Ξc) of strong psvNHSG A = (A ,Q,Æ,Ξ) ω̂ ∈ Æ, ϱ̂, ς̂ ∈ V , is
given by

1.Qc = Q.
2.Æc(ω̂)(ϱ̂) = Æ(ω̂)(ϱ̂).
3.TΞc(ω̂) (ϱ̂, ς̂) =

{ min{TÆ(ω̂) (ϱ̂) ,TÆ(ω̂) (ς̂)}
0

; TΞ(ω̂) (ϱ̂, ς̂) = 0
; TΞ(ω̂) (ϱ̂, ς̂) > 0 .

4.IΞc(ω̂) (ϱ̂, ς̂) =

{ min{IÆ(ω̂) (ϱ̂) ,IÆ(ω̂) (ς̂)}
0

; IΞ(ω̂) (ϱ̂, ς̂) = 0
; IΞ(ω̂) (ϱ̂, ς̂) > 0 .

5.FΞc(ω̂) (ϱ̂, ς̂) =

{ min{FÆ(ω̂) (ϱ̂) ,FÆ(ω̂) (ς̂)}
0

; FΞ(ω̂) (ϱ̂, ς̂) = 0
; FΞ(ω̂) (ϱ̂, ς̂) > 0 .

6.µΞc(ω̂) (ϱ̂, ς̂) =

{ min{µÆ(ω̂) (ϱ̂) ,µÆ(ω̂) (ς̂)}
0

; µΞ(ω̂) (ϱ̂, ς̂) = 0
; µΞ(ω̂) (ϱ̂, ς̂) > 0 .

Theorem 10.The complement A c = (A c,Qc,Æc,Ξc) of strong psvNHSG A = (A ,Q,Æ,Ξ) ω̂ ∈ Æ, ϱ̂, ς̂ ∈ V , is
strong psvNHSG.

Theorem 11.If A = (A ,Q,Æ,Ξ) and its complement A c = (A c,Qc,Æc,Ξc) are strong psvNHSGs ω̂ ∈ Æ, ϱ̂, ς̂ ∈ V ,
then the union A ℜA c is itself complete psvNHSG.
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After establishing the foundational concepts and mathematical models for managing uncertainty and
imprecise information through a theoretical framework, psvNHSG, we apply these theories to real-world
decision-making problem to demonstrate their practicality and effectiveness. This application phase will help
validate the theoretical results by showing how the proposed methods enhance accuracy and reliability in
actual scenarios.

2.5 Application of psvNHSG in MADM-based Recruitment Process

The MADM can be used in the recruitment process to evaluate and compare job candidates based on multiple
criteria, such as skills, experience, education, and cultural fit. Techniques like weighted scoring and decision
matrices can help streamline and improve the selection process. However, it is crucial to ensure that the criteria
are relevant and non-discriminatory, and that the decision-making process remains transparent and fair. To
create a trustworthy recruitment system, an MADM-based algorithm is proposed and validated by applying
it to a real-life recruitment process. The proposed algorithm and the application are the modified versions of
algorithm and case study presented by Rahman et al. [25].
Example 6.Assume that a company is looking to hire someone to fill the assistant manager position that is
currently unfilled. The recruitment committee has examined six candidates, V = {C1,C2,C3,C4,C5,C6}. To
choose one of these candidates, the committee needs to conduct additional analysis. Qualification (β1),
relevant experience in years (β2), and computer skill (β3) are the assessment indications. Their
sub-parametric disjoint sets are: Q1 = {β11 = Graduate}, Q2 = {β21 = 5, β22 = 7, β23 = 10} and
Q3 = {β31 = MS o f f ice} respectively such that Q = Q1 ⊆ Q2 ⊆ Q3 = {ω̂1, ω̂2, ω̂3} and
A = {(W,Q)} = {(W(ω̂1)), (W(ω̂2)), (W(ω̂3))} is psvNHSG. This selection is completed based on the
algorithm (Figure 13 states its depiction) given below:
=======================================
Algorithm: An MADM-based recruitment process using aggregation operations of psvNHSG
=======================================
In this algorithm, the matrix operations of the pSVNHSS framework are employed to systematically construct
the decision matrix, which represents the evaluations of alternatives with respect to multiple parameters.
Through these matrix manipulations, the algorithm computes the scoring values by aggregating the
neutrosophic information: truth, indeterminacy, and falsity degrees, associated with each alternative. These
computed scores are then utilized to rank the alternatives in an objective and consistent manner, ensuring
that the decision-making process effectively incorporates uncertainty and imprecision inherent in expert
judgments.

1.Assume the set V as initial space consisting of candidates and the Q as a collection consisting of sub
parametric valued tuples.

2.Consider two pSVNHSSs (Æ,Q) and (Ξ,Q) .
3.On the basis of (Æ,Q) and (Ξ,Q), present psvNHSG A = (A ,Q,Æ,Ξ) .

4.Present resultant psvNHSG W(ω̂) =

[
κ

W(ω̂κ) for ω̂ =
⌊
κ

ω̂κ values of κ.

5.Determine I-Matrix on the basis of psvNHSG W(ω̂).
6.After computing score values Sκ of Cκ for all κ, compute the average score values by the utilizing Sκ =

Tκ+Iκ◦Fκ+µκ+1
4 .

7.Recommend the candidate Cκ such that Cκ = maxi Ci.
8.In case of overlapping values of κ, select unique one Cκ .

=======================================
The step-wise depiction of the proposed algorithm is presented in Fig. 13. The psvNHSGs W(ω̂1),W(ω̂2) and
W(ω̂3) w.r.t. sub-parametric values are given in Table 12 and stated in Fig. 14. The I-Matrices of psvNHSGs
are: The psvNHSG thus constructed is represented in the form of following incidence matrix W(ω̂) by considering ω̂ =
ω̂1 ′ ω̂2 ′ ω̂3. The Table 13 presents the relevant score values along with their averages. It can easily be noticed from Table
13, the candidate C4 has secured the greatest score thus it is recommended.

2.6 Comparison Analysis and Discussion

For human resource management, the issue of candidate selection is crucial for any firm. There are not many
studies on this subject that take the possibility degree and graphical exploration into account in fuzzy and
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Fig. 13: Proposed Algorithm

Table 12: psvNHSG A = (A ,Q,Æ,Ξ) demonstrated in Fig.14

Æ C1 C2 C3 C4 C5 C6

ω̂1 (0.4,0.6,0.9,0.4) (0.3,0.9,0.6,0.3) (0.5,0.6,0.3,0.5) (0.6,0.3,0.8,0.6) (0.5,0.8,0.7,0.5) (0.3,0.6,0.9,0.3)

ω̂2 (0.7,0.8,0.5,0.7) (0.7,0.3,0.9,0.7) (0.3,0.7,0.4,0.3) (0.8,0.5,0.3,0.8) (0,0,0,0) (0.7,0.3,0.7,0.7)

ω̂3 (0.7,0.4,0.6,0.7) (0.6,0.3,0.9,0.6) (0.5,0.5,0.9,0.5) (0.6,0.7,0.5,0.6) (0.7,0.5,0.3,0.7) (0.5,0.8,0.9,0.5)

Ξ (C1,C2) (C1,C3) (C1,C4) (C1,C5) (C2,C3) (C2,C4) (C2,C5)

ω̂1 (0.2,0.4,0.7,0.2) (0,0,1,0) (0.3,0.2,0.5,0.3) (0,0,1,0) (0.3,0.5,0.4,0.3) (0.2,0.2,0.7,0.2) (0.3,0.3,0.5,0.3)

ω̂2 (0.6,0.2,0.7,0.6) (0.2,0.6,0.4,0.2) (0.5,0.4,0.4,0.5) (0,0,1,0) (0,0,1,0) (0.6,0.2,0.8,0.6) (0,0,1,0)

ω̂3 (0.5,0.2,0.8,0.5) (0,0,1,0) (0,0,1,0) (0.5,0.3,0.4,0.5) (0.4,0.2,0.7,0.4) (0.4,0.2,0.6,0.4) (0,0,1,0)

Ξ (C2,C6) (C3,C4) (C3,C5) (C3,C6) (C4,C5) (C5,C6)

ω̂1 (0,0,1,0) (0,0,1,0) (0.4,0.5,0.6,0.4) (0.2,0.4,0.7,0.2) (0.4,0.2,0.3,0.4) (0.3,0.5,0.8,0.3)

ω̂2 (0.5,0.2,0.8,0.5) (0.2,0.4,0.4,0.2) (0,0,1,0) (0.3,0.2,0.5,0.3) (0,0,1,0) (0,0,1,0)

ω̂3 (0,0,1,0) (0,0,1,0) (0.4,0.3,0.8,0.4) (0.4,0.3,0.7,0.4) (0.5,0.4,0.2,0.5) (0.3,0.4,0.6,0.3)

W(ω̂1) =


(0,0,0,0) (0.2,0.4,0.7,0.2) (0,0,0,0) (0.3,0.2,0.5,0.3) (0,0,0,0) (0,0,0,0)

(0.2,0.4,0.7,0.2) (0,0,0,0) (0.3,0.5,0.4,0.3) (0.2,0.2,0.7,0.2) (0.3,0.3,0.5,0.3) (0,0,0,0)
(0,0,0,0) (0.3,0.5,0.4,0.3) (0,0,0,0) (0,0,0,0) (0.4,0.5,0.6,0.4) (0.2,0.4,0.7,0.2)

(0.3,0.2,0.5,0.3) (0.2,0.2,0.7,0.2) (0,0,0,0) (0,0,0,0) (0.4,0.2,0.3,0.4) (0,0,0,0)
(0,0,0,0) (0.3,0.3,0.5,0.3) (0.4,0.5,0.6,0.4) (0.4,0.2,0.3,0.4) (0,0,0,0) (0.3,0.5,0.8,0.3)
(0,0,0,0) (0,0,0,0) (0.2,0.4,0.7,0.2) (0,0,0,0) (0.3,0.5,0.8,0.3) (0,0,0,0)


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Fig. 14: Pictorial Depiction of Table 12 with (a):W(ω̂1), (b): W(ω̂2) and (c): W(ω̂3).

W(ω̂2) =


(0,0,0,0) (0.6,0.2,0.7,0.6) (0.2,0.6,0.4,0.2) (0.5,0.4,0.4,0.5) (0,0,0,0) (0,0,0,0)

(0.6,0.2,0.7,0.6) (0,0,0,0) (0,0,0,0) (0.6,0.2,0.8,0.6) (0,0,0,0) (0.5,0.2,0.8,0.5)
(0.2,0.6,0.4,0.2) (0,0,0,0) (0,0,0,0) (0.2,0.4,0.4,0.2) (0,0,0,0) (0.3,0.2,0.5,0.3)
(0.5,0.4,0.4,0.5) (0.6,0.2,0.8,0.6) (0.2,0.4,0.4,0.2) (0,0,0,0) (0,0,0,0) (0,0,0,0)

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0.5,0.2,0.8,0.5) (0.3,0.2,0.5,0.3) (0,0,0,0) (0,0,0,0) (0,0,0,0)



W(ω̂3) =


(0,0,0,0) (0.5,0.2,0.8,0.5) (0,0,0,0) (0,0,0,0) (0.5,0.3,0.4,0.5) (0,0,0,0)

(0.5,0.2,0.8,0.5) (0,0,0,0) (0.4,0.2,0.7,0.4) (0.4,0.2,0.6,0.4) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0.4,0.2,0.7,0.4) (0,0,0,0) (0,0,0,0) (0.4,0.3,0.8,0.4) (0.4,0.3,0.7,0.4)
(0,0,0,0) (0.4,0.2,0.6,0.4) (0,0,0,0) (0,0,0,0) (0.5,0.4,0.2,0.5) (0,0,0,0)

(0.5,0.3,0.4,0.5) (0,0,0,0) (0.4,0.3,0.8,0.4) (0.5,0.4,0.2,0.5) (0,0,0,0) (0.3,0.4,0.6,0.3)
(0,0,0,0) (0,0,0,0) (0.4,0.3,0.7,0.4) (0,0,0,0) (0.3,0.4,0.6,0.3) (0,0,0,0)



W(ω̂) =


(0,0,0,0) (0.2,0.2,0.8,0.2) (0,0,0.4,0) (0,0,0.5,0) (0,0,0.4,0) (0,0,0,0)

(0.2,0.2,0.8,0.2) (0,0,0,0) (0,0,0.7,0) (0.2,0.2,0.8,0.2) (0,0,0.5,0) (0,0,0.8,0)
(0,0,0.4,0) (0,0,0.7,0) (0,0,0,0) (0,0,0.4,0) (0,0,0.8,0) (0.2,0.2,0.7,0.2)
(0,0,0.5,0) (0.2,0.2,0.8,0.2) (0,0,0.4,0) (0,0,0,0) (0,0,0.3,0) (0,0,0,0)
(0,0,0.4,0) (0,0,0.5,0) (0,0,0.8,0) (0,0,0.3,0) (0,0,0,0) (0,0,0.8,0)
(0,0,0,0) (0,0,0.8,0) (0.2,0.2,0.7,0) (0,0,0,0) (0,0,0.8,0) (0,0,0,0)



Table 13: Presentation of scores along with choice values.

C1 C2 C3 C4 C5 C6 Cκ

C1 0.250 0.200 0.150 0.125 0.150 0.250 1.125

C2 0.200 0.250 0.075 0.200 0.125 0.050 0.900

C3 0.200 0.075 0.250 0.200 0.050 0.225 1.000

C4 0.125 0.200 0.150 0.250 0.175 0.250 1.150

C5 0.150 0.125 0.050 0.175 0.250 0.050 0.800

C6 0.250 0.050 0.175 0.250 0.050 0.250 1.025
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Table 14: Analysis of preferential features of proposed study over predefined researches

Literature Measure
1

Measure
2

Measure
3

Measure
4

Measure
5

Measure
6

Measure
7

Broumi et al. [1] ⇈ ⇈ ⇈ ⇊ ⇊ ⇊ ⇊

Gani & Begum [2] ⇈ ⇈ ⇊ ⇊ ⇊ ⇊ ⇊

Thumbakara & George [8] ⇊ ⇊ ⇊ ⇈ ⇊ ⇊ ⇊

Shah et al. [9] ⇈ ⇈ ⇈ ⇈ ⇊ ⇊ ⇊

Alkhazaleh et al. [11] ⇈ ⇊ ⇊ ⇈ ⇊ ⇈ ⇊

Bashir et al. [12] ⇈ ⇈ ⇊ ⇈ ⇊ ⇈ ⇊

Karaaslan [13] ⇈ ⇈ ⇈ ⇈ ⇊ ⇈ ⇊

Rahman et al. [22] ⇈ ⇈ ⇊ ⇈ ⇈ ⇈ ⇊

Rahman et al. [24] ⇈ ⇈ ⇈ ⇈ ⇈ ⇈ ⇊

Saeed et al. [27] ⇈ ⇈ ⇈ ⇈ ⇈ ⇊ ⇊

psvNHSG ⇈ ⇈ ⇈ ⇈ ⇈ ⇈ ⇈

soft set-like settings. This study’s preferred feature is that it can address the limitations of existing graphical
structures regarding consideration of three-dimensional membership-graded settings, consideration of
multi-argument domain settings, and consideration of possibility-graded settings. Since literature lacks any
pertinent research regarding such application in the psvNHSG environment, the computation-based analysis
is not practical, but the structural analysis is offered in Table 14 to highlight its admirable viewpoint and
adaptability. In Table 14, the measures 1 to 7 are meant for ”consideration of true membership grade”,
”consideration of false membership grade”, ”consideration of indeterminacy grade”, ”consideration of
mapping with a single argument”, ”consideration of mapping with multi-argument”, ”consideration of
entitlement of possibility degree”, and ”candidate selection ranking with graphical exploration”, respectively.
Additionally, the symbols ⇈ and ⇊ are meant for yes and no respectively.

3 Conclusions

When making decisions involving multiple attributes, it has been observed that experts sometimes present
their advice as three-dimensional arguments (neutrosophic setting). There are also situations that emphasize
the need to classify parameters into their respective disjoint sub-classes and to use the possibility degree to
evaluate the acceptance level of expert judgments for potential solutions. This study characterizes the
fundamental concepts, such as the properties, operations, products, and composition of psvNHSG, to expand
the literature for the reflection of the possibility degree that resolves the hesitant nature of neutrosophic
elements for each alternative under consideration. The existing literature on soft set-like models in graph
theory is unable to address such issues. Essential properties, aggregation operations, and products are
examined theoretically and with examples. Additionally, an approach is proposed that makes use of
psvNHSG aggregates, and it is further clarified by talking about a real-world application for MADM model.
While the proposed psvNHSG framework demonstrates strong potential for efficiently addressing complex
decision-making problems characterized by uncertainty and vagueness, its current implementation has been
confined to a single organizational case study, which limits the generalizability of the results. To enhance its
practical relevance, future studies should investigate the framework’s applicability across diverse fields such
as healthcare, engineering design, supply chain optimization, and environmental management, where
uncertainty and multi-criteria evaluation are prevalent. Moreover, the theoretical foundation of the
framework can be further strengthened by extending it to dynamic, hierarchical, or weighted graph
structures, allowing for more flexible and realistic modeling of relationships among parameters and
alternatives. Despite its strengths, the framework faces certain limitations, particularly the computational
complexity that increases with higher-order or large-scale datasets, and the subjective nature of assigning
neutrosophic values, which may introduce inconsistencies or bias in evaluation. Addressing these challenges
could lead to more efficient, scalable, and objective implementations in future research.
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