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Abstract: Adjoint triples are an interesting generalization of tmerand their residuated implications, since they increbase t
flexibility in the framework where they are used. Followiing tsame motivation of adjoint triples, in order to reducerttashematical
requirements for the computation, extended-order algedm@astudied. Extended-order algebras are implicatiebadg that generalize
the integral residuated structures. In this paper, adjaipies will be related to the operators considered in edéelorder algebras.
Furthermore, a comparison between adjoint negations andetations introduced in extended-order algebras isuezhe
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1 Introduction mathematical requirements of the basic operators for the

computation, but based on implications. The main goal of
The use of general aggregation operators in differenthis paper is the comparison of w-eo algebras with the
frameworks is very important obtaining useful operators mentioned previously and the obtainment of the

consequences in the applicatiod$,[16,32,33,30,31] relationship between them. As this paper will prove, w-eo
Several of these frameworks, such as Fuzzyalgebras are more restrictive than multi-adjoint algebras
Logic [26], Fuzzy Relation Equationslfl], Rough Set In addition, this paper will carry out a study of

Theory R9] and Formal Concept Analysid 7,30, need negation operators. Negation operators are widely studied
to consider algebras with implications. The most usualin [10,12,27,28] and are very useful in fuzzy logic and
operators in these frameworks are left-continuous t-normdogic programming. This paper considers adjoint
and their residuated implications and, specifically, negations obtained from adjoint triples and operators
residuated lattices. introduced in w-eo algebras corresponding to the negation

Adjoint triples are general operators which provide connectives 10]. The comparison between these two
less restrictive settings, since their conjunctors artheei  kinds of negations is also shown.
required to be commutative nor associative. Therefore, The organization of this paper is as follows: Sectin
the use of this kind of operators increases the flexibilityrecalls the notion of adjoint triple and presents the multi-
and applicability of the frameworks in which they are adjoint algebras. The definitions of the different extended
considered, such as Logic Programming0][ Fuzzy  order algebras and several remarks about the comparison
Formal Concept Analysis 1B, Fuzzy Relation with adjoint triples are included in Sectidh Section4
Equations 1] and Rough Set Theory 7. This  presents the corresponding relationship between negation
consequence is one of the most important reasons whichperators. Lastly, the paper finishes with some conclusions
justifies that these triples have widely been studied inand prospects for future work.
several paper2[5].

An important generalization of the integral residuated
structures are extended-order algebras, which wer@ Adjoint triples and multi-adjoint algebras
introduced by C. Guido and P. Toto ifi4] and developed
in several paperslD,9]. Extended-order algebras are This section recalls the definition of adjoint triple, seer
implicative general structures that follows the sameinteresting properties derived from these operators and
motivation of adjoint triples in order to reduce the introduces the definition of multi-adjoint algebra.
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Definition 1. Let(Py, <1), (P2, <2), (P3,<3) be posetsand Proposition 4([2]). Given an adjoint triple (&,.,\.)
& PLxP—P; / P3xP, =P, N:P3xP,—P,be  withrespectto PP, and B.
mappings, ther& , ./, ) is anadjoint triplewith respect

t0 Py, P, Py if &, <. satisfy theadjoint property 1. If B C P; and R has a maximuni ;, the following

statements are equivalent.

; ; — /°Pis a forcing implication.
< ff <3z iff y< Pisa gimp
XS12,/y it x&y sz it y<2 2\ x —Ti&y=y,forallyePp,.
where xc Py, y € P, and z€ Ps. 2. fPRCP;and B hgs a maximunT ,, the following
statements are equivalent.
The following monotonicity —properties are - \%Pis a forcing implication.
straightforwardly obtained from the adjoint property. —X& T2 =X, forallxe P.
Proposition 1. If (&,,/,~.) is anadjoint triplew.r.t. the Examples of adjoint triples are the Godel, product and
posetg Py, <1), (P, <») and(Ps,<3), then fr.uka&eywcz t-norms together with their re5|duat§d
) i implications. Note that, these t-norms are commutative,
1.& is order-preserving on both arguments. then the residuated implications satisfy thaC=< g,
2./,N are or'der—preservmg on the first argumentand P_x  and L=~ . Specifically, they are defined on
order-reversing on the second argument. 0,1] as:
The result below states that given the conjunctor of an 1 ifx<z
adjoint triple, its residuated implications are unique. &a(X,y) = min(x,y) ZRGgX= { h =
z otherwise

Proposition 2. Given a conjunctorg, if there exist its i
residuated implications” and~, they are unique. &p(Xy) =Xy ZN\px=min(1,z/x)

Moreover, these residuated implications conserve the &L (X.Y) = max0,x+y—1) Z\ x=min(1,1—Xx+2)
infima on the first argument.

Proposition 3. Let (&,,/,\) be a adjoint triple with . .

respect to the poset®;, <1), (P, <») and (Ps, <3), then Example 1Given m € N, the set [0,1]m is a regular

the following properties are satisfied: partition of [0,1] in m pieces, for example
[0,1], = {0,0.5,1} divides the unit interval in two pieces.

1.(A\z)y=/(zy) foranyZC P;and ye P, A discretization of the product t-norm is the operator
z€z zez &p: [0,1]20 x [0,1]g — [0,1]100 defined, for each
when the infima exist. x € [0,1]z0 andy € [0, 1]g as:
2.(\ z) N\ x= )\ (z’\ x), forany ZC Ps and x< Py,
zez zez X&by— [100-x-y]

when the infima exist. 100

Another notion needed in this paper is associated withwhere[_] is the ceiling function and whose residuated
a well-know property of implications, which was called implications — ,/p: [0,1]100 x [0,1]g — (0,10,
forcing-implicationin [23,24]. Later, in [2], the authors \p: [0,1]100% [0,1]20 — [0,1]g are defined as:
used it in a more general environment and interesting i i
properties were proven. Since this definition andb, /pa= [20- min{1,b/a}] [8-min{1,b/c}]
properties will be considered later, these will be recalled 20 8
next.

bNpC=

where| _ | is the floor function.
Definition 2. Given two poset$Q, <q), (P,<p), with a Hence, the triplé& 5,/ 5, "\.p) is an adjoint triple and
top elementTp in (P, <p). The operator—: Qx Q — P the operatog j is straightforwardly neither commutative
which is order-reversing on the first argument and nor associative. Similar adjoint triples can be obtained
order-preserving on the second argument, satisfying thefrom the Godel and tukasiewicz t-normsi

equivalence : . . .
q The algebraic structure that considers these triples is

a—b=Tpifandonlyifa<qh, foralla,beQ (1) the biresiduated multi-adjoint algebra. 121[22], the
notion of multi-adjoint lattice was introduced considerin
is calledforcing-implication onQ. only pairs, that is, several conjuncto&; and the
corresponding residuated implicatiops. Later, in R0]
Before introducing the following result, the definition biresiduated multi-adjoint lattices were presented in
of the next mappings is requireg?°?: P, x P; — Py, which adjoint triples (&i,',"\i) on lattices were
Nop: PLxPs = P, asy /P z=2z,y and considered. The definition below generalizes this last
XNopZ=2z\ X forallxe P,yc P, andze Ps. notion, since posets are only assumed as carriers.
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Definition 3. Given the poset&P;, <1), (P2, <2), (Ps,<3)
and a family of adjoint triples(&i,,"',’\i), with

i € {1,...,n}. A (biresiduated) multi-adjoint algebra is
the tuple

9:(Pl,PZ,P:g,Sl,SZ,S3,&1,/1,)\1,...7&n,/n,r\n)
From now on, we will denote these algebras as

P = (P,P,P3,<1,<2,<3,&1,...,&n), since, by
Proposition?, the residuated implications are unique.

3 The comparison with extended-order
algebras

C. Guido and P. Toto 1] introduced extended-order

fixed elementT of P. Other interesting structures
introduced in [10,14] arise when the posefP <)
associated with the w-eo algebfg —, T) is a complete
lattice. In this case, we say thée,—,T) is acomplete
w-eo algebraP,—, T), in short, aw-ceo algebraln this
case we will writeL and < instead of P and <,
respectively.

The notion of right-distributive w-ceo algebra is
defined as follows.

Definition 5([10]). Let L be a non-empty set;: L xL —

L a binary operation and™ a fixed element of L. The triple
(L,—, T) is aright-distributive w-ceo algebréf it is a w-
ceo algebra and satisfies the following condition

(d) foranyacL,BCL:a— \b= /A (a—bh)
beB beB

algebras as implicative algebras that generalize the

integral residuated structures, Hilbert algebras, BCK
algebras, etc. These operators have been used in seve
frameworks, chasing the same motivation of adjoint
triples, that is, introducing a general setting which reztuc

In the remainder of this section, we will present several
fgeults relating the latest structures to adjoint triples.

The first one states that Equivalen@g¢oincides with
the forcing-implication property.

the mathematical requirements needed to compute i'?Droposition 5. Given a poset(P,<) with a greatest

several frameworks, such as in fuzzy logic, fuzzy relationgjementr and—: PxP P a forcing-implication on P
equations, rough sets, etc. Now, a deeper comparison th"’}ﬂen(P —,T) is aw-eo algebra. '

the one given in3,4] is introduced and it is proven that
extended-order algebras are more restrictive.

3.1 Extended-order algebras with an operator

This section recalls several algebraic structures give
in [10,14] with only one operator and compares them
with adjoint triples. Firstly, the definition of w-eo algebr
is introduced, from which the rest of structures will be
presented.

Definition 4([14]). Let P be a non-empty set,
—: Px P — P a binary operation and" a fixed element
of P. The triple(P,—,T) is a w-eo algebraif for all
a,b,c € P the following conditions are satisfied

(o)a— T =T (upper bound condition)

(op)a— a= T (reflexivity condition)

(03)a— b=T and b— a= T then a= b (antisymmetry
condition)

(ogJ)a—b=Tand b—c=T thena— c=T (weak
transitivity condition)

From a w-eo algebréP, —, T) an ordering can be defined
on the seP, which provided? with a poset structure. This
relation< is defined as follows:

a<bifandonlyifa—b=T, forallabeP (2)
Straightforwardly < is an order relation i, which was
calledthe natural ordering in F[14]. Note that the poset
(P,<) has a greatest element which coincides with the

1 Note that the names of the properties are thosé4h |

Proof. As —: P x P — P is a forcing-implication orP,
then EquationZ) holds, which clearly provides properties
(01), (02), (03) and (04). O

The second result shows under what conditions

n'should be defined an adjoint triple in order to provide a

w-eo algebra.

Proposition 6. Given a poset(P, <), with a maximum
elementT, and an adjoint triple(&,,//,\.) with respect
to P. The conjunctor satisfies&y =y, for all y € P, if
and only if(P,°P, T) is a w-eo algebra and the natural
ordering in P is<.

Proof. First of all, we will prove tha{P,°°, T) is w-eo
algebra and the natural orderingRris <. By hypothesis,
we have thatT &y =y, for all y € P, and applying
Propositiond we obtain thaf°P is a forcing-implication
and < is the natural ordering inP. Moreover, by
Propositiorb the triple(P,,°P, T) is a w-eo algebra.

The counterpart is obtained since the triple
(P °P,T) is a w-eo algebra and< is the natural
ordering in P, which is defined by means of the
Equivalence 1). Therefore, applying Propositios the
boundary conditionT & y = y is obtained, for ally € P.

O

Analogously, the following proposition is obtained.

Proposition 7. Given a poset(P, <), with a maximum
elementT, and an adjoint triple(&,,//,\.) with respect
to P. The conjunctor satisfie®XT = x, for all x € P, if
and only if (P, op, T) is @ w-eo algebra and the natural
ordering in P is<.
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Proof. The proof is similar to the previous one.O Proposition9. Let (L,—,T) be a symmetrical

right-distributive w-ceo algebra and the operator
As a consequence, adjoint triples are less restrictiver: L x L — L defined by Equatio(8), then(—,®,~) is

operators. Therefore, multi-adjoint algebras are morean adjoint triple on L.

flexible structures than w-eo algebras. Moreover, differen

adjoint triples can be considered, which provides an extra However, the counterpart is not true. The following

useful feature as in the papeg]1,19,21] was shown. proposition specifies the properties which must be
satisfied by an adjoint triple to obtain a symmetrical
right-distributive w-eo algebra.

3.2 Extended-order algebras with two operators proposition 10. Given a posetP, <), with T as maximum

element, and an adjoint triplgg. , ,/,’\.) with respect to P.
This section begins presenting the residuated operatoThe conjunctor satisfies&T =x and T &y =y, for all
®: LxL — L, which was defined in 10,14] from x,y € P, if and only if(P, /P, T) is a symmetrical right-
right-distributive w-ceo algebrd., —, T) as follows: distributive w-eo algebra and the natural ordering in P
is <.
aox=/\{teL|x=<a—t} (3) N ,
Proof. By Proposition6, we have thatP, %", T) is a
Moreover, an additional binary operation was w-eo algebra and the natural orderingrns <. Also, as
introduced in order to enrich the structures showrlig].] (&,./,\) is an adjoint triple, by Condition (1) of
For this purpose, a right-distributive w-ceo algebraProposition 3, we obtain that (P ", T) is a
(L,—,T) was considered and the presented operator wasight-distributive w-eo algebra.
denoted as~: L x L — L satisfying the equivalence Now, the symmetrical property must be proven.
Taking into account Propositiorv, we obtain that
a<b~c iff agb=<c iff ba—c 4 (P.\op: T) is a w-eo algebra and the natural ordering in
P is <. Therefore, we have that the implicatioRgp and
foralla,b,ceL. %P induce the same ordering iR. In addition, the
So that, a triple is considered. Consequently, we will equivalence
compare this triple with adjoint triples in this section.
The flexibility supported by adjoint triples provides y<xNopz ifandonlyif x<y, Pz
that(~,®,—) straightforwardly is an adjoint triple. i . .
holds, for allx,y,z € P, since (&,,/,~\) is an adjoint
Proposition 8. Given a complete latticéL, <) and the  triple. Therefore, (P,,°P,T) is a symmetrical

mappings ~», ® and — defined above, the triple right-distributive w-eo algebra. _
(~,®,—) is an adjoint triple with respect to L. The counterpart is straightforwardly obtained from

Propositiod. O
Proof. The proof straightforwardly follows from

Equivalence4). O An analogous result is obtained with respedtRoN op

,T).
The symmetrical w-eo algebra was the following o )
structure shown in1d]. In the definition of this structure, In a similar way, these results can be developed with

in [10]. Therefore, right and left-distributive w-eo algebras
Definition 6([10]). A w-eo algebra(L,—,T) is called are more restrictive settings than multi-adjoint algebras
symmetrical if there exists a binary operation
~+: LxL— L such that(L,~,T) is a w-eo algebra;—
and~- induce the same ordering and 4 Adjoint negations and extended-order

: . algebras with negations
y<x~b ifandonlyif x<y—b

In this section, we will show a comparison between the

holds, for all bx,y € L. _ negation operators presented M0 and adjoint

_ The w-eo algebragL,—~,T), (L,~,T) and their  negations§]. The negation operators introduced by Della

implications—, ~ are said to be dual to each other. Stella and Guido are defined from symmetrical algebras
as follows.

Due to symmetrical character of this notigh, ~, T)

is symmetrical if and only ifL, —, T) is symmetrical 0] Definition 7([10]). Let (L,—,T) a w-ceo algebra. We
From PropositiorB we assert that every symmetrical define the following unary operation

right-distributive w-ceo algebra always provides an atjoi

triple. [T:L=L, X=X =x—1

(@© 2015 NSP
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If (L,—,T) is a symmetrical w-ceo algebra, then we can
define a further unary operator
[[V:L—=L, x—=X"=x~1

Both these operations are calleggatiorand they are said
to be dual to each other.

The negation-]~ ([]™, respectively) isnvolutive if
X"~ =x (X =X, respectively), for every L.

The negation§]~ and]-]™, and the symmetrical w-ceo
algebra as well, are said to beross-involutiveif x>~ =
X~ ~ =X, forevery x L.

From definition above, basic properties of the negationsy

were stated in1(].
The adjoint negations are also residuated negatibns [
13,25] defined from the implications of an adjoint triple.

Definition 8([6]). Given two poset$P;, <1), (P2, <»), a
lower bounded posefPs, <3, 13) and an adjoint triple
(&,,\) with respect to B P and R, the mappings
n: PP — P, and ny: P, — P, defined, for all xe Py,
ye P as

Mn(X) = L3\ X n(y)= L3y

are calledadjoint negations with respect B andP.

The operators gand n, satisfying that x= ns(nn(X))
and y= np(ns(y)), for all x € P, and ye P, are called
strong adjoint negations

Note that, three different bounded partially ordere
sets have been considered in the definition of adjoin

negations, which provides a more general definition of

negation operator.
The following result fixes the relation between both
negation operators.

Proposition 11. Given a symmetrical w-ceo algebra
(L,—,T), the unary operation§]~ and [-]~ are adjoint
negations.

Proof. The proof is straightforwardly obtained from
Propositior9 and Definitions8 and7. 0O

As a consequence, adjoint negations defined from 6.x<; ny(y)

results of adjoint negations which require less hypotheses
than the ones given iriL[).

Firstly, we will introduce an important result which
relates these negations to Galois connections.

Proposition 12. Let (P1,<1), (P,<2) be two posets,
(Ps,<3,13) a lower bounded poset ands;,nn, adjoint
negations. The pair(ns,ny) forms an antitone Galois
connection between RRnd B.

Proof. In order to prove thatns, ny) is an antitone Galois
connection betweeR, andP,, we must to check thaik, n,
are order-reversing and the inequalities; nsna(x) and
<2 npns(y) hold, for allx € P, andy € P».

Firstly, we will prove that ifx;,x, € Py andx; <1 X,
thennn(X2) <2 Nn(x1). We suppose that; <i xp, by the
monotony of the operator N, we obtain
13 N % <2 13 N X1, which is equivalent to
Nn(X2) <2 Nn(X1). The monotonicity ofns is proven
analogously.

Now, we will check thak <4 nsny(x) holds, for allx €
P.. The adjoint property provides that the inequakity 1
13/ (L3N x) is equivalent to the inequality& (L3~
X) <3 L3 and they are true since, by the adjoint property,
the trivial inequality | 3\ x <, 13\ x holds, for allx €
P1. The proof of the inequality <, nyns(y) is analogous.
O

As a consequence, the properties of Galois
connections will be inherited by adjoint negations. The
following proposition recalls several of them, which are

dassociated with some of the properties corresponding to
tProposition 6.2, 6.3 and 6.4 ofl(], avoiding extra

restrictions.

Proposition 13. Let (P,<3), (P»,<,) be posets,
(P3,<3,13) lower bounded poset andsm, adjoint
negations. The following statements hold:

LIf (P, <1,11,T1) and (P, <3, 15, T2) are bounded

partially ordered sets, thensiLz) = Ty and m(L1) =
2

2., and ny are antitone;

3.x<1 nghp(X) and y<, npng(y);

4.nnpns=ns and mNshp = Np;

5.nsn, and  mng are closure operators;

iff y<ony(x),forallxeP,yep;

multi-adjoint algebras are more general than the ones 7.When the supremum and the infimum exist, for aqy X

given from symmetrical algebras. Moreover, we can

conclude that the properties of the adjoint negations are

also satisfied by the operatdrgs, []™.

Furthermore, almost all these properties givenli] |
are satisfied by adjoint negations and n, and so, less
conditions are needed to be satisfied.

One property that the adjoint negations do not verify,
in general, is thahg(T) = L andny(T) = L, although
the negation operatof§~ and|-]~ defined in [L0] always
satisfy these condition§~ = L andT~ = L.

Besides this property, for example, Proposition 6.2,

6.3 and 6.4 of 10 show properties that adjoint negations
verify. From now on, we will introduce some technical

P, Y CPR,

@ns(\/ y) = A ns(y),
yeY yeY
O\ %) = A\ m(x).
xeX xeX

The next results are associated with Proposition 6.2
of [10].

Proposition 14. Let (&,./,.) be an adjoint triple with
respect to the two posetB;, <), (P, <2) and the lower
bounded posetPs, <3, L3). The adjoint negation yiand

np, obtained from the adjoint triple, satisfies thafy) <i

z / yand y(X) <;zN\ x, forallxe P, ye P, ze Ps.
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Proof. Clearly 13 <3 z holds, for allze P;. As /' is

Proof. (1) The trivial inequality L3 <3 x& (L3 \ X)

order-preserving on the first argument, the inequalityholds, for allx € P;. Therefore, we only have to prove that

13/ y<i1z,/vyis satisfied, for ally € P, andz € Ps,
which is equivalent tos(y) <1z Y.
The proof is analogous far(x) <p zZ\ x. O

Proposition 15. The adjoint negation 43 obtained from
the adjoint triple (&,,/,\) with respect to the
join-semilattice (P, <;), the meet-semilatticéP,, <)
and the lower bounded poséP;, <3, l3), satisfies the
following properties for al{yi}ici C P..

L/ ns(y) <1ns(AWi);

iel iel
2.1f ng and n, are strong adjoint negations, then

\/ Ns(yi) = ”S(/\Yi)-

i€l i€l

Proof. (1) By the infimum property and the monotonicity

of //, the inequalityl 3,y <1 L3,/ (Aig i) is verified,
for all {y; }iei C P». Now, applying the supremum property,
it is obtained thay/c| (L3 " Vi) <1 L3 (Aiet i), i€,
Viel Ns(Yi) <1 nS(/\ieI Yi).

(2) Applying the operatons to the Condition 7(b) of
Proposition 13, we obtain
Ns(Aiet (%)) = Ns(M(Vigi X)), for all {xi}ier € Pr.

Since ng is a strong adjoint negation, the equality

Ns(Aie1 Nn(X)) = Ve X holds, for all{x; }ic| C P1.
Now, given {yi}icr C P», applying the previous

equality to Xi = ns(yi), we obtain
Ns(Aic Tn(Ns(¥i))) = Vier Ns(Yi). Hence, as, is a strong
adjoint  negation, we can conclude  that

Vierns(¥i) = ns(Aier Vi), forall {yitier € P>. D
An analogous result is obtained considenmg

Proposition 16. Let (&,,,\\) be an adjoint triple with
respect to the meet-semilattice(P,<;), the
join-semilattice (P,, <,) and the lower bounded poset
(Ps,<3,13). The adjoint negation 1 satisfies the
following statements for allx; }ic; C Pr.

L. \/ (%) <2 m(/\%);

iel iel
2.1f ng and n, are strong adjoint negations, then

\/ (%) = m(AX).

iel iel

The following proposition presents a generalization of

the properties given in Proposition 6.3 dff], since they
are established in a more general framework.

Proposition 17. Given an adjoint triple(&,,/,\) with
respect to the poset&, <), (P, <,) and the lower
bounded posetPs,<3,13). The adjoint negation f
obtained from the residuated implicatigs, satisfies the
following properties, for all e P,y € P».

1. x&M(x) = L3
2. y<onp(x)ifandonly if x& y= 13

x& (L3 N\ X) <3 L3, which follows applying the adjoint
property directly tal 3 \ x <p 13\ X

(2) Firstly, we will prove the first implication. The
equivalencey <; ny(x) if and only if x&y <z L3 is
obtained straightforwardly from adjoint property.
Moreover, 13 <3 x&Yy holds, for all x € P,y € P..
Therefore, we obtain that& y = 1 3.

In order to prove the counterpart, we suppose that
x&Yy = Ll3. Clearly,x&y <3 L3 which is equivalent to
y <2 nn(X) by the adjoint property. O

The operatong satisfies a similar result.

Therefore, although the definition of adjoint negations
is more general, they almost satisfy the same properties
that the negation operators from symmetrical w-eo
algebras, requiring less conditions in general.

5 Conclusions and future work

Two important structures, multi-adjoint algebras and
extended-order algebras, have been taken into account,
which were introduced under the same motivation:
reducing the mathematical requirements needed to
compute in several frameworks, such as in fuzzy logic,
fuzzy formal concept analysis, etc.

The formal definition of multi-adjoint algebra has
been introduced. Moreover, the main contribution have
been the comparison of both algebras in order to know
what is the most general one, keeping the needed
properties to compute in the applications.

Furthermore, since the use of residuated negations is
very useful in fuzzy logic and other frameworks, this
paper has considered adjoint negations from multi-adjoint
algebras, which are a generalization of the definition of
the logic connective. We have presented a comparison
between adjoint negations and negation operators
introduced in LQ], obtaining that adjoint negations are
more general operators. Indeed, the properties satisfied by
the negation operators defined from symmetrical w-eo
algebras have been generalized avoiding extra restrgction
in most cases. Consequently, the applications in which
adjoint negations can be considered are wider.

As future work, more properties will be studied and the
comparison with other general structures will be given.
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